D

HEWLETT®

PACKARD
Process Migration
Dejan Milojicic, Fred Douglis* Yves Paindaveine,™
Richard Wheeler™ Songnian Zhou*
Computer Systems Laboratory
HP Laboratories Palo Alto
HPL-1999-21
February, 1999
process migration, Process migration is the act of transferring a process
distributed systems, between two machines. It enables dynamic load distribution,
distributed operating fault resilience, eased system administration, and data
systems, access locality. Despite these goals and ongoing research
load distribution efforts, migration has not achieved widespread use. With the

increasing deployment of distributed systems in general, and

distributed operating systems

particular, process

migration is again receiving more attention in both research
and product development. As high performance facilities
shift from supercomputers to networks of workstations, and
with the ever-increasing role of the World Wide Web, we

expect migration to play a more

eventually to be widely adopted.

important role and

This survey reviews the field of process migration by
summarizing the key concepts and giving an overview of the
Design and
implementation issues of process migration are analyzed in
general, and then revisited for each of the case studies
described: MOSIX, Sprite, Mach and Load Sharing Facility.
The benefits and drawbacks of process migration depend on
the details of implementation and therefore this paper
focuses on practical matters. This survey will help in
understanding the potentials of process migration and why

most important implementations.

it has not caught on.

*University of Toronto and Platform Computing, Toronto, Canada
AT&T Labs, Florham Park, NJ
™OG Research Institute, Grenoble, France

j:'I%I\/In%’l Rg é(sigtoonnblgltAOnl
B %opyrlg t Hewlett—%ackgrd Company 1999

Process Migration

DEJAN S. MILOJICICT, FRED DOUGLISY, YVES PAINDAVEINE T,
RICHARD WHEELER* and SONGNIAN ZHOU*

t HP Labs, $ AT&T Labs—Research, tt TOG Research Institute,
1+ EMC, and *University of Toronto and Platform Computing

1

Abstract

Process migration is the act of transferring a process between two machines. It enables dynamic load distribution, fault re-
silience, eased system administration, and data access locality. Despite these goals and ongoing research efforts, migration
has not achieved widespread use. With the increasing deployment of distributed systemsin general, and distributed operat-
ing systemsin particular, process migration is again receiving more attention in both research and product development. As
high-performance facilities shift from supercomputers to networks of workstations, and with the ever-increasing role of the
World Wide Web, we expect migration to play a more important role and eventually to be widely adopted.

This survey reviews the field of process migration by summarizing the key concepts and giving an overview of the most
important implementations. Design and implementation issues of process migration are analyzed in general, and then revis-
ited for each of the case studies described: MOSIX, Sprite, Mach and Load Sharing Facility. The benefits and drawbacks of
process migration depend on the detail s of implementation and therefore this paper focuses on practical matters. Thissurvey
will help in understanding the potentials of process migration and why it has not caught on.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems - network oper-
ating systems; D.4.7 [Operating Systems]: Organization and Design - distributed systems; D.4.8 [Operating Systems]:
Performance: measurements; D.4.2 [Operating Systems]: Storage Management - distributed memories.

Additional Key Words and Phrases: process migration, distributed systems, distributed operating systems, load distribution.

INTRODUCTION

Despite these goals and ongoing research efforts, migra-

A process is an operating system abstraction represent-
ing an instance of arunning computer program. Process
migration is the act of transferring a process between
two machines during its execution. Several implemen-
tations have been built for different operating systems,
including MOSIX [Barak and Litman, 1985], V
[Cheriton, 1988], Accent [Rashid and
Robertson, 1981], Sprite [Ousterhout et al., 1988],
Mach [Accetta etal., 1986], and OSF/1 AD TNC
[Zajcew et al., 1993]. In addition, some systems pro-
vide mechanisms that checkpoint active processes and
resume their execution in essentially the same state on
another machine, including Condor [Litzkow
etal., 1988] and Load Sharing Facility (LSF) [Zhou
et a., 1994].

Process migration enables:

» dynamic load distribution, by migrating processes

from overloaded nodes to less loaded ones,

« fault resilience, by migrating processes from nodes

that may have experienced a partial failure,
e improved system administration, by migrating

tion has not achieved widespread use. One reason for this
is the complexity of adding transparent migration to sys-
tems originally designed as stand-alone, instead of de-
sighing new systems with migration in mind from the
beginning. Another reason is that there has not been a
compelling commercial argument for operating system
vendors to support process migration. Checkpoint-restart
approaches offer a compromise here, since they can run
on more loosely-coupled systems by restricting the types
of processes that can migrate.

In spite of these barriers, process migration continues to
attract research. We believe that the main reason is the
potentials offered by mobility as well as the attraction to
hard problems, so inherent to the research community.
There have been many different goals and approaches to
process migration because of the potentials migration can
offer to different applications (see Section 2.3 on goals,
Section 4 on approaches and Section 2.4 on applica-
tions).

With the increasing deployment of distributed systems in

processes from the nodes that are about to be shutgeneral, and distributed operating systems in particular,

down or otherwise administered, and

« data access locality, by migrating processes closer

to the source of some data.

the interest in process migration is again on the rise both
in research and in product development. As high-perfor-
mance facilities shift from supercomputers to Networks

December 5, 1998 3:42 pm

1. INTRODUCTION
Organization of the Paper
2. BACKGROUND
2.1. Terminology
2.2. Target Architectures
2.3. Goals
2.4. Application Taxonomy
2.5. Migration Algorithm
2.6. System Requirements for Migration
2.7. Load Information Management
2.8. Distributed Scheduling
2.9. Alternativesto Migration
3. CHARACTERISTICS
3.1. Complexity and Operating System Support
3.2. Performance
3.3. Transparency
3.4. Fault Resilience
3.5. Scalahility
3.6. Heterogeneity
3.7. Summary
4. EXAMPLES
4.1. Early Work
4.2. Transparent Migration in UNIX-like Systems
4.3. OSwith Message-Passing Interface
4.4. Microkernels
4.5. User-space Migrations
4.6. Application-specific Migration
4.7. Mobile Objects
4.8. Mobile Agents
5. CASE STUDIES
5.1. MOSIX
5.2. Sprite
5.3. Mach
54. LSF
COMPARISON
7. WHY PROCESS MIGRATION
HASNOT CAUGHT ON
7.1. Case Andysis
7.2. Misconceptions
7.3. True Barriersto Migration Adoption
7.4. How these Barriers Might be Overcome
8. SUMMARY AND FURTHER RESEARCH
ACKNOWLEDGMENTS
REFERENCES

o

of Workstations (NOW) [Anderson etal., 1995] and
large-scale distributed systems, we expect migration to
play amore important role and eventually gain wider ac-
ceptance.

Operating systems developers in industry have consid-
ered supporting process migration, for example Solaris
MC [Khalidi et al., 1996], but thus far the availability of
process migration in commercial systemsis non-existent
aswe describe bel ow. Checkpoint-restart systems are be-
coming increasingly deployed for long-running jobs. Fi-
nally, techniques originally developed for process

migration have been employed in developing mobile
agents on the World Wide Web. Recent interpreted pro-
gramming languages, such as Java[Gosling et al., 1996],
Telescript [White, 1996] and Tcl/Tk [Ousterhout, 1994]
provide additional support for agent mobility.

There exist a few books that discuss process migration
[Goscinski, 1991; Barak etd., 1993; Singhal and
Shivaratri, 1994; Milgjicic et a., 1999]; anumber of sur-
veys [Smith, 1988; Eskicioglu, 1990; Nuttal, 1994],
though none as detailed as this survey; and Ph.D. theses
that deal directly with migration [Theimer et al., 1985;
Zayas, 1987a; Lu, 1988; Douglis, 1990; Philippe, 1993;
Milgjicic, 1993c; Zhu, 1992; Roush, 1995], or that are
related to migration [Dannenberg, 1982; Nichols, 1990;
Tracey, 1991, Chapin, 1993; Knabe, 1995;
Jacgmot, 1996].

This survey reviews the field of process migration by
summarizing the key concepts and describing the most
important implementations. Desigh and implementation
issues of process migration are analyzed in general and
then revisited for each of the case studies described:
MOSIX, Sprite, Mach, and L SF. The benefits and draw-
backs of process migration depend on the details of im-
plementation and therefore this paper focuses on
practical matters. In this paper we address mainly pro-
cess migration mechanisms. Process migration policies,
such as load information management and distributed
scheduling, are mentioned to the extent that they affect
the systems being discussed. More detailed descriptions
of policies have been reported elsewhere (e.g., Chapin’s
survey [1996]).

This survey will help in understanding the potential of
process migration. It attempts to demonstrate how and
why migration may be widely deployed. We assume that
the reader has a general knowledge of operating systems.

Organization of the Paper

The paper is organized as follows. Section 2 provides
background on process migration. Section 3 describes
the process migration by surveying its main characteris-
tics: complexity, performance, transparency, fault resil-
ience, scalability and heterogeneity. Section 4 classifies
various implementations of process migration mecha-
nisms and then describes a couple of representatives for
each class. Section 5 describes four case studies of pro-
cess migration in more detail. In Section 6 we compare
the process migration implementations presented earlier.
In Section 7 we discuss why process migration has not

state transfer

migrating process
(destination instance)

migrating process
(source instance)

source node "\

destination node
process

communicating node

Figure 1: High Level View of Process Migration. Process
migration consists of extracting the state of the process on the
source node, transferring it to the destination node where a
new instance of the processis created, and updating the con-
nections with other processes on communicating nodes.

caught on so far. In the last section we summarize the pa-
per and describe opportunities for further research.

2 BACKGROUND

This section gives some background on process migra-
tion by providing an overview of process migration ter-
minology, target architectures, goals, application
taxonomy, migration algorithm, system requirements,
load information management, distributed scheduling,
and alternatives to migration.

2.1 Terminology

A process is a key concept in operating systems
[Tanenbaum, 1992]. It consists of data, a stack, register
contents, and the state specific to the underlying Operat-
ing System (OS), such as parameters related to process,
memory, and file management. A process can have one
or more threads of control; threads, also called light-
weight processes, consist of their own stack and register

Mobility

T T

Hardware Software

/\

Passive data Active data

) T

Mobilecode Processmigration Mobile agents
(code) (code+data) (code+data+authority)

Figure 2: Taxonomy of M obility.

During migration, two instances of the migrating process
exist: thesource instance is the original process, and the
destination instance is the new process created on the
destination node. After migration, the destination in-
stance becomesraigrated process. In systems with a
home node, a process that is running on other machines
may be called aemote process (from the perspective of
the home node) or #@reign process (from the perspec-
tive of the hosting node).

Remote invocation is the creation of a process on a re-
mote node. Remote invocation is usually a less “expen-
sive” operation than process migration. Although the
operation can involve the transfer of some state, such as
code or open files, the contents of the address space need
not be transferred.

Generally speaking, mobility can be classified into hard-
ware and software mobility, as described in Figure 2.
Hardware mobility deals with mobile computing, such as
with limitations on the connectivity of mobile computers

contents, but share a process’s address space and som@yf mobile IP (see [Milojicic et al., 1999] for more de-
the operating-system-specific state, such as signals. THallS). A few techniques in mobile computing have an
task concept was introduced as a generalization of th@nalogy in software mobility, such as security, locating,
process concept, whereby a process is decoupled into@ming, and communication forwarding. Software mo-
task and a number of threads. A traditional process is refility can be classified into the mobility of passive data

resented by a task with one thread of control.

Process migration is the act of transferring a process be-

tween two machines (thsource and thedestination

node) during its execution. Some architectures also d

and active data. Passive data represents traditional means
of transferring data between computers; it has been em-
ployed ever since the first two computers were connect-

Lg_d. Active data can be further classified into mobile

fine ahost or home node. which is the node where the €0de, process migration and mobile agents. These three
process logically runs. A high-level view of process mi-Classes represent incremental evolution of state transfer.
gration is shown in Figure 1. The transferred state inMobile code, such as Java applets, transfers only code
cludes the process’s address space, execution poifgtween nodes. Process migration, which is the main
(register contents), communication state (e.g., open file§1ieme of this paper, deals with the code and the data
and message channels) and other operating system deansfer. Finally, mobile agents also transfer authority of

pendent stateTask migration represents transferring a their owner. To a certain extent (e.g. access to distributed
task between two machines during execution of itdiles), authority is also transferred in the case of process

threads.

migration, but it is essential for mobile agents.

2.2 Target Architectures

Process migration research started with the appearance
of distributed processing among multiple processors.
Process migration introduces opportunities for sharing
processing power and other resources, such as memory
and communication channels. It is addressed in early
multiprocessor systems [Stone, 1978; Bokhari, 1979].
Current multiprocessor systems, especialy symmetric
multiprocessors, are scheduled using traditional schedul-
ing methods. They are not used as an environment for
process migration research.

Process migration in NUMA (Non-Uniform Memory
Access) multiprocessor architectures is till an active
area of research [Gait,1990; Squillante and
Nelson, 1991; Vaswani and Zahorjan, 1991; Nelson and
Squillante, 1995]. The NUMA architectures have a dif-
ferent access time to the memory of the local processor,
compared to the memory of a remote processor, or to a
global memory. The access time to the memory of are-
mote processor can be variable, depending on the type of
interconnect and the distance to the remote processor.
Migration in NUMA architectures is heavily dependent
on the memory footprint that processes have, both in
memory and in caches. Recent research on virtual ma-
chines on scaable shared memory multiprocessors
[Bugnion, et al., 1997] represents another potential for
migration. Migration of whole virtual machines between
processors of a multiprocessor abstracts away most of
the complexities of operating systems, reducing the mi-
grateable state only to memory and to state contained in
avirtual monitor [Teodosiu, 1999]. Therefore, migration
is easy to implement if there is existing virtual machine.

Massively Parallel Processors (MPP) are another type of
architecture used for migration research [Tritscher and
Bemmerl, 1992; Zajcew etal., 1993]. MPP machines
have alarge number of processorsthat are usually shared
between multiple users by providing each of them with a
subset, or partition, of the processors. After a user relin-
quishesapartition, it can be reused by another user. MPP
computers are typically of a NORMA (NO Remote
Memory Access) type, i.e., there is no remote memory
access. In that respect they are similar to network clus-
ters, except they have amuch faster interconnect. Migra-
tion represents a convenient tool to achieve
repartitioning. Since M PP machines have alarge number
of processors, the probability of failureisalso larger. Mi-
grating arunning processfrom apartially failed node, for
exampl e after abank of memory unrelated to the process
fails, allows the process to continue running safely. MPP

machines also use migration for load distribution, such
as the psched daemon on Cray T3E, or Loadleveler on
IBM SP2 machines.

Since its inception, a Local Area Network (LAN) of
computers has been the most frequently used architec-
ture for process migration. The bulk of the systems de-
scribed in this paper, including all of the case studies, are
implemented on LANSs. Systems such as NOW [Ander-
son et al., 1995] or Solaris[Khalidi et a., 1996] have re-
cently investigated process migration using clusters of
workstations on LANSs. It was observed that at any point
in time many autonomous workstations on a LAN are
unused, offering potential for other users based on pro-
cess migration [Mutka and Livny, 1987]. There is, how-
ever, a sociological aspect to the autonomous
workstation model. Users are not willing to share their
computers with others if this means affecting their own
performance [Douglis and Ousterhout, 1991]. The prior-
ity of the incoming processes (processing, VM, IPC pri-
orities) may be reduced in order to alow for minimal
impact on the workstation’s owner [Douglis and
Ousterhout, 1991; Krueger and Chawla, 1991].

Most recently, wide-area networks have presented a
huge potential for migration. The evolution of the Web
has significantly improved the relevance and the oppor-
tunities for using a wide-area network for distributed
computing. This has resulted in the appearance of mobile
agents, entities that freely roam the network and repre-
sent the user in conducting his tasks. Mobile agents can
either appear on the Internet [Johansen et al., 1995] or in
closed networks, as in the original version of Telescript
[White, 1996].

2.3 Goals

The goals of process migration are closely tied with the
type of applications that use migration, as described in
next section. The goals of process migration include:

Accessing more processing power is a goal of migra-
tion when it is used for load distribution. Migration is
particularly important in theeceiver-initiated distribut-

ed scheduling algorithms, where a lightly loaded node
announces its availability and initiates process migration
from an overloaded node. This was the goal of many sys-
tems described in this survey, such as Locus [Walker
etal., 1983], MOSIX [Barak and Shiloh, 1985], and
Mach [Milojicic et al., 1993a]. Loadistribution also de-
pends on load information management and distributed
scheduling (see Sections 2.7 and 2.8). A variation of this
goal is harnessing the computing power of temporarily

free workstations in large clusters. In this case, process system-wide migration facility. Parallel Virtual Machine
migration is used to evict processes upon the owner’s réPVM) [Beguelin et al., 1993] is an example of applica-
turn, such as in the case of Sprite (see Section 5.2). tion-level support for parallel invocation and interpro-
cess communication, while Migratory PVM (MPVM)
in cases when it is more efficient to access resources [6-a3s et al., 1995] extends PVM to allow instances of a

cally than remotely. Moving a process to another end 0parallel application to migrate among nodes. Some other

a communication channel transforms remote communigppl'cat'ons are inherently parallelizable, such as the

cation to local and thereby significantly improves perfor—make tool [Baalbergen, 1988]. For example, Sprite pro-

mance. It is also possible that the resource is not remote}g'/Oles a migration-aware paralfehke utility that distrib-

accessible, as in the case when there are different semaHJi?S a compilation across several nodes [Douglis and

tics for local and remote accesses. Examples includQUSterhOUt’ 199:,]']' .C.:ertaln proF;essor-bound appl!ca-
work by Jul [1989], Milojicic et al. [1993], and Miller tions, such as scientific computations, can be parallelized
and Presotto [1981,] ' ’ and executed on multiple nodes. An example includes

work by Skordos [1995], where an acoustic application
Resource sharing is enabled by migration to & specific is parallelized and executed on a a cluster of worksta-
node with a special hardware device, large amounts gfons. Applications that perform 1/0 and other nonidem-
free memory, or some other unique resource. Examplesotent operations are better suited to a system-wide
include NOW [Anderson et al., 1995] for utilizing mem- remote execution facility that provides location transpar-
ory of remote nodes, and the use of parafteke in ency and, if possible, preemptive migration.
Sprite [Douglis and Ousterhout, 1991] and work by Sko-
rdos [1995] for utilizing unused workstations. L ong-running applications, which can run for days or
even weeks, can suffer various interruptions, for exam-
éole partial node failures or administrative shutdowns.
Process migration can relocate these applications trans-
parently to prevent interruption. Examples of such sys-
tems include work by Freedman [1991] and MPVM
fCasas et al., 1995]. Migration can also be supported at

Exploitation of resource locality is a goal of migration

Fault resilienceis improved by migration from a partial-
ly failed node, or in the case of long-running application
when failures of different kinds (network, devices) are
probable [Chu et al., 1980]. In this context, migration
can be used in combination with checkpointing, such a

in Condor [Litzkow and Solomon, 1992] or Utopia L .
! [Litzkow] bl the application level [Zhou et al., 1994] by providing a

[Zhou et al., 1994]. Large-scale systems where there is ah) . . o
L . checkpoint/restart mechanism which the application can
likelihood that some of the systems can fail can also ben-

efit from migration, such as in Hive [Chapin95] and !nlloke r;enodmally or upon natification of an impending
OSF/1 AD TNC [Zajc93]. interruption.

System administration is simplified if long-running ~Generic multiuser workloads, for example the random
computations can be temporarily transferred to other mdob mix that an undergraduate computer laboratory pro-
chines. For example, an application could migrate fronfluces, can benefit greatly from process migration. As us-
a node that will be shutdown, and then migrate back afte@’s come and go, the load on individual nodes varies
the node is brought back up. Another example is the rewidely. Dynamic process migration [Barak and
partitioning of large machines, such as in the OSF/1 ADVheeler, 1989, Douglis and Ousterhout, 1991] can auto-

TNC Paragon configuration [Zajcew et al., 1993]. matically spread processes across all nodes, including

. . . . those applications that are not enhanced to exploit the
M obile computing also increases the demand for migra- . . .
migration mechanism.

tion. Users may want to migrate running applications
from a host tdheirmobile computer as they connect to a An individual generic application, which is preempt-
network at their current location or back again when theyple, can be used with various goals in mind (see
disconnect [Bharat and Cardelli, 1995]. Section 2.3). Such an application can either migrate it-
2.4 Application Taxonomy self, or it can be migrated by another authority. This type
o i of application is most common in various systems de-
The type _Of applications that can benefit from ProCeSYcribed in Section 4 and in the case studies described in
migration include: Section 5. Note that it is difficult to select such applica-
Parallelizable applications can be started on certain tions without detailed knowledge of past behavior, since
nodes, and then migrated at the application level or by many applications are short-lived and do not execute

long enough to justify the overhead of migration (see
Section 2.7).

Migration-aware applications are applications that
have been coded to explicitly take advantage of process
migration. Dynamic process migration can automatically
redistribute these related processes if the load becomes
uneven on different nodes, e.g. if processes are dynami-
cally created, or there are many more processes than
nodes. Work by Skordos [1995], Freedman [1991] and
Cardelli [1995] represent this class of application. They

are described in more detail in Section 4.6. 7.

Network applications are the most recent example of
the potential use of migration: for instance, mobile
agents and mobile objects (see Sections 4.7 and 4.8).
These applications are designed with mobility in mind.
Although this mobility differs significantly from the
kinds of “process migration” considered elsewhere in

5. A destination processinstanceis created into which

the transferred state will be imported. A destination
instance is not activated until a sufficient amount of
state has been transferred from the source process
instance. After that, the destination instance will be
promoted into a regular process.

6.State is transferred and imported into a new

instance on the remote node. Not all of the state
needs to be transferred; some of the state could be
lazily brought over after migration is completed (see
lazy evaluation in Section 3.2).

Some means of forwarding references to the
migrated process must be maintain€is is required

in order to communicate with the process or to control
it. It can be achieved by registering the current loca-
tion at thehome node (e.g. in Sprite), by searching for
the migrated process (e.qg. in the V Kernel, at the com-
munication protocol level), or by forwarding mes-
sages across all visited nodes (e.g. in Charlotte).

this paper, it uses some of the same techniques: locatihThe new instance is resumed when sufficient state
policies, checkpointing, transparency, and locating and has been transferred and imported. With this step,

communicating with a mobile entity.

2.5 Migration Algorithm

process migration completes. Once all of the state has
been transferred from the original instance, it may be
deleted on the source node.

Although there are many different migration implemen-2.6 System Requirements for Migration
tations and designs, most of them can be summarized o support migration effectively, a system should pro-

the following steps (see also Figure 3):

1.A migration request is issued to a remote node.
After negotiation, migration has been accepted.

2. A process is detached from its source node by sus-
pending its execution, declaring it to be in a migrating
state, and temporarily suspending communication
channels.

3.Communication is redirected by collecting mes-

vide the following types of functionality:

» Exporting/importing the process state. The system

must provide some type of export/import interfaces
that allow the process migration mechanism to extract
a process’s state from the source node and import this
state on the destination node. These interfaces may be
provided by the underlying operating system, the pro-
gramming language, or other elements of the program-
ming environment that the process has access to. State

sages directed to the migrated process, and by deliver-includes processor registers, process address space and
ing them to the process after migration. The process communication state, such as open message channels
cannot send messages during this time. Once the com-in the case of message-based systems, or open files and
munication channels are enabled after migration, the signal masks in the case of UNIX-like systems.

migrated process is known to the external world. « Naming/accessing the processand itsresour ces. Af-

4.The process state is extracted, including memory ter migration, the migrated process should be accessi-
contents; processor state (register contents); commu- ble by the same name and mechanisms as if migration
nication state (e.g., opened files and message chan-never occurred. The same applies to process’s resourc-
nels); and relevant kernel context. The €S, such as threads, communication channels, files and
communication state and kernel context are OS- devices. During migration, access to a process and/or
dependent. Some of the local OS internal state is not Some of its resources can be temporarily suspended.
transferable. The process state is typically retained on Varying degrees of transparency are achieved in nam-
the source node until the end of migration, and in ing and accessing resources during and after migration
some systems it remains there even after migration (See Section 3.3).
completes. Processor dependencies, such as registeCleaning up the process’s non-migratable state.
and stack contents, have to be eliminated in the caseFrequently, the migrated process has associated sys-
of heterogeneous migration. tem statethat is not migratable (examplesincludelocal

0

external
I E communication
pr X migration request
o ro—
kernel negotiation kernel
.§ ¢ migr. acceptance
source node destination node

1. A migration request isissued to aremote node

externa
communication
\

kernel

kernel
source node destination node

communication

kernel

destination node
3. Communication isredirected

()
/v external

communication

kernel kernel
v "

source node destination node
4. The process state is extracted

communication O

kernel * kernel
([] [)
source node destination node
5. A destination processinstanceis created
(- [— [—
= transfer = A//V
pending messages external
o a@ communication
kernel ,} kernel
[) [transferable state
source node (code, data, registers, etc.) ~ destination node

6. Stateistransferred and imported into a new instance

= s 4
& | etemd
A forwarding reference communication
C
pr X
kernel kernel
[) [N
source node destination node
7. Some means of forwarding references
3. / =¥
A external
Q forwarding reference communication
pr X
kernel kernel
e o o
source node destination node

8. The new instance isresumed

Figure 3: Migration Algorithm. Many details have been simplified, such asuser v. kernel migration, whenis process actually sus-
pended, when is the state transferred, how are message transferred, etc. These details vary subject to particular implementation.

process identifier, pid, and the local time). Migration
must wait until the process finishes or abortsany pend-
ing system operation. If the operation can be arbitrarily
long, it istypically aborted and restarted on the desti-
nation node. For example, migration can wait for the
completion of local file operations or local device re-
quests that are guaranteed to return in a limited time
frame. Waiting for a message or accessing a remote
device are examples of operations that need to be
aborted and restarted on the remote node. Processes
that cannot have their non-migrateable state cleaned
are not considered for migration.

2.7 Load Information Management

The local processes and the load of local and remote
nodes have to be characterized, in order to select a pro-
cess for migration and a destination node, as well as to
justify migration. This task is commonly known as |oad
information management. Load information is collected
and passed to a distributed scheduling policy (see

Figure 4). Load information management is concerned
with the following three questions:

What isload information and how isit represented?

The node load istypically represented by one or more of

the following load indices: utilization of the CPU, the
length of the queue of processes waiting to be executed,

the stretch factor (ratio between turnaround- and execu-
tion-time—submission to completion v. start to comple-
tion) [Ferrari and Zhou 1986], the number of running
processes, the number of background processes, paging,
communication [Milojicic, 1993c], disk utilization, and
the interrupt rate [Hwang et al., 1982]. A process load is
typically characterized by process lifetime, CPU usage,
memory consumption (virtual and physical), file usage
[Hac, 1989a], communication [Lo, 1989], and paging
[Milojicic, 1993c]. Kuntz uses a combination of work-
load descriptions for distributed scheduling

activation i i
o migration o
Distributed lunen?) directives Migration
Scheduling (which?) | — > | Mechanism
Policies Eg,fgr'g’?‘)
\ Load information
load Information dissemination
information Management | 1, remote nodes

local information
collection local node

Figure 4: Load Information Management Module collects
load information on local node and disseminates it among the
nodes. Distributed Scheduling instructs the migration mecha-
nism when, where, and which processto migrate.

[Kunz, 1991]. The application type is considered in Ce-
dar [Hagmann, 1986].

When areload information collection and dissemina-
tion activated? These can be periodic or event-based. A
typical periodisintherange of 1 second or longer, while
typical events are process creation, termination, or mi-
gration. The frequency of information dissemination is
usually lower than the frequency of information collec-
tion, i.e. itisaveraged over timein order to prevent insta-
bility [Casavant and Kuhl, 1988b]. It aso depends on the
costs involved with dissemination and the costs of pro-
cess migration. The lower the costs, the shorter the peri-
od can be; the higher the costs, less frequently load
information is disseminated.

How much information should be transferred? It can
be the entire state, but typically only a subset is trans-
ferred in order to minimize the transfer costs and have a
scalable solution. In large systems, approximations are
applied. For example, only a subset of the information
might be transferred, or it might be derived from the sub-
set of al nodes [Barak and Shiloh, 1985; Alon
eta., 1987; Han and Finkel,1988; Chapin and
Spafford, 1994].

There are two important observations derived from the
research in load information management. The first one
isthat just asmall amount of information can lead to sub-
stantial performance improvements. This observation is
related to load distribution in general, but it also applies
to process migration. Eager et a. were among thefirst to
argue that load sharing using minimal load information
can gain dramatic improvementsin performance over the
non-load-sharing case, and perform nearly as well as
more complex policies using more information [Eager
et al., 1986b]. The minimal load information they use

consists of the process queue length of successively
probed remote nodes. A small amount of state also re-
duces communication overhead. Kunz comesto the same
conclusion using the concept of stochastic learning au-
tomatato implement atask scheduler [Kunz, 1991].

The second observation is that the current lifetime of a
process can be used for load distribution purposes. The
issueisto find how old the process needs to be before it

is worth to migrate it. Costs involved with migrating
short-lived processes can outweigh the benefits. Leland

and Ott werethefirst to account for the process agein the
balancing policy [1986]. Cabrerafindsthat it is possible

to predict a process’s expected lifetime from how long it
has already lived [Cabrera, 1986]. This justifies migrat-
ing processes that manage to live to a certain age. In par-
ticular, he finds that over 40% of processes doubled their
age. He also finds that the most UNIX processes are
short-lived, more than 78% of the observed processes
have a lifetime shorter than 1s and 97% shorter than 4s.

Harchol-Balter and Downegxplore the correlation be-
tween process lifetime and acceptable migration costs
[Harchol-Balter and Downey, 1997]. They derive a more
accurate form of the process life-time distribution that al-
lows them to predict the life-time correlated to the pro-
cess age and to derive a cost criterion for migration.
Svensson filters out short-running processes by relying
on statistics [Svensson, 1990], whereas Wang et al. de-
ploy Al theory for the same purpose [Wang et al., 1993].

2.8 Distributed Scheduling

This section addresses distributed scheduling closely re-
lated to process migration mechanisms. General surveys
are presented elsewhere [Wang and Morris, 1985; Casa-
vant and Kuhl, 1988a; Hac, 1989b; Goscinski, 1991,
Chapin, 1996].

Distributed scheduling uses the information provided by
the load information management module to make mi-
gration decisions, as described in Figure 4. The main
goal is to determinavhen to migrate which process
where. The activation policy provides the answer to the
guestionwhen to migrate. Scheduling is activated peri-
odically or it is event-driven. After activation, the load is
inspected, and if it is above/below the threshold, actions
are undertaken according to the selected strategy. The se-
lection policy answers the questiahich process to mi-
grate. The processes are inspected and some of them are
selected for migration according to the specified criteria.
Where to migrate depends on the location policy algo-

rithm, which chooses a remote node based on the avail-
able information.

There are afew well-known classes of distributed sched-
uling policies:

» A sender-initiated policy is activated on the node that
is overloaded and that wishes to off-load to other
nodes. A sender-initiated policy is preferable for low
and medium loaded systems, which have a few over-
loaded nodes. This strategy is convenient for remote
invocation strategies [Eager et al., 1986a; Krueger and
Livny, 1987b; Agrawal and Ezzat, 1987].

« Areceiver-initiated policy is activated on underload-
ed nodes willing to accept the load from overloaded
ones. A receiver-initiated policy is preferable for highe
load systems, with many overloaded nodes and few
underloaded ones. Process migration is particularly
well-suited for this strategy, since only with migration
can one initiate process transfer at an arbitrary point in
time [Bryant and Finkel, 1981; Eager et al., 1986a;
Krueger and Livny, 1988].

e A symmetric policy is the combination of the previ-
ous two policies, in an attempt to take advantage of the
good characteristics of both of them. It is suitable for a
broader range of conditions than either receiver-initi-
ated or sender-initiated strategies alone [Krueger and
Livny, 1987b; Shivaratri et al., 1992].

* A random policy chooses the destination node ran-
domly from all nodes in a distributed system. This sim-
ple strategy can result in a significant performance
improvement [Alon et al., 1987; Eager et al., 1986b;
Kunz, 1991].

The following are some of the issues in distributed
scheduling related to the process migration mechanism:

« Adaptability is concerned with the scheduling impact
on system behavior [Stankovic, 1984]. Based on the
current host and network load, the relative importance
of load parameters may change. The policy should

objective [Casavant and Kuhl, 1988b]. Due to the dis-
tributed state, some instability is inevitable, since it is
impossible to transfer state changes across the system
instantly. However, high levels of instability should be
avoided. In some cases it is advisable not to perform
any action, e.g. under extremely high loads it is better
to abandon load distribution entirely. Process migra-
tion can negatively affect stability if processes are mi-
grated back and forth among the nodes, similar to the
thrashing introduced by paging [Denning, 1980]. To
prevent such behavior a limit on the number of migra-
tions can be imposed. Bryant and Finkel demonstrate
how process migration can improve stability [Bryant
and Finkel, 1981].

Approximate and heuristic scheduling is necessary
since optimal solutions are hard to achieve. Subopti-
mal solutions are reached either by approximating the
search space with its subset or by using heuristics.
Some of the examples of approximate and heuristic
scheduling include work by Efe [1982], Leland and
Ott [1986], Lo [1988], Casavant and Kuhl [1988a],
and Xu and Hwang [1990]. Deploying process migra-
tion introduces more determinism and requires fewer
heuristics than alternative load distribution mecha-
nisms. Even when incorrect migration decisions are
made, they can be alleviated by subsequent migra-
tions, which is not the case with initial process place-
ment where processes have to execute on the same
node until the end of its lifetime.

Hierarchical scheduling integrates distributed and
centralized scheduling. It supports distributed schedul-
ing within a group of nodes and centralized scheduling
among the groups. This area has attracted much re-
search [Bowen et al., 1988; Bonomi and Kumar, 1988;
Feitelson and Rudolph,1990; Gupta and
Gopinath, 1990; Gopinath and Gupta, 1991,
Chapin, 1995]. A process migration mechanism is a
good fit for hierarchical scheduling since processes are
typically migrated within a LAN or other smaller do-

adapt to these changes. Process migration is inherentlymain. Only in the case of large load discrepancies are
adaptable because it allows processes to run prior toprocesses migrated between domains, i.e. between
dispatching them to other nodes, giving them a chance peers at higher levels of the hierarchy.

to ad"?‘pt- Migration can happen at any time (thgrgp he most important question that distributed scheduling
adapting to sudden load changes), whereas initia

placement happens only prior to starting a process. Ef_tgdie's address related to process migration is yvhether
amples of adaptive load distribution include work bymigration pays off. Eager et alompare the receiver-
Agrawal and Ezzat [1987], Krueger and Livny [1988], @nd sender-initiated policies [Eager etal., 1986a], and
Concepcion and Eleazar [1988], Efe and Groselphow that the sender-initiated policies outperform the re-
[1989], Venkatesh and Dattatreya [1990], Shivaratriceiver-initiated policies for light and moderate system
and Krueger [1990], and Mehra and Wah [1992]. loads. The receiver-initiated policy is better for higher
Stability is defined as the ability to detect when the ef-loads, assuming that transfer costs are same. They argue
fects of further actions (e.g. load scheduling or pagingjhat the transfer costs for the receiver policy, that re-
will not improve the system state as defined by a user'guires some kind of migration, are much higher than the

costs for mechanisms for the sender-initiated strategies,
where initial placement suffices. They finally conclude
that under no condition could migration provide signifi-
cantly better performance than initial placement [Eager
et al., 1988].

Krueger and Livny investigate the relationship between
load balancing and load sharing [Krueger and
Livny, 1988]. They argue that load balancing and load
sharing represent various points in a continuum defined
by a set of goals and load conditions [Krueger and
Livny, 1987]. They claim that the work of Eager et al.
[Eager et al., 1988] isonly valid for a part of the contin-
uum, but it cannot be adopted generally. Based on better
job distributions than those used by Eager et a., their
simulation results show that migration can improve per-
formance.

Harchol-Balter and Downey present the most recent re-
sultson the benefits of using process migration [Harchol-
Balter and Downey, 1997]. They use the measured distri-
bution of process lifetimes for a variety of workloads in
an academic environment. The crucial point of their
work is understanding the correct lifetime distribution,
which they find to be Pareto (heavy-tailed). Based on the
trace-driven simulation, they demonstrate a 35-50% im-
provement in the mean delay when using process migra-
tion instead of remote execution (preemptive v. non-
preemptive scheduling) even when the costs of migration
are high.

Their work differs from [Eager et a., 1988] in system
model and workload description. Eager et al. model serv-
er farms, where the benefits of remote execution are
overestimated: there are no associated costs and no affin-
ity toward aparticular node. Harchol-Balter and Downey
model a network of workstations where remote execu-
tion entails costs, and there exists an affinity toward
some of the nodesin a distributed system. The workload
that Eager et al. use contains few jobswith non-zero life-
times, resulting in a system with little imbalance and lit-
tle need for process migration.

2.9 Alternativesto Migration

Given therelative complexity of implementation, and the
expense incurred when process migration isinvoked, re-
searchers often choose to implement aternative mecha
nisms [Shivaratri etal., 1992; Kremien and
Kramer, 1992].

Remote execution is the most frequently used alterna-
tive to process migration. Remote execution can be as
simple astheinvocation of some code on aremote node,

or it can involve transferring the code to the remote node
and inheriting some of the process environment, such as
variables and opened files. Remote execution is usually
faster than migration because it does not incur the cost of
transferring a potentially large process state (such as the
address space, which is created anew in the case of re-
mote execution). For small address spaces, the costs for
remote execution and migration can be similar. Remote
execution is used in many systems such as COCANET
[Rowe and Birman, 1982], Nest [Agrawa and
Ezzat, 1987], Sprite [Ousterhout et al., 1988], Plan 9
[Pike etal., 1990], Amoeba [Mullender et al., 1990],
Drums [Bond, 1993], Utopia [Zhou et a., 1994], and
Hive [Chapin et al., 1995].

Remote execution has disadvantages as well. It allows
creation of the remote instance only at the time of pro-
cess creation, as opposed to process migration which al-
lows moving the process at an arbitrary time. Allowing a
processto run on the source node for some period of time
is advantageous in some respects. This way, short-lived
processes that are not worth migrating are naturally fil-
tered out. Also, the longer aprocess runs, the more infor-
mation about its behavior is available, such as whether
and with whom it communicates. Based on this addition-
al information, scheduling policies can make more ap-
propriate decisions.

Cloning processesisuseful in cases where the child pro-
cess inherits state from the parent process. Cloning is
typically achieved using aremote fork mechanism. A re-
mote fork, followed by the termination of the parent, re-
sembles process migration. The complexity of cloning
processes is similar to migration, because the same
amount of the process state is inherited (e.g. open files
and address space). In the case of migration, the parent is
terminated. In the case of cloning, both parent and child
may continue to access the same state, introducing dis-
tributed shared state, which is typically complex and
costly to maintain. Many systems use remote forking
[Goldberg and Jefferson, 1987; Smith and
loannidis, 1989; Zajcew et al., 1993].

Programming language support for mobility enablesa
wide variety of options, since such systems have almost
complete control over the runtime implementation of an
application. Such systems can enable self-checkpointing
(and hence migratable) applications. They are suitable
for entire processes, but also for objects as small asafew
bytes, such asin Emerald [Jul et al., 1988; Jul, 1989] or
Ellie [Andersen, 1992]. Finer granularity incurs lower
transfer costs. The complexity of maintaining communi-

10

cation channels poses different kinds of problems. In
Emerald, for example, the pointers have to be updated to
the source object. Programming language support allows
a programmer to introduce more information on object
behavior, such as hints about communication and con-
currency patterns.

Object migration at the middleware level is aso pos-
sible. Because of the increasing costs of operating sys-
tem development and the lack of standard solutions for
distributed systems and heterogeneity, middleware level
solutions have become of more interest
[Bernstein, 1996]. Distributed objects are supported in
middleware systems such a DCE [Rosenberry
et a., 1992] and CORBA [OMG, 1996]. Object migra-
tion at the middleware level has not attracted as much re-
search as process migration in operating systems. One of
the reasons is that the early heterogeneity of these sys-
tems did not adequately support mobility. Nevertheless,
a couple of systems do support mobility at the middle-
ware level, such as DC++ [Schill and Mock, 1993] and
the OMG MASIF specification for mobile agents
[Milgjicic et al., 1988b] based on OMG CORBA.

M obile agents are becoming increasingly popular. The
mobility of agents on the Web emphasizes safety and se-
curity issues more than complexity, performance, trans-
parency and heterogeneity. Mobile agents are
implemented on top of safe languages, such as Java
[Gosling et al., 1996], Telescript [White, 1996] and Tcl/
Tk [Ousterhout, 1994]. Compared to process migration,
mobile agents have reduced implementation complexity
because they do not have to support OS semantics. Per-
formance requirements are relaxed due to the wide-area
network communication cost, which is the dominant fac-
tor. Heterogeneity is abstracted away at the language lev-
el. Theearly results and opportunities for deployment, as
well asthe wideinterest in the area of mobile agents, in-
dicate apromising future for thisform of mobility. How-
ever, the issues of security, socia acceptance, and
commercializable applications have been significantly
increased and they represent the main focus of research
in the mobile agent community. Mobile agents are de-
scribed in more detail in Section 4.8.

3 CHARACTERISTICS

This section addresses issues in process migration, such
as complexity, performance, transparency, fault resil-
ience, scalability and heterogeneity. These characteris-
tics have a major impact on the effectiveness and
deployment of process migration.

application- distributed end user
speci fi c applications applications
migration

user-level Sysiem

migration libraries

traditional

process OSkernel kernel space
migration

Figure 5: Migration levels differ in implementation complexi-
ty, performance, transparency, and reusability.

3.1 Complexity and Operating System Support

The complexity of implementation and dependency on
an operating system are among the obstacles to the wider
use of process migration. Thisisespecially truefor fully-
transparent migration implementations. Migration can
be classified according to the level at which it is applied.
It can be applied as part of the operating system kernel,
in user space, as part of a system environment, or as a
part of the application (see Figure 5). Implementations at
different levelsresult in different performance, complex-
ity, transparency and reusability.

User-level migration typically yields simpler implemen-
tations, but suffers too much from reduced performance
and transparency to be of general use for load distribu-
tion. User-space implementations are usually provided
for the support of long-running computations [Litzkow
and Solomon, 1992]. Migration implemented as part of
an application can have poor reusability if modifications
are required to the application, as was done in the work
by Freedman [1991] and Skordos [1995]. This requires
familiarity with applications and duplicating some of the
mechanisms for each subsequent application, frequently
involving effort beyond re-linking the migration part
with the application code. It could be somewhat im-
proved if parts of migration support is organized in are-
usable run-time library. Lower-level migration is more
complex to implement, but has better performance,
transparency and reusability.

Despite high migration costs, user-level implementa-
tions have some benefits with regard to policy. The lay-
ers closer to an application typicaly have more
knowledge about its behavior. This knowledge can be
used to derive better policies and hence, better overal
performance. Similar motivations|ed to the development
of microkernels, such as Mach [Accetta et a., 1986],
Chorus [Rozier, 1992], and Amoeba [Tanenbaum,

11

1990], which have moved much of their functionality
from the kernel into user space. For example, file servers
and networking may be implemented in user space, | eav-
ing only a minimal subset of functionality provided in
the microkernel, such as virtual memory management,
scheduling and interprocess communication.

Extensible kernels, such as Spin [Bershad et al., 1995],
Exokernel [Engler etal., 1995], and Synthetix [Pu
et al., 1995], have taken an alternative approach by al-
lowing user implemented parts to be imported into the
kernel. Both microkernels and extensible kernelsprovide

pending on the application characteristics, as well as on
the ratio of state transferred eagerly/lazily.

If only part of the task state is transferred to another
node, the task can start executing sooner, and the initial
migration costs are lower. This principle is calledy
evaluation: actions are not taken before they are really
needed with the hope that they will never be needed.
However, when this is not true, penalties are paid for
postponed access. For example, it is convenient to mi-
grate a huge address space on demand instead of eagerly.
In the lazy case, part of the space may never be trans-

opportunities for extracting a process’s state from the opferred if it is not accessed. However, the source node

erating system.

There have been many implementations of migration fo

needs to retain lazily evaluated state throughout the life-
pme of the migrated process.

various operating systems and hardware architectureg; process’s address space usually constitutes by far the
many of them required significant implementation effort|argest unit of process state; not surprisingly, the perfor-

and modifications to the underlying kernel [Barak andmance of process migration largely depends on the per-
Shiloh, 1985; Theimer et al., 1985; Zayas, 1987a; Dougformance of the address space transfer. Various data
lis and Ousterhout, 1991]. This complexity is due to tharansfer strategies have been invented in order to avoid
underlying operating system architecture and its unsuitthe high cost of address space transfer.

ability for distributed systems. In the early days, migra- ,

. . o .« Theeager (all) strategy copies all of the address space
tion required additional OS support, such as extensions R - :

f icati f dina TArt tal 1987 at the migration time. Initial costs may be in the range
or communications forwarding [Artsy et al.,] or of minutes. Checkpoint/restart implementations typi-

for data transfer strategies [Theimer etal., .1985_; cally use this strategy, such as Condor [Litzkow and
Zayas, 1987a]. In the case of some subsequent migrationggs|omon, 1992] or LSF [Zhou et al., 1994].

implementations, this support already existed in the OS,

such as in the case of Mach [Milojicic et al., 1993a]. Theeager (dirty) strategy can be deployed if there is

remote paging support. This is a variant of the eager
In UNIX-like operating systems, support for opened files (all) strategy that transfers only modified (dirty) pages.
and signals requires significant interaction with various Unmodified pages are paged in on request from a
kernel subsystems [Douglis, 1989; Welch, 1990]. Pro- Packing store. Eager (dirty) significantly reduces the
cess migration in message-passing kernels requires Sig_lmual transfer costs when'a process hE'lS alarge addr'ess
nificant effort to support message handling [Theimer space. Systems supporting eager (dirty) strategy in-

etal., 1985; Artsy etal., 1987: Artsy and Finkel, 1989, Cude MOSIX [Barak and Litman, 1985] and Locus
i .) [Popek and Walker, 1985]
Recent operating systems provide much of this support,)
such as transparent distributed IPC with message fof- ThekCopy.-On-Rsferencg (CQR)' strategy Is a net- J
warding, and external distributed pagers, which allow work version of demand paging: pages are transferre

easier optimizations and customizing [Black et al., 1992; only upon reference. While dirty pages are brought.
from the source node, clean pages can be brought ei-

Rozier, 1992].-Nevertheless, migration still chaIIenge; ther from the source node or from the backing store.
these mechanisms and frequently breaks them [Douglis The cOR strategy has the lowest initial costs, ranging
and Ousterhout, 1991; Milojicic, 1993c]. from a few tens to a few hundred microseconds. How-
ever, it increases the run-time costs, and it also re-
quires substantial changes to the underlying operating
Performance is the second important factor that affects system and to the paging support [Zayas, 1987a].

the deployment of p-rolcless m|grat|qn. Mlgrathn perfor-, The flushing strategy consists of flushing dirty pages
mance depends on initial and run-time costs introduced {, gisk and then accessing them on demand from disk
by the act of migration. The initial costs stem from state jnstead of from memory on the source node as in copy-
transfer. Instead of at migration time, some of the state on-reference [Douglis and Ousterhout, 1991]. The
may be transferreldzily (on-demand), thereby incurring flushing strategy is like the eager (dirtyansfer strat-
run-time costs. Both types of cost may be significant, de- egy from the perspective of the source, and like copy-

3.2 Performance

12

on-reference from the target’s viewpoint. It leaves dedency. In general, dependencies left at multiple nodes
pendencies on the server, but not on the source nodeshould be avoided, since they require complex support,

« Theprecopy strategy reduces the “freeze” time of the and degrade performance and fault resilience. Therefore,
process, the time that process is neither executed @®me form of periodic or lazy removal of residual depen-
the source nor on the destination node. While the prodencies is desirable. For example, the system could flush
cess is executed on the source node, the address spaemaining pages to the backing store, or update residual

is being transferred to the remote node until the nuMinformation on migrated communication channels.
ber of dirty pages is smaller than a fixed limit. Pages

dirtied during precopy have to be copied a second3 Transparency

time. The precopy strategy cuts down the freeze timgransparency requires that neither the migrated task nor

below the costs of the COR technique [Theimerother tasks in the system can notice migration, with the

etal., 1985]. possible exception of performance effects. Communica-
There are also variations of the above strategies. Th#n with a migrated process could be delayed during mi-
most notable example is migration in Bhoices oper- gration, but no message can be lost. After migration, the
ating system [Roush and Campbell, 1996]. It uses a varprocess should continue to communicate through previ-
ation of the eager (dirty) strategy which transfersously opened I/O channels, for example printing to the
minimal state to the remote node at the time of migrationsame console or reading from the same files.

The remote instance is started while the remainder of th?ransparency is supported in a variety of ways, depend-
state is transferred in parallel. The initial migration timeing on the underlying operating system. Sprite a’nd NOW

is reduced to 13.9ms running on a SparcStation |l CONYOSIX maintain a notion of a home machine that exe-

nected by a 10Mb Ethernet, which is an order of magniéutes all hostspecific code [Douglis and

tude better than all other reported results, even if resu"@usterhout 1991; Barak et al., 1995]. Charlotte supports
are normalized (see work by Rousch [1995] for more den:,C through links, which provide for remapping after
tails on normalized performance results). migration [Finkel et al., 1989]

Leaving some part of the process state on the source §fansparency also assumes that the migrated instance
intermediate nodes of the migrated instance results in &n execute all system calls as if it were not migrated.
residual dependency. Residual depgndencies typically Some user-space migrations do not allow system calls
occur as a consequence of two implementation techtat generate internode signals or file access [Mandel-

nigues: either using lazy evaluation (see definition beberg and Sunderam, 1988; Freedman, 1991].
low), or as a means for achieving transparency inS_ le Svstem | ss|) lete f
communication, by forwarding subsequent messages to z"gie system image (,) reprgsen S .a compiete form
. of transparency. It provides a unique view of a system
migrated process.) X
composed of a number of nodes as if there were just one
A particular case of residual dependency isitreede- node. A process can be started and communicated with
pendency, which is a dependency on the (home) nodewithout knowing where it is physically executing. Re-
where a process was created [Douglis andsources can be transparently accessed from any node in
Ousterhout, 1991]. An example of a home dependency ighe system as if they were attached to the local node. The
redirecting systems calls to the home node: for examplesnderlying system typically decides where to instantiate
local host-dependent calls, calls related to the file systemew processes or where to allocate and access resources.
(inthe absenpe of a distributed file system), or. opgrat|op§8| can be applied at different levels of the system. At
on local devices. A home dependency can simplify mi- . L
. . . . the user-level, SSI consists of providing transparent ac-
gration, because it is easier to redirect requests to the .) X
. céss to objects and resources that comprise a particular
home node than to support services on all nodes. Howev- . .)
. o . rogramming environment. Examples include Amber
er, it also adversely affects reliability, because a migrate

. . . hase et al., 1989] and Emerald [Jul, 1989]. At the tra-
foreign process will always depend on its home nc’deditional operating system level, SSI typically consists of
The notion of the home dependency is further elaborated P gsy ' ypically

. . . a distributed file system and distributed process manage-
?gs:iltet;elow in Section 5.1 (MOSIX) and Section 5'2ment, such as in MOSIX [Barak and Litman, 1985],

Sprite [Ousterhout et al., 1988] and OSF/1 AD TNC
Redirecting communication through the previously es{Zajcew et al., 1993]. At the microkernel level, SSI is
tablished links represents another kind of residual depertomprised of mechanisms, such as distributed IPC, dis-

13

tributed memory management, and remote tasking. A
near-SSI is implemented for Mach [Black et al., 1992]
based on these transparent mechanisms, but the policies
are supported at the OSF/1 AD server running on top of
it. At the microkernel level the programmer needs to
specify where to create remote tasks.

SSI supportstransparent accessto aprocess, aswell asto
its resources, which simplifies migration. On the other
hand, the migration mechanism exercises functionality
provided at the SSI level, posing a more stressful work-
load than normally experienced in systems without mi-
gration [Milgjicic et al., 1993a]. Therefore, although a
migration implementation on top of SSI may seem less
complex, this complexity is pushed down into the SSI
implementation.

Some location dependencies on another host may be in-
evitable, such as accessing local devices or accessing
kernel-dependent state that is managed by the other host.
Itisnot possible transparently to support such dependen-
cieson the newly visited nodes, other than by forwarding
the calls back to the home node, as was done in Sprite
[Douglis and Ousterhout, 1991].

3.4 Fault Resilience

Fault resilience is frequently mentioned as a benefit of
process migration. However, this claim has never been
substantiated with a practical implementation, although
some projects have specifically addressed fault resilience
[Chou and Abraham, 1983; Lu et al., 1987]. So far the
major contribution of process migration for fault resil-
ience is through combination with checkpointing, such
as in Condor [Litzkow and Solomon, 1992], LSF Zhou
et al., 1994] and in work by Skordos [1995]. Migration
was also suggested as a means of fault containment
[Chapin et al., 1995].

Failures play an important role in the implementation of
process migration. They can happen on asource or target
machine or on the communication medium. Various mi-
gration schemes are more or |ess sensitive to each type of
failure. Residual dependencies have a particularly nega-
tive impact on fault resilience. Using them is a trade-off
between efficiency and reliability.

Fault resilience can be improved in several ways. Com-
munication failures could be suppressed by transferring
theresponsibility for the migrated instance aslate as pos-
sible. Source node failure can be overcome by complete-
ly detaching the instance from the source node onceit is
migrated, though this prevents lazy evaluation tech-
niques from being employed. One way to remove com-

14

munication residual dependencies is to deploy locating
techniques, such as multicasting (as used in V kernel
Theimer et a., 1985), reliance on the home node (as used
in Sprite [Douglis and Ousterhout, 1991], and MOSIX
[Barak and Litman, 1985]), or on a forwarding name
server (asused in most distributed name services, such as
DCE, as well as in mobile agents, such as MOA
[Milgjicic et al., 1999]). This way dependencies are sin-
gled out on dedicated nodes, as opposed to being scat-
tered throughout all the nodes visited, as is the case for
Charlotte [Artsy et al., 1987]. Shapiro, et al. [1992] pro-
pose so-called SSP Chains for periodically collapsing
forwarding pointers (and thereby reducing residual de-
pendencies) in the case of garbage collection.

35 Scalability

The scalability of a process migration mechanism is re-
lated to the scalability of its underlying environment. It
can be measured with respect to the number of nodesin
the system, to the number of migrations a process can
perform during itslifetime, and to the type and complex-
ity of the processes, such as the number of open channels
or files, and memory size or fragmentation.

The number of nodes in the system affects the organiza-
tion and management of structures that maintain residual
process state and the naming of migrated processes. If
these structures are not part of the existing operating sys-
tem, then they need to be added.

Depending on the migration algorithm and the tech-
niques employed, some systems are not scalable in the
number of migrations a process may perform. As we
shall see in the case study on Mach (see Section 5.3),
sometimes process state can grow with the number of
migrations. Thisis acceptable for a small number of mi-
grations, but in other cases the additional state can dom-
inate migration costs and render the migration
mechanism useless.

Migration algorithms should avoid linear dependencies
on the amount of stateto be transferred. For example, the
eager data transfer strategy has costs proportional to the
address space size, incurring significant costs for large
address spaces. The costs for alazily copied process are
independent of the address space size, but they can de-
pend onthe granularity and type of the address space. For
example, the transfer of alarge sparse address space can
have costs proportional to the number of contiguous ad-
dress space regions, which may not be acceptable.

Communication channel s can al so affect scalability. For-
warding communication to a migrated process is accept-

able after a small number of sequential migrations, but
after a large number of migrations the forwarding costs
can be significant. In that case, some other technique,
such as updating communication links, must be em-
ployed.

3.6 Heterogeneity

Heterogeneity has not been addressed in most early mi-
gration implementations. Instead, homogeneity is con-
sidered as a requirement; migration is allowed only
among the nodes with a compatible architecture and pro-
cessor instruction set. This was not a significant limita-
tion at the time since most of the work was conducted on
clusters of homogeneous machines.

Some earlier work indicated the need as well as possible
solutions for solving the heterogeneity problem, but no
mature implementations resulted [Maguire and
Smith, 1988; Dubach, 1989; Shub, 1990; Theimer and
Hayes, 1991].

The deployment of world-wide computing hasincreased
the interest in heterogeneous migration. In order to
achieve heterogeneity, process state needs to be saved in
a machine-independent representation. This permits the
process to resume on nodes with different architectures.
An application is usually compiled in advance on each
architecture, instrumenting the code to know what proce-
dures and variables exist at any time, and identifying
points at which the application can be safely preempted
and checkpointed. The checkpointing program sets a
breakpoint at each preemption point and examines the
state of the process when a breakpoint is encountered.
Smith and Hutchinson note that not al programs can be
safely checkpointed in thisfashion, largely depending on
what features of the language are used [Smith and
Hutchinson, 1998]. Emerald [Steensgaard and Jul, 1995]
is another example of a heterogeneous system.

In the most recent systems, heterogeneity is provided at
the language level, as by using intermediate byte code
representation in Java [Gosling et al., 1996], or by rely-
ing on scripting languages such as Telescript [White,
1996] or Tcl/Tk [Ousterhout, 1994].

3.7 Summary

This subsection evaluates the trade-offs between various
characteristics of process migration, and who should be
concerned with it.

Complexity is much more of a concern to theimplemen-
tors of aprocess migration facility than to its users. Com-
plexity depends on the level where migration is

15

implemented. Kernel-level implementations require sig-
nificantly more complexity than user-level implementa-
tions. Users of process migration are impacted only in
the case of user-level implementations where certain
modifications of the application code are required.

Long-running applications are not concerned with per-
formance as are those applications whose lifetimes are
comparable to their migration time. Short-running appli-
cations are generally not good candidates for migration.
Migration-time performance can be traded off against
execution-time (by leaving residual dependencies, or by
lazily resolving communication channels). Residual de-
pendencies are of concern for long-running applications
and for network applications. Applications with real-
time requirements generally are not suitable candidates
for residual dependency because of the unpredictable
costs of bringing in additional state. On the other hand,
real-time requirements can be more easily fulfilled with
strategies, such as precopy.

Legacy applications are concerned with transparency in
order to avoid any changes to existing code. Scientific
applications typically do not have transparency require-
ments. Frequently, one is allowed to make modifications
to the code of these applications, and even support mi-
gration at the application level (e.g. by checkpointing
state at the application level). Transparency typicaly in-
curs complexity. However, transparency isnot related to
migration exclusively, rather it is inherent to remote ac-
cess. Transparent remote execution can require support
that is as complex as transparent process migration
[Douglis and Ousterhout, 1991].

Scientific applications (typically long-running), as well
as network applications are concerned with failure toler-
ance. In most cases periodic checkpointing of the state
suffices.

Scalability requires additional complexity for efficient
support. It is of concern for scientific applications be-
cause they may require large number of processes, large
address spaces, and number of communication channels.
It is aso important for network applications, especially
those at the Internet scale.

Heterogeneity introduces performance penalties and ad-
ditional complexity. It is of most concern to network ap-
plications which typically run on inhomogeneous
systems.

4 EXAMPLES

This section classifies process migration implementa-
tionsin the following categories: early work; UNIX-like
systems supporting transparent migration; systems with
message-passing interfaces; microkernels; user-space
migration; and application-specific migration. In addi-
tion, we also give an overview of mobile objects and mo-
bile agents. These last two classes do not represent
process migration in the classic sense, but they are simi-
lar in many ways that warrant their inclusion [Milgjicic
et a., 19984]. For each class, an overview and some ex-
amples are presented. Finaly, in the last subsection, we
draw some conclusions. The next section expands upon
four of these systems in substantial detail.

There are dso other examples of process migration that
can fit into one or more classes presented in this section.
Examples include object migration in Eden [Lazowska,
et al., 1981]; MINIX [Louboutin, 1991]; Galaxy [Sinha
etal., 1991]; work by Dediu [1992]; EMPS [van Dijk
and van Gils, 1992]; object migration for OSF DCE,
DC++ [Schill and Mock, 1993]; work by Petri and Lan-
gendorfer [1995]; MDX [Schrimpf, 1995]; and many
more. A description of these systemsisbeyond the scope
of this paper. In addition to other surveys of process mi-
gration aready mentioned in the introduction
[Smith, 1988; Eskicioglu, 1990; Nuttal, 1994], Borghoff
provides a catalogue of distributed operating systems
with many examples of migration mechanisms
[Borghoff, 1991].

4.1 Early Work

Early work is characterized by specialized, ad hoc solu-
tions, often optimized for the underlying hardware archi-
tecture. In this subsection we briefly mention XOS,
Worm, DEMOS/MP and Buitler.

Migration in XOS is intended as a tool for minimizing
the communication between the nodes in an experimen-
tal multiprocessor system, organized in a tree fashion
[Miller and Presotto, 1981]. The representation of the
process and its state are designed in a such away as to
facilitate migration. The Process Work Object (PWO)
encapsulates process related state including stack point-
ersand registers. Migration is achieved by moving PWO
objects between the XOS nodes. The process location is
treated as a hint, and the current location isfound by fol-
lowing hints.

The Worm idea has its background in the nature of real
worms [Shoch and Hupp, 1982]. A worm is a computa-
tion that can live on one or more machines. Parts of the

16

worm residing on a single machine are called segments.
If asegment fails, other segments cooperatively reinstan-
tiate it by locating a free machine, rebooting it from the
network, and migrating the failed worm segment to it. A
worm can move from one machine to another, occupying
needed resources, and replicating itself. As opposed to
other migration systems, aworm is aware of the underly-
ing network topology. Communication among worm
segments is maintained through multicasting.

The original Butler system supports remote execution

and process migration [Dannenberg, 1982]. Migration
occurs when the guest process needs to be “deported”
from the remote node, e.g. in case when it exceeds re-
sources it negotiated before arrival. In such a case, the
complete state of the guest process is packaged and
transferred to a new node. The state consists of the ad-
dress space, registers, as well as the state contained in the
servers collocated at the same node. Migration does not
break the communication paths because the underlying
operating system (Accent [Rashid and Robertson, 1981])
allows for port migration. The Butler design also deals
with the issues of protection, security, and autonomy
[Dannenberg and Hibbard, 1985]. In particular, the sys-
tem protects the client program, the Butler daemons on
the source and destination nodes, the visiting process,
and the remote node. In its later incarnation, Butler sup-
ports only remote invocation [Nichols, 1987].

DEMOS/MP [Miller et al., 1987] is a successor of the
earlier version of the DEMOS operating system [Baskett
etal., 1977]. Process migration is fully transparent: a
process can be migrated during execution without limita-
tions on resource access. The implementation of migra-
tion has been simplified and its impact to other services
limited by the message-passing, location-independent
communication, and by the fact that the kernel can par-
ticipate in the communication in the same manner as any
process [Powell and Miller, 1983]. Most of the support
for process migration already existed in the DEMOS ker-
nel. Extending it with migration required mechanisms
for forwarding messages and updating links. The trans-
ferred state includes program code and data (most of the
state), swappable and non-swappable state, and messag-
es in the incoming queue of the process.

4.2 Transparent Migration in UNI X-like Systems

UNIX-like systems have proven to be relatively hard to
extend for transparent migration and have required sig-
nificant modifications and extensions to the underlying
kernel (see Subsections 4.3 and 4.4 for comparisons with

other types of OSes). There are two approaches to ad-
dressing distribution and migration for these systems.
Oneisto provide for distribution at the lower levels of a
system, asin MOSIX or Sprite, and the other is by pro-
viding distribution at a higher-level, asin Locus and its
derivatives. In this section, we shall describe process mi-
gration for Locus, MOSIX and Sprite. All of these sys-
tems also happened to be RPC-based, as opposed to the
message-passing systems described in Section 4.3.

Locus is a UNIX-compatible operating system that pro-
vides transparent access to remote resources, and en-
hanced reliability and availability [Popek et al., 1981;
Popek and Walker, 1985]. It supports process migration
[Walker et al., 1983] and initial placement [Butterfield
and Popek, 1984]. Locus is one of the rare systems that
achieved product stage. It has been ported to the Al1X op-
erating system on the IBM 370 and PS/2 computers un-
der the name of the Transparent Computing Facility
(TCF) [Waker and Mathews, 1989]. Locus migration
has a high level of functionality and transparency. How-
ever, thisrequired significant kernel modifications.

Locus has subsequently been ported to the OSF/1 AD
operating system, under the name of TNC [Zacew
et al., 1993]. OSF/1 AD isadistributed operating system
running on top of the Mach microkernel on Intel x86 and
Paragon architectures (see Section 5.3). TNCisonly par-
tially concerned with task migration issues of the under-
lying Mach microkernel, because in the OSF/1 AD
environment the Mach interface is not exposed to the us-
er, and therefore the atomicity of process migration isnot
affected. Locus was also used as atestbed for a distribut-
ed shared memory implementation, Mirage [Fleisch and
Popek, 1989]. Distributed shared memory was not com-
bined with process migration as was done in the case of
Mach (see Section 5.3).

The MOSI X distributed operating system is an ongoing
project that began in 1981. It supports process migration
on top of a single system image base [Barak and
Litman, 1985] and in a Network of Workstations envi-
ronment [Barak etal., 1995]. The process migration
mechanism is used to support dynamic load balancing.
MOSIX employs a probabilistic algorithm in itsload in-
formation management that allows it to transmit partial
load information between pairs of nodes [Barak and
Shiloh, 1985; Barak and Wheeler, 1989]. A case study of
the MOSIX system is presented in Section 5.1.

The Sprite network operating system [Ousterhout
et al., 1988] was developed from 1984-1994. Its process

17

migration facility [Douglis and Ousterhout, 1991] was
transparent both to users and to applications, by making
processes appear to execute on one host throughout their
execution. Processes could access remote resources, in-
cluding files, devices, and network connections, from
different locations over time. When a user returned to a
workstation onto which processes had been off-loaded,
the processes were immediately migrated back to their
home machines and could execute there, migrate else-
where, or suspend execution. A case study of the Sprite
systemis presented in Section 5.2.

4.3 OSwith Message-Passing I nterface

Process migration for message-passing operating sys-
tems seems easier to design and implement. Message
passing is convenient for interposing, forwarding and en-
capsulating state. For example, anew receiver may bein-
terposed between the existing receiver and the sender,
without the knowledge of the latter, and messages sent to
amigrated process can be forwarded after its migration
to a new destination. However, much of the simplicity
that seems to be inherent for message-passing systemsis
hidden inside the complex message-passing mechanisms
[Douglis and Ousterhout, 1991].

In this section we describe Charlotte, Accent and the V
kernel. Although the V kernel can be classified as a mi-
crokernel (andinitslater stages of development, it really
evolved toward this form), we are describing it here
along with other message-passing systems.

Charlotte is a message-passing operating system de-
signed for the Crystal multicomputer composed of 20
VAX-11/750 computers [Artsy and Finkel, 1989]. The
Charlotte migration mechanism extensively relies on the
underlying operating system and its communication
mechanisms which were modified in order to support
transparent network communication [Artsy et al., 1987].
Its process migration iswell insulated from other system
modules. Migration is designed to be fault resilient: pro-
cesses leave no residual dependency on the source ma-
chine. The act of migration is committed in the final
phase of the state transfer; it is possible to undo the mi-
gration before committing it.

Accent is a distributed operating system developed at
CMU [Rashid and Robertson, 1981; Rashid, 1986]. Its
process migration scheme was the first one to use the
“Copy-On-Reference{COR) technique to lazily copy
pages [Zayas, 19874]. Instead of eagerly copying pages,
virtual segments are created on the destination node.
When apage fault occurs, the virtual segment provides a

link to the page on the source node. The duration of the
address space transfer is independent of the address
space size, but rather depends on the number of contigu-
ous memory regions. The basic assumption is that the
program would not access all of its address space, there-
by saving the cost of a useless transfer. Besides failure
vulnerability, the drawback of lazy evaluation is the in-
creased complexity of in-kernel memory management
[Zayas, 1987h)].

The V Kernel is a microkernel developed at Stanford
University [Cheriton, 1988]. It introduces a “precopy-
ing” technique for the process address space transfer
[Theimer et a., 1985]. The address space of the process
to be migrated is copied to the remote node prior to its
migration, while the process is still executing on the
source node. Dirty pages referenced during the precopy-
ing phase are copied again. It has been shown that only
two or three iterations generally suffice to reach an ac-
ceptably small number of dirty pages. At that point of
time the process is frozen and migrated. This technique
shortens the process freeze time, but otherwise negative-
ly influences the execution time, since overhead is in-
curred in iterative copying. Migration benefits from the
reliable protocol and particularly from message retrans-
mission. Instead of maintaining process communication
end-points after migration, V relies on multicast to find
the new process location.

4.4 Microkernels

The microkernel approach separates the classical notion
of amonolithic kernel into a microkernel and an operat-
ing system personality running on top of it in a separate
module. A microkernel supports tasks, threads, |PC and
VM management, while other functionality, such as net-
working, file system and process management, isimple-
mented in the OS personality. Various OS personalities
have been implemented, such as BSD UNIX [Golub
etal., 1990], AT&T UNIX System V [Rozier, 1992;
Cheriton, 1990], MS DOS [Malan etd., 1991], VMS
[Wiecek, 1992], OS/2 [Phelan and Arendt, 1993] and
Linux [Barbou des Places et al., 1996].

In the late eighties and early nineties, there was a flurry
of research into microkernels, including systems, such as
Mach [Accetta etal., 1986], Chorus [Rozier, 1992],
Amoeba [Mullender et al., 1990], QNX
[Hildebrand, 1992], Spring [Hamilton and
Kougiouris, 1993] and L3 [Liedtke, 1993], which even-
tually reached commercial implementations, and many
more research microkernels, such as Arcade [Cohn

18

eta., 1989], Birlix [Haertig etad., 1993], KeyKOS
[Bomberger etal.,1992] and RHODOS [Gerrity
etal., 1991].

The microkernel approach, combined with message
passing, alows for transparent, straightforward exten-
sionsto distributed systems. Not surprisingly, microker-
nels are a suitable environment for various migration
experiments. The task migration mechanism can be re-
used by different OS personalities, as a common denom-
inator for different OS-specific process migration
mechanisms. In this subsection we describe process mi-
grations for RHODOS, Arcade, Chorus, Amoeba, Birlix
and Mach.

RHODOS consists of a nucleus that supports trap and
interrupt handling, context switching, and local message
passing. The kernel runs on top of the nucleus and sup-
ports IPC, memory, process, and migration managers
[Gerrity et al., 1991]. The migration mechanism is simi-
lar to that in Sprite, with some modifications specific to
the RHODOS kernel [Zhu, 1992].

Arcade considers groups of tasks for migration [Cohn
et a., 1989]. It is used as a framework for investigating
sharing policies related to task grouping [Tracey, 1991].
The group management software ensures that members
of the group execute on different machines, thereby ex-
ploiting parallelism.

The Chorus microkernel was extended to support pro-
cess migration [Philippe, 1993]. The migration mecha-
nism is similar to task migration on top of Mach (cf.
Section 5.3), however it is applied at the process level,
instead of the Actor level. Actors in Chorus correspond
to Mach tasks. Chorus migration is biased toward the hy-
percube implementation (fast and reliable links). Some
limitations were introduced because Chorus did not sup-
port port migration.

Steketee et al. implemented process migration for the
Amoeba operating system [Steketee et al., 1994]. Com-
munication transparency relies on the location indepen-
dence of the FLIP protocol [Kaashoek et al., 1993].
Since Amoeba does not support virtua memory, the
memory transfer for process migration is achieved by
physical copying [Zhu et al., 1995].

Birlix supports adaptable object migration [Lux, 1995].
It is possibleto specify amigration policy on aper-object
basis. A meta-object encapsulates data for the migration
mechanism and information collection. An example of
the use of an adaptable migration mechanismisto extend

migration for improved reliability or performance [Lux
et al., 1993].

Mach [Accetta et al., 1986] was used as a base for sup-
porting task migration [Milgjicic et a., 1993b], devel-
oped at the University of Kaiserslautern. The goals were
to demonstrate that microkernels are a suitable substrate
for migration mechanisms and for load distribution in
general. Thetask migration implementation significantly
benefited from the near SSI provided by Mach, in partic-
ular from distributed IPC and distributed memory man-
agement. Process migration was built for the OSF/1
AD 1 server using Mach task migration [Paindaveine
and Milgjicic, 1996]. Task and process migration on top
of Mach are discussed in more detail in Section 5.3.

4.5 User-space Migrations

While it is relatively straightforward to provide process
migration for distributed operating systems, such as the
V kernel, Accent, or Sprite, it is much harder to support
transparent process migration on industry standard oper-
ating systems, which are typically non-distributed. Most
workstationsin the 1980s and 1990s run proprietary ver-
sions of UNIX, which makes them a more challenging
base for process migration than distributed operating
systems. Source codeisnot widely availablefor apropri-
etary OS; therefore, the only way to achieve aviable and
widespread migration is to implement it in user space.

User-space migration is targeted to long-running pro-
cesses that do not pose significant OS requirements, do
not need transparency, and use only alimited set of sys-
tem calls. The migration time is typically a function of
the address space size, since the eager (all) data transfer
schemeis deployed. This subsection presents afew such
implementations. Condor, the work by Alonso and Kyri-
mis, the work by Mandelberg and Sunderam, the work
by Petri and Langendoerfer, MPVM, and L SF.

Condor is a software package that supports user-space
checkpointing and process migration in locally distribut-
ed systems [Litzkow, 1987; Litzkow et al., 1988; Litz-
kow and Solomon, 1992]. Its checkpointing support is
particularly useful for long-running computations, but is
too expensive for short processes. Migration involves
generating a core file for a process, combining this file
with the executable and then sending this on to the target

Condor does not support processes that use signals,
memory mapped files, timers, shared libraries, or IPC.
The scheduler activation period is 10 minutes, which
demonstrates the “heaviness” of migration. Neverthe-
less, Condor is often used for long-running computa-
tions. It has been ported to a variety of operating systems.
Condor was a starting point for a few industry products,
such as LSF from Platform Computing [Zhou
et al., 1994] and Loadleveler from IBM.

Alonso and Kyrimis perform minor modifications to the
UNIX kernel in order to support process migration in
user space [Alonso and Kyrimis, 1988]. A new signal for
dumping process state and a new system call for restart-
ing a process are introduced. This implementation is lim-
ited to processes that do not communicate and are not
location- or process-dependent. The work by Alonso and
Kyrimis was done in parallel with the early Condor sys-
tem.

Mandelberg and Sunderam present a process migra-
tion scheme for UNIX that does not support tasks that
perform 1/O on non-NFS files, spawn subprocesses, or
utiize pipes and sockets [Mandelberg and
Sunderam, 1988]. A new terminal interface supports de-
taching a process from its terminal and monitors requests
for 1/0 on the process migration port.

Migratory Parallel Virtual Machine (MPVM) extends

the PVM system [Beguelin et al., 1993] to support pro-
cess migration among homogeneous machines [Casas
et al., 1995]. Its primary goals are transparency, compat-
ibility with PVM, and portability. It is implemented en-
tirely as a user-level mechanism. It supports
communication among migrating processes by limiting
TCP communication to other MPVM processes.

Load Sharing Facility (L SF) supports migration indi-
rectly through process checkpointing and restart [Plat-
form Computing, 1996]. LSF can work with
checkpointing at three possible levels: kernel, user, and
application. The technique used for user-level check-
pointing is based on the Condor approach [Litzkow and
Solomon, 1992], but ncorefile is required, thereby im-
proving performance, and signals can be used across
checkpoints, thereby improving transparency. LSF is de-
scribed in more detail in Section 5.4.

4.6 Application-specific Migration

machine. System calls are redirected to a “shadow” pravligration can also be implemented as a part of an appli-
cess on the source machine. This requires a special varation. Such an approach deliberately sacrifices transpar-
sion of the C library to be linked with the migrated ency and reusability. A migrating process is typically

programs.

limited in functionality and migration has to be adjusted

for each new application. Neverthel ess, the implementa-
tion can be significantly simplified and optimized for one
particular application. In this subsection we describe
work by Freedman, Skordos, and Bharat and Cardelli.

Freedman reports a process migration schemeinvolving
cooperation between the migrated process and the migra-
tion module [Freedman, 1991]. The author observes that
long-running computations typically use operating sys-
tem services in the beginning and ending phases of exe-
cution, while most of their time is spent in number-
crunching. Therefore, little attention is paid to support-
ing files, sockets, and devices, since it is not expected
that they will be used in the predominant phase of execu-
tion. Thisad hoc process migration considers only mem-
ory contents.

Skordos integrates migration with parallel simulation of
subsonic fluid dynamics on a cluster of workstations
[Skordos, 1995]. Skordos statically allocates problem
sizes and uses migration when a workstation becomes
overloaded. Upon migration, the process is restarted af-
ter synchronization with processes participating in the
application on other nodes. At the sametime, it is possi-
ble to conduct multiple migrations. On a cluster of 20
HP-Apollo workstations connected by 10 Mbps Ether-
net, Skordos notices approximately one migration every
45 minutes. Each migration lasts 30 seconds on average.
Degspite the high costs, its relative impact is very low.
Migrations happen infrequently, and do not last long rel-
ative to the overall execution time.

Bharat and Cardelli describe Migratory Applications,
an environment for migrating applications along with the
user interface and the application context, thereby retain-

ing the same “look and feel” across different platforms
[Bharat and Cardelli, 1995]. This type of migration is
particularly suitable for mobile applications, where a
user may be travelling from one environment to anothe

Emerald is a programming language and environment
for the support of distributed systems [Black
et al., 1987]. It supports mobile objects as small as a cou-
ple of bytes, or as large as a UNIX process [Jul, 1988; Jul
et al., 1988]. Objects have a global, single name space.
In addition to traditional process migration benefits, Em-
erald improves data movement, object invocation and
garbage collection.

In Emerald, communication links are pointers to other
objects. Upon each object migration, all object pointers
need to be updated. Pointers are optimized for local invo-
cation because mobility is a relatively infrequent case
compared to local invocation. Objects that become un-
reachable are garbage collected. Moving a small passive
object on a cluster of 4 MicroVax Il workstations con-
nected by a 10 megabit/second Ethernet takes about 12
ms while moving a small process takes about 40 ms.
Some modest experiments demonstrated the benefits of
Emerald for load distribution [Jul, 1989].

Shapiro investigates object migration and persistence in
SOS [Shapiro et al., 1989]. The objects under consider-
ation are small to medium size (a few hundred bytes). Of
particular concern are intra-object references and how
they are preserved across object migrations. References
are expressed through a new type, callg@rananent
pointer. After migration, permanent pointers are lazily
evaluated, based on the proxy principle [Shapiro, 1986].
A proxy is a new object that represents the original ob-
ject, maintains a reference to it at the new location, and
provides a way to access it. Proxies, and the term proxy
principle describing its use, are extensively used in dis-
tributed systems with or without migration (e.g. for dis-
tributed IPC [Barrera, 1991], distributed memory
management [Black et al. 1998], and proxy servers on
the Web [Brooks, et al. 1995]). Functionality can be ar-
bitrarily distributed between a proxy and its principal ob-

L.

ect

Migratory applications are closely related to the underlyJ '

ing programming language Oblique [Cardelli, 1995].

4.7 Mobile Objects

COOL provides an object-oriented layer on top of Cho-
rus [Amaral et al., 1992]. It supports DSM-based object
sharing, persistent store, and object clustering. Transpar-

In this paper we are primarily concerned with proces&nt remote invocation is achieved with a simple commu-
and task migration. Object migration and mobile agentsication model using the COOL base primitives. When
are two other forms of migration that we mention brieflyre-mapped onto a new node, all internal references are
in this and the following subsection. Although used inupdated depending on the new location by pointer swiz-
different settings, these forms of migration serve a simizling [Lea et al., 1993], which is a technique for translat-
lar purpose and solve some of the same problems as piiag the pointers. It can be also used for other purposes,
cess migration does. In this subsection, we give asuch as in supporting large and persistent address spaces
overview of object migration for Emerald, SOS and[Dearle, et d., 1994] and in very large data bases [Kemper
COOL. and Kossmann, 1995].

20

4.8 Mobile Agents

In the recent past, mobile agents have received signifi-
cant attention. A number of products have appeared and
many successful research systems have been developed
(see description of these systems below). A patent has
been approved for one of the first mobile agent systems,
Telescript [White, et al. 1997] and a standard was adopt-
ed by OMG [Milgjicic et a., 1988b].

Mobile agents derive from two fields: agents, as defined
in the artificial intelligence community [Shoham, 1997],
and distributed systems, including mobile objects and
processmigration [Milojicic et al., 1999]. However, their
popularity started with the appearance of the Web and
Java. The former opened vast opportunities for applica-
tions suited for mobile agents and the latter became a
driving programming language for mobile agents.

InaWeb environment, programming languages focus on
platform independence and safety. Innovations in OS
services take place at the middleware level rather thanin
kernels [Bernstein, 1996]. Research in distributed sys-
tems has largely refocused from local to wide-area net-
works. Security is a dominant requirement for
applications and systems connected to the Web. In this
environment, mobile agents are a very promising mech-
anism. Typica uses include electronic commerce and
support for maobile, sporadically-connected computing
for which agents overcome limitations posed by short
on-line time, reduced bandwidth, and limited storage.

Java has proven to be a suitable programming language
for mobile agents because it supports mobile code and
mobile objects, remote object model and language and
run-time safety, and it is operating system independent.

While large amount of the OS-level support for migra-
tion concentrated on transparency issues, the agent ap-
proach has demonstrated less concern for transparency.

We overview a few commercial mobile agent systems,
such as Telescript, IBM Aglets, and Concordia, and a
few academic systems, such as Agent Tcl, TACOMA
and Mole.

Telescript is the first mobile agent system developed
[White, 1996]. It is targeted for the MagicCap, a small
hand-held device. Telescript first introduced mobile

diaisamobile agent system devel oped at the Mitsubishi
Electric ITA Laboratory [Wong, et al., 1997]. It is a
Java-based system that addresses security (by extending
the Java security manager) and reliability (using message
gueueing based on two-phase-commit protocol). Con-
cordiais used for many in-house applications.

Agent Tcl started as a Tcl/Tk-based transportabl e agent,
but it has been extended to support Java, Scheme and C/
C++ [Kotz, et a., 1997]. It is used for the development
of DAIS system for information retrieval and dissemina-
tion in military intelligence [Hoffman, et al., 1998].
Agent Tcl is optimized for mobile computers, e.g. by
minimizing connection time and communication. The
TACOMA project is ajoint effort by Tromso and Cor-
nell Universities [Johansen et al., 1995]. Compared to
other mobile agent research, which addresses program-
ming languages aspects, TACOMA addresses operating
system aspects. The main research topics include securi-
ty and reliability. Moleis one of the first academic agent
systems written in Java [Baumann, et a., 1998]. It has
been used by industry (Siemens, Tandem, and Daimler
Benz), and academia (University of Geneva). Mole ad-
dresses groups of agents, agent termination, and security
for protecting agents against malicious hosts.

There are also many other mobile agent systems, such as
Ara[Peine and Stolpmann, 1997], Messenger [Tschudin,
1997], MOA [Milgjicic et a., 1998a], and Sumatra[Ran-
ganathan, et al., 1997]. A lot of effort has been invested
in security of mobile agents, such as in the work by
Farmer, et al. [1996], Hohl [1998], Tardo and Vaente
[1996], Vigna[1998], and Vitek, et al [1997]. A paper by
Chess et al. [1995] is a good introduction to mobile
agents.

5 CASE STUDIES

This section presents four case studies of process migra-
tion: MOSIX, Sprite, Mach, and LSF. At least one of the
authors of this survey directly participated in the design
and implementation of each of these systems. Because it
is difficult to choose a representative set of case studies,

the selection of systems was guided by the authors’ per-

sonal experience with the chosen systems.
51 MOSIX

agent concepts place and permit and mechanisms meet
and go. IBM Aglets is one of the first commercialy
available mobile agent systems based on Java [Lange
and Oshima, 1998]. It is developed by IBM Tokyo Re-
search Lab IBM. Aglets has a large community of users
and applications, even afew commercia ones. Concor -

MOSIX is a distributed operating system from the He-
brew University of Jerusalem. MOSIX is an ongoing
project which began in 1981 and released its most recent
version in 1996. Automatic load balancing between
MOSIX nodes is done by process migration. Other inter-
esting features include full autonomy of each node in the

21

system, fully-decentralized control, single system image, _

. . . . migr ated
dynamic configuration and scalahility. process
Various versions of MOSIX have been in active use at
the Hebrew University since 1983. The original version

of MOSIX wasderived from UNIX Version 7 and ran on upper upper
acluster of PDP-11/45 nodes connected by atoken pass- kernel kernel
ing ring [Barak and Litman, 1985]. The version of linker y linker
MOSIX documented in the MOSIX book is a cluster of lower L lower
multiprocessor workstationswhich used aUNIX System kernel kernel

V.2 code base [Barak and Wheeler, 1989; Barak
etal., 1993]. The most recent version, developed in
1993, is called NOW MOSIX [Barak et al., 1995]. This

destination node source node
Figure 6: The MOSI X Architecture.

version enhances BSDI UNIX by providing process mi- context switching, and so on without having any knowl-
gration on a cluster of Intel Pentium processor based edge or dependence on other nodes. The third component
workstations. of the MOSIX system is tHénker, which maps universal
Goals of the MOSIX system include: objects into local objects on a specific node, and which

provides internode communication, data transfer, pro-

» Dynamic process migration. At context switch time, a o . .
MOSIX node may elect to migrate any process to ancess migration and load balancing algorithms. When the

other node. The migrated process is not aware of thePPer kernel needs to perform an operation on one of the
migration. universal objects that it is handling, it uses the linker to

« Single system image. MOSIX presents a process with perform a remote kernel procedure call on the object’s

a uniform view of the file system, devices and net-Nost node.

working facilities regardless of the process’s current)
location. MOSIX transfers only the dirty pages and user area of

« Autonomy of each node. Each node in the system is in- the migrating process at the time of the migratiorgaan
dependent of all other nodes and may selectively pa@®" (dirty) transfer strategy. Text and other clean pages
ticipate in the MOSIX cluster or deny services to other@re faulted in as needed once the process resumes execu-
nodes. Diskless nodes in MOSIX rely on a specifiction on the target node.
node for file services.

« Dynamic configuration. MOSIX nodes may join or Process migration in MOSIX is a common activity. A
leave a MOSIX cluster at any time. Processes that aff0cess has no explicit knowledge about what node it is
not running on a node or using some node specific reactually running on or any guarantees that it will contin-
source, are not affected by the loss of that node. ue to run on its current node. The migration algorithm is

« Scalability. System algorithms avoid using any global cooperative: for a process to migrate to a node, the target
state. By avoiding dependence on global state or cemode must be willing to accept it. This allows individual
tralized control, the system enhances its ability to scalgodes control over the extent of their own contribution to
to a large number of nodes. the MOSIX system. Individual nodes can also force all

Design. The system architecture separates the UNIX keractive processes to migrate away, a procedure that is

nel into alower and anupper kernel. Each object in used when shutting down an individual node.

MOSIX, like an open file, has a universal object pointer

that is unique across the MOSIX domain. Universal obProcess migration in MOSIX relies on the fact that the

jects in MOSIX are kernel objects (e.g. a file descriptorupper kernel context of each process is site-independent:

entry) that can reference an object anywhere in the clugegardless of where the process physically runs, its local
ter. For example, the upper kernel holds a universal ob4pper kernel and linker route each system call to the ap-
ject for an open file; the universal object migrates withpropriate node. If the process decides to migrate to a new
the process while only the host of the file has the localpode, the migration algorithm queries the new node to
non-universal file information. The upper kernel pro-ensure that it is willing to accept a new process. If so, the
vides a traditional UNIX system interface. It runs onupper kernel invokes a series of remote kernel procedure
each node and handles only universal objects. The lowealls that create an empty process frame on the new node,
kernel provides normal services, such as device drivergjoves the upper kernel context and any dirty pages asso-

22

ciated with the process and then resumes the process on
the new node.

Fault Resilience. Failed nodes in MOSIX affect only
processes running on the failed node or directly using re-
sources provided by the node. Nodes dynamically join
and leave aMOSIX cluster at will. Detection of stale ob-
jectsis done by maintaining per object version numbers.
Migrated processes leave no traces on other nodes.

Transparency. Migration is completely transparent in
MOSIX, except for processes that use shared memory
and are not eligible for migration. Full single system im-
age semantics are presented by MOSI X, making process-
es unaware of their actual physical node. A new system
call, migrate(), was added to alow processes to deter-
mine the current location or to request migration to a
specified node.

Scalability. MOSIX was designed as a scalable system.
The system relies on no centralized servers and main-
tains no global information about the system state. Each
MOSI X node is autonomous and can dynamically join or
withdraw from the MOSIX system. No remote system
operations involve more than two nodes: the initiating
node and the node providing the service. The process mi-
gration and load balancing agorithms also support scal-
ability: load information is totaly decentralized.
Currently, an 80-node MOSIX system is running at He-
brew University.

Load Information Management and Distributed
Scheduling. Several types of information are managed
by MOSIX in order to implement its dynamic load bal-
ancing policy: the load at each node, individual process
profiling, and load information about other nodes in the
system.

Each node computes a local load estimate that reflects
the average length of its ready queue over a fixed time
period. By selecting an appropriate interval, the impact
of temporary local load fluctuations is reduced without
presenting obsolete information.

For each process in the system, an execution profile is
maintained which reflects its usage of remote resources
like files or remote devices, communication patterns
with other nodes, how long this process has run and how
often it has created new child processes via the fork()
system call. This information is useful in determining
where a process should migrate to when selected for mi-
gration. For example, a small process that is making
heavy use of anetwork interface or file on aspecific node
would be considered for migration to that node. This pro-

filing information is discarded when a process termi-
nates.

The MOSIX load balancing algorithm is decentralized.
Each node in the system maintains a small load informa-
tion vector about theload of asmall subset of other nodes
in the system [Barak et al., 1989]. On each iteration of
the algorithm, each node randomly selects two other
nodes, of which at least one node is known to have been
recently alive. Each of the selected nodesis sent the most
recent half of the local 1oad vector information. In addi-
tion, when a load information message is received, the
receiving node acknowledges receipt of the message by
returning its own load information back to the sending
node.

During eachiteration of theal gorithm, thelocal |oad vec-
tor is updated by incorporating newly received informa
tion and by aging or replacing older load information. To
discourage migration between nodes with small load
variations, each node adjusts its exported local load in-
formation by a stability factor. For migration to take
place, the difference in load values between two nodes
must exceed this stability value.

The load balancing algorithm decides to migrate pro-
cesseswhen it finds another node with asignificantly re-
duced load. It selects a local process that has
accumulated a certain minimum amount of run-time,
giving preference to processes which have a history of
forking off new subprocesses or have a history of com-
munication with the selected node. This prevents short-
lived processes from migrating.

Implementation and Perfor mance. Porting the original
version of MOSIX to a new operating system base re-
quired substantial modificationsto the OSkernel in order
to layer the code base into the three MOSI X components
(linker, lower and upper kernels). Few changes took
place at the low level operating system code [Barak and
Wheeler, 1989].

In order to reduce the invasiveness of the porting effort,
a completely redesigned version of NOW MOSIX was
developed for the BSDI version of UNIX [Barak
et al., 1995]. The NOW MOSI X provides process migra-
tion and load balancing. without a single system image.
Asin Sprite, system calls that are location sensitive are
forwarded to the home node of a migrated process as re-
quired (cf. Section 5.2).

The performance of a migrated process in MOSIX de-
pends on the nature of the process. One measurement of
the effect that migration has on a process is the slower

23

5.2 Sprite

System Call Local Remote Slowdown . .
¥ The Sprite Network Operating System was developed at

read (1K) 034 1.36 4.00 U.C. Berkeley between 1984 and 1994 [Ousterhout

etal., 1988]. Its primary goal was to treat a network of

write (1K) 0.68 1.65 2.43 : _
personal workstations as a time-shared computer, from
open/close 2.06 4.31 2.09 the standpoint of sharing resources, but with the perfor-
fork (256K b) 78 21.60 277 mance guarantees of individual workstations. It provided
a shared network file system with a single-system image
exec (256 KB) 25.30 51.50 2.04

and a fully-consistent cache that ensured that all ma-

Table 1: MOSIX System Call Performance chines always read the most recently written data [Nel-
son et al., 1988]. The kernel implemented a UNIX-like

performance of remote system calls. Using the frequen- procedural interface to applications; internally, kernels
cies of system calls measured by Douglisand Ousterhout communicated with each other via a kernel-to-kernel
[1987], system calls were 2.8 times slower whenexecut- RPC. User-level IPC was supported using the file sys-
ed on a remote 33MHz MOSIX node [Barak tem, with either pipes or a more general mechanism
etal., 1989]. Table 1 shows the measured performance called pseudo-devices [Welch and Ousterhout, 1988].
and slowdown of several commonly used system calls. virtual memory was supported by paging a process’s

Many system calls, for example getpid(), arealwaysper- heap and stack segments to a file on the local disk or a
formed on the processes current node and have no re- fjle server.

mote performance degradation. An early implementation of migration in Sprite [Douglis

The performance of the MOSIX migrationalgorithmde- and Ousterhout, 1987] suffered from some deficiencies
pends directly on the performance of the linker's datgDouglis, 1989]:
transfer mechanism on a given network and the size of processes accessing some types of files, such as pseu-
the dirty address space and user area of the migraﬁngdo-devices, could not be migrated: '
process. The measured performance of the VME base-dthere was no automatic host selection: and
MOSIX migration, from one node of the cluster to the o '

« there was no automatic failure recovery.

bus master, was 1.2 MB/second. The maximum data

transfer speed of the system’s VME bus was 3 MB/sed—Mter substgntlal modifications to the shareq file system
ond to support increased transparency and failure recovery

[Welch, 1990], migration was ported to Sun-3 worksta-

Arguably the most important performance measuremenfons, and later Sparcstation and DECstation machines.
is the measurement of an actual user-level applicationy,tomatic host selection went through multiple itera-
Specific applications, for example an implementation okjons as well, moving from a shared file to a server-based

a graph coloring algorithm, show a near-linear speedugchjtecture. Migration was used regularly starting in the
with increasing number of nodes [Barak et al., 1993]. Ok)| of 1988.

course, this speedup does not apply to other types of ag—
L oals:
plications (non-CPU-bound, such as network or 1/O
bound jobs). These applications may experience differs Workstation autonomy. Local users had priority over
ent speedups. No attempt has been conducted to measuré€ir workstation. Dynamic process migration, as op-

an average speedup for such types of applications. posed to merely re;mote invqcation, was viewed prima-
rily as a mechanism to evict other users’ processes
Lessons Learned. The MOSIX system demonstrated from a personal workstation when the owner returned.

that dynamic load balancing implemented via dynamiq, | gcation transparency. A process would appear to run
process migration is a viable technology for a cluster of 4, 5 single workstation throughout its lifetime.
workstations. The earlier MOSIX implementations re-, Using idle cycles. Migration was meant to take advan-
quired too many changes to the structure of the base op-tage of idle workstations, but not to support full load
erating system code in order to maintain the single palancing.

system image nature of the system. Giving up the single gmplicity. The migration system tried to reuse other
system image while preserving process migration deliv- support within the Sprite kernel, such as demand pag-
ers most of the benefits of the earlier MOSIX systems ing, even at the cost of some performance. For exam-
without requiring invasive kernel changes. ple, migrating an active process from one workstation

24

to another would require modified pagesinitsaddress 2. If the process is migrating away from its home
space to be written to afile server and faulted in on the machine, the source contacts the target to confirm its
destination, rather than sent directly to the destination. availability and suitability for migration.

Design. Transparent migration in Sprite was based on 3. A “pre-migration” procedure is invoked for each ker-
the concept of a home machine. A foreign process was nel module. This returns the size of the state that will
one that was not executing on its home machine. Every be transferred and can also have side effects, such as

process appeared to run on its home machine throughout gueuing VM pages to be flushed to the file system.

its lifetime, and that machine was inherited by descen- 4. The source kernel allocates a buffer and calls encap-
dants of aforeign process aswell. Some location-depen- sulation routines for each module. These too can have
dent system calls by a foreign process would be side effects.

forwarded automatically, viakernel-to-kernel RPC, toiits 5. The source kernel sends the buffer via RPC, and on
home; examples include calls dealing with the time-of- the receiving machine each module de-encapsulates

day clock and process groups. Numerous other calls its own state. The target may perform other operations

such as fork and exec, required cooperation between the as a side effect, such as commumcatm_g with file serv-
i . o ers to arrange for the transfer of open files.

remote and home machines. Finaly, location-indepen- 6. Each Kk | dul . o

dent calls, which included file system operations, could ' r?)(c::e djrg]ion::cl)e:ne ucanstz)t(gcustscﬁ ;;s}tr—engligr]]ratlo: o

be handled locally or sent directly to the machine respon- P P ' 9 pag

: . tables.
sible for them, such as afile server.
7. The source sends an RPC to tell the target to resume

Foreign processes were subject to eviction — being mi- the process, and frees the buffer.

grated back to their home machine — should a local us&Fault Resilience. Sprite process migration was rather in-
return to a previously idle machine. When a foreign protolerant of faults. During migration, the failure of the tar-
cess migrated home, it left no residual dependencies qget anytime after step 5 could result in the termination of
its former host. When a process migrated away from itshe migrating process, for example, once its open files
home, it left a shadow process there with some state thBive been moved to the target. After migration, the fail-
would be used to support transparency. This state includire of either the home machine or the process’s current
ed such things as process identifiers and the parent-chiltbst would result in the termination of the process. There
relationships involved in the UNIXait call. was no facility to migrate away from a home machine

S . that was about to be shut down, since there would always
As a performance optimization, Sprite supported bOﬂE)e some residual dependencies on that machine

full process migration, in which an entire executing pro-
cess would migrate, and remote invocation, in which & ransparency was achieved through a conspiracy be-
new process would be created on a different host, d#een a foreign process’s current and home worksta-
though afork andexec were done together (like the Lo- tions. Operations on the home machine that involved a
cusrun call [Walker et al., 1983]). In the latter case, stateforeign process, such aspa listing of CPU time con-
that persists across exec call, such as open files, would sumed, would contact its current machine via RPC. Op-
be encapsulated and transferred, but other state such @f@tions on the current host involving transparency,

virtual memory would be created from an executable. including all process creations and terminations, contact-
ed the home machine. Waiting for a child, even one co-

When migrating an active process, Sprite writes dirtyegigent on the foreign machine, would be handled on the
pages and cached file blocks to their respective file ser;ome machine for simplicity.

er(s). The address space, including the executable, is)) _
paged in as necessary. Migration in the form of remoté\ll IPC in Sprite was through the file system, even TCP

invocation would result in dirty cached file blocks being €onnections. (TCP was served through user-level dae-
written, but would not require an address space to b&Ons contacted via pseudo-devices.) The shared net-

flushed, since the old address space is being discardedVork file system provided transparent access to files or
processes from different locations over time.

The migration algorithm consists of the following steps

[Douglis, 1989]: As in MOSIX, processes that share memory could not be

migrated. Also, processes that map hardware devices di-

1. The process is signaled, to cause it to trap into theectly into memory, such as the X server, could not mi-
kernel. grate.

25

Scalability. Sprite was designed for a cluster of worksta-
tions on alocal area network and did not particularly ad-
dress the issue of scalability. As aresult, neither did the
migration system. The centralized |oad information man-
agement system, discussed next, could potentialy be a
bottleneck, although a variant based on the MOSIX
probabilistic load dissemination algorithm was also im-
plemented. In practice, the shared file servers proved to
be the bottleneck for file-intensive operations such as
kernel compilations with as few as 4-5 hosts, while cpu-
intensive simulations scaled linearly with over ten hosts
[Douglis, 1990].

L oad Information Management. A separate, user-level
process (migd) was responsible for maintaining the state

of each host and allocating idle hosts to applications.

This daemon would be started on a new host if it, or its

host, should crash. It alocated idle hosts to requesting
processes, up to one foreign “job” per available proces-
sor. (A “job” consisted of a foreign process and its des,
scendants.) It supported a notionfaifness, in that one
application could use all idle hosts of the same architec-
ture but would have some of them reclaimed if another
application requested hosts as well. Reclaiming due to
fairness would look to the application just like reclaim-
ing due to a workstation’s local user returning: the for-
eign processes would be migrated home and either run
locally, migrated elsewhere, or suspended, depending on
their controlling task’s behavior and host availability.

Migration was typically performed bymake, a parallel
make program like many others that eventually became
commonplace (e.g., [Baalbergen, 198Bihake would

use remote invocation and then remigrate processes if
migd notified it that any of its children were evicted. It

tion is performed in parallel); the state for each open
file (9.4msf/file); dirty file and VM blocks that must

be flushed (480-660 Kbytes/second depending on
whether they are flushed in parallel); process state
such asexec arguments and environment variables
during remote invocation (also 480 Kbytes/second);
and a basic overhead of process creation and message
traffic (76ms for the null process).

. A process that had migrated away from its home

machine incurredun-time overhead from forward-

ing location-dependent system calls. Applications of
the sort that were typically migrated in Sprite, such as
parallel compilation and LaTeX text processing,
incurred only 1-3% degradation from running
remotely, while other applications that invoked a
higher fraction of location-dependent operations
(such as accessing the TCP daemon on the home
machine, or forking children repeatedly) incurred
substantial overhead.

Since the purpose of migration in Sprite was to enable
parallel use of many workstationsapplication
speedup is an important metric. Speedup is affected
by a number of factors, including the degree of paral-
lelism, the load on central resources such asnthd
daemon, and inherently non-parallelizable operations.
By comparing the parallel compilation of several
source directories, ranging from 24 to 276 files and 1
to 3 independent link steps, one found that the
speedup compared to the sequential case ranged from
about 3 to 5.4 using up to 12 hosts, considerably
below linear speedup. During a 12-wpsake, the
processors on both the server storing the files being
read and written, and the workstation runngngake,
were saturated. Network utilization was not a signifi-
cant problem, however.

would suspend any process that could not be remigrated.essons L ear ned. Here we summarize the two most im-

Implementation and Performance. Sprite ran on Sun
(Sun 2, Sun 3, Sun 4, SPARCstation 1, SPARCstation
and Digital (DECstation 3100 and 5100) workstations..
The entire kernel consisted of approximately 200,000
lines of heavily commented code, of which approximate
10,000 dealt with migration.

The performance of migration in Sprite can be measured
in three respects. All measurements in this subsection
were taken on SPARCstation 1 workstations on a 10-
Mbps Ethernet, as reported in [Douglis and®
Ousterhout, 1991].

1. The time tamigrate a process was a function of the

portant lessons and experiences in Sprite process migra-
2t}on [Douglis, 1990; Douglis and Ousterhout, 1991].

Migration provided a considerable source of processor
cycles to the Sprite community. Over a one-month pe-
riod, 30% of user processor activity came from migrat-
ed (foreign) processes. The host that accounted for the
greatest total usage (nearly twice as many cpu-seconds
as the next greatest) ran over 70% of its cycles on other
hosts.

Evictions accounted for 6% of all migrations, with

about half of these evictions due to fairness consider-
ations and the other half due to users reclaiming their
machines. About 1% of all host allocations were re-

overhead of host selection (36ms to select a single voked for one of these two reasons. (Evictions counted
host, amortized over multiple selections when migra- for a relatively higher fraction of all migrations be-

26

(1) before

UNIX (2) migration ——p
process (3) after .
(€Y (©)
task
microkernel microkernel
source node destination node

Figure7: Task Migration Design. Only task abstractionismi-
grated, while process abstraction remains on the sour ce node.

cause one host revocation could result in many pro-
cesses being migrated.)

5.3 Mach

Mach isamicrokernel developed at the Carnegie Mellon
University [Accetta et a., 1986; Black et a., 1992], and
later at the OSF Research Ingtitute [Bryant, 1995]. A mi-
gration mechanism on top of the Mach microkernel was
developed at the University of Kaiserslautern, from 1991
to 1993 [Milgjicic et al., 1993b].

Task migration was used for experiments with load dis-
tribution. In this phase, only tasks were addressed, while
UNIX processes were | eft on the source machine, as de-
scribed in Figure 7. Process migration for the OSF/1
AD 1 server [Paindaveine and Milgjicic, 1996] was de-
veloped during 1994 at the Universite Catholique de
Louvain, Belgium, as a part of aproject on load-leveling
policies in a distributed system [Jacgmot, 1996]. OSF/1
AD lisaversion of the OSF/1 operating system which
provides a scalable, high-performance single-system im-
age version of UNIX. It iscomposed of serversdistribut-
ed across the different nodes running the Mach
microkernel. Process migration relies on the Mach task
migration to migrate microkernel-dependent process
state between nodes.

Mach task migration was also used at the University of
Utah, for the Schizo project [Swanson et al., 1993]. Task
and process migration on top of Mach were designed and
implemented for clusters of workstations.

Goals. The first goal was to provide a transparent task
migration at user-level with minimal changes to the mi-
crokernel. This was possible by relying on Mach OS
mechanisms, such as (distributed) memory management
and (distributed) IPC. The second goal was to demon-
stratethat it is possibleto perform load distribution at the
microkernel level, based on the three distinct parameters
that characterize microkernels: processing, VM and | PC.

27

Design. The design of task migration is affected by the
underlying Mach microkernel. Mach supported various
powerful OS mechanisms for purposes other than task
and process migration. Examples include Distributed
Memory Management (DMM) and Distributed IPC
(DIPC). DIPC and DMM simplified the design and im-
plementation of task migration. DIPC takes care of for-
warding messages to migrated process, and DMM
supports remote paging and distributed shared memory.
The underlying complexity of message redirection and
distributed memory management are heavily exercised
by task migration, exposing problems otherwise not en-
countered. This is in accordance with earlier observa-
tions about message-passing [Douglis and
Ousterhout, 1991].

In order to improve robustness and performance of
DIPC, it was subsequently redesigned and reimplement-
ed [Milgjicic et a., 1997]. Migration experiments have
not been performed with the improved DIPC. However,
extensive experiments have been conducted with Con-
current Remote Task Creation (CRTC), an in-kernel ser-
vice for concurrent creation of remote tasks in a
hierarchical fashion [Milgjicic et al., 1997]. The CRTC
experiments are similar to task migration, because a re-
mote fork of atask address space is performed.

DMM enables cross-node transparency at the Mach VM
interface in support of adistributed file system, distribut-

ed processes, and distributed shared memory [Black, D,

et a., 1998]. The DMM support resulted in simplified
design and implementation of the functionality built on

top of it, such as SSI UNIX and remote tasking, and it
avoided pager modifications by interposing between the

VM system and the pager. However, the DMM became

too complex, and had performance and scalability prob-
lems. The particular design mistakes include the interac-
tions between DSM support and virtual copies in a
distributed system; transparent extension of Mach copy-
on-write VM optimization to distributed systems; and
limitations imposed by Mach’s external memory man-
agement while transparently extending it to distributed
systems.Copy-on-write is an optimization introduced to
avoid copying pages until it is absolutely needed, and
otherwise sharing the same copy. It has also been used in
Chorus [Rozier, 1992] and Sprite [Nelson and Ouster-
hout, 1988].)

DMM had too many goals to be successful; it failed on
many general principles, such as “do one thing, but do it
right,” and “optimize the common case” [Lampson,

1983]. Some of the experiments with task migration re-

flect these problems. Variations of forking an address
space and migrating a task significantly suffered in per-
formance. While some of these cases could be improved
by optimizing the algorithm (as was done in the case of
CRTC [Milgjicic et a., 1997]), it would only add to an
already complex and fragile XMM design and imple-
mentation. Some of the DMM features are not useful for
task migration, even though they were motivated by task
migration support. Examplesinclude DSM and distribut-
ed copy-on-write optimizations. DSM s introduced in
order to support the transparent remote forking of ad-
dress spaces (as a consequence of remote fork or migra-
tion) that locally share memory. Distributed copy-on-
write is motivated by transparently forking address spac-
es that are already created as a consequence of local
copy-on-write, as well as in order to support caching in
distributed case.

Even though the DIPC and DMM interfaces support an
implementation of user-level task migration, there are
two exceptions. Most of the task state is accessible from
user space except for the capabilities that represent tasks
and threads and capabilities for internal memory state.
Two new interfaces are provided for exporting the afore-
mentioned capabilities into user space.

A god of one of the user-space migration servers is to
demonstrate different data transfer strategies. An exter-
nal memory manager was used for implementation of

Fault Resilience of Mach task migration was limited by
the default transfer strategy, but even more by the DIPC
and DMM modules. Both modules heavily employ the
lazy evaluation principle, leaving residual dependencies
throughout the nodes of a distributed system. For exam-
ple, in the case of DIPC, proxies of the receive capabili-
ties remain on the source node after receive capability is
migrated to a remote node. In the case of DMM, the es-
tablished paging paths remain bounded to the source
node even after eager copying of pages is performed to
the destination node.

Transparency was achieved by delaying access or pro-
viding concurrent access to a migrating task and its state
during migration. The other tasks in the system can ac-
cess the migrating task either by sending messagesto the
task kernel port or by accessing its memory. Sending
messages is delayed by interposing task kernel port with
an interpose port. The messages sent to the interpose port
are queued on the source node and then restarted on the
destination node. The messages sent to other task ports
aretransferred as a part of migration of the receive capa-
bilities for these ports. Access to the task address space
is supported by DMM even during migration. Locally
shared memory between two tasks becomes distributed
shared memory after migration of either task.

In OSF/1 AD, avirtual process (Vprocs) framework sup-
ports transparent operations on the processes indepen-

this task migration server. The following strategies were
implemented: eager copy, flushing, copy-on-reference,
precopy and read-ahead [Milgjicic et al., 1993b]. For
most of the experiments, a simplified migration server
was used that relied on the default in-kernel datatransfer
strategy, copy-on-reference.

dently of the actual process’s location [Zajcew
etal., 1993]. By analogywprocs are to processes what
vnodes are to files, both providing location and heteroge-
neity transparency at the system call interface. Distribut-
ed process management and the single system image of
Mach and OSF/1 AD eased the process migration imple-

The task migration agorithm steps are: mentation.

1. Suspend the task and abort the threads in order to
clean the kernel state.

2. Interpose task/thread kernel ports on the source node.

3. Transfer the address space, capabilities, threads and

A single system image is preserved by retaining the pro-
cess identifier and by providing transparent access to all
UNIX resources. There are no forwarding stub processes
or chains. No restrictions are imposed on the processes
considered for migration: for example, using pipes or

the other task/thread state.) . .
) signals does not prevent a process from being migrated.
4. Interpose back task/thread kernel ports on the destina-
tion node. Scalability. The largest system that Mach task migration

ran on at University of Kaiserslautern consisted of five
nodes. However, it would have been possible to scale it
closer towards the limits of the scalability of the under-
lying Mach microkernel, which is up to a couple of thou-
sand nodes on the Intel Paragon supercomputer.

5. Resume the task on the destination node.

Process stateis divided into several categories: the Mach
task state; the UNIX processlocal state; and the process-
relationship state. The local process state corresponds to
the typical UNIX proc and user structures. Open file de-
scriptors, although part of the UNIX process state, are
migrated as part of the Mach task state.

Migration of the address space relies heavily on the
Mach copy-on-write VM optimization, which linearly

28

grows the interna VM state for each migration
[Milgjicic et al., 1997]. In practice, when there are just
few migrations, this anomaly is not noticeable. However
for many consecutive migrations it can reduce perfor-
mance.

Load Information and Distributed Scheduling. Mach
was profiled to reflect remote | PC and remote paging ac-
tivity in addition to processing information. This infor-
mation was used to improve load distribution decisions.
[Milgjicic, 1993c]. Profiling was performed inside of the
microkernel by collecting statistics for remote communi-
cation and for remote paging and in user space, by inter-
posing application ports with profiler ports.

A number of applications were profiled and classified in
three categories: processing, communication and paging
intensive. Table 2 gives representatives of each class.

type application use_r/total IPC .V M
time (msg/s) | (pagin+out)/s)
Processing | Dhrystone 1.00 349 0.35+0
IPC find 0.03 512.3 2.75+0
VM WPI Jigsaw 0.09 246 28.5+38.2

Table 2: Processing, |PC and VM intensive applications

Extended load information is used for applying more ap-
propriate distributed scheduling decisions [Milgjicic
etal., 1993a). An application that causes a significant
amount of remote paging, or communicates with another
node, is considered for migration to the appropriate node.
CPU-bound applications have no such preference and
can be migrated based only on the processing load crite-
ria. For applications consisting of anumber of processes
that communicate among themselves, improvements
achieved by considering IPC/VM information in addi-
tion to CPU load is proportional to the load and it can

tribution experiments using task migration, turned out to
be avery stressful test for DIPC.

Thesize of thein-kernel versioniscloseto the simplified
migration server, from which it was derived. These two
implementations relied on the in-kernel support for ad-
dress space transfer. However, the size of the DIPC and
DMM modules was significantly higher. One of the lat-
est versions of optimized DIPC (nmk21b1) consisted of
over 32,000 lines of code. It took over 10 engineer-years
to release the second version of DIPC. The DMM, which
was never optimized, consists of 24,000 lines of code.

The optimized migration server is largest in size with a
few thousand lines of code. Most of thisimplemented a
pager supporting different data transfer strategies. The
optimized migration server did not rely on in-kernel data
transfer strategy, except for the support of distributed
shared memory.

Although there is an underlying distributed state in the
microkernel, no distributed state is involved in the pro-
cess migration facility at the server level, rendering the
design of the migration mechanism simple. The process
migration code consists of approximately 800 lines of
code. However, adding distributed process management
requires about 5000 lines of additional code. The main
(initial and runtime) costs of migration are due to task
migration. Process migration has very little overhead in
addition to task migration.

Performance measurements were conducted on a testbed
consisting of three Intel 33MHz 80486 PCs with 8MB
RAM. The NORMA14 Mach and UNIX server UX28
were used. Performance is independent of the address
space size, and is linear function of the number of capa-
bilities (see Figure 8). It was significantly improved in
subsequent work [Milgjicic et al., 1997].

L essons |ear ned

reach up to 20-50% for distributed scheduling strategies
[Milgjicic etal., 1993a]. Improvements of the perfor-
mance of asimple application dueto locality of reference

* Relying on DIPC and DMM is crucial for the easy de-
sign and implementation of transparent task migration,
but these modules also entail most of the complexity

can be multifold [Milojicic et al., 1993b].

Implementation and Performance. Milgjicic et a.
built three implementations: two user-level migrations
(an optimized and a simple migration server); and a ker-
nel implementation. The size of the simplified migration
server is approximately 400 lines of code that took about
3 monthsto design and implement. A lot of thistimewas
spent in debugging the DIPC parts of code that were nev-
er before exercised. Task migration, especialy load dis-

29

and they limit performance and fault resilience.

Task migration is sufficient for microkernel applica-
tions; UNIX applications require process migration or
otherwise they could experience severe performance
penalties (an order-of-magnitude degradation).

Applications on microkernels can be profiled as a
function of processing, IPC and VM and this informa-
tion can be used for improved load distribution. Im-
provement ranges from 20-55% for collaborative
types of applications.

1.2 T T T T

transfer overal |l —

time [s] _menory --—--
capabilities -

1r t hr eads i

12 capabilities, 1 thread b

Transfer time (in sec)
(=]
[
T
1

100 150 200 250 300 350 400
nmenory size (in 4k pages)

Figure 8: Task migration performance as a function of
VM size: initial costs are independent of task address space

size (aside of variations due to other side effects).

54 LSF

LSF (Load Sharing Facility) is aload sharing and batch
scheduling product from Platform Computing Corpora-
tion [Platform Computing, 1996]. LSF is based on the
Utopia system developed at the University of Toronto
[Zhou et al., 1994], which isin turn based on the earlier
Ph.D. thesis work of Zhou at UC Berkeley [Zhou, 1987;
Zhou and Ferrari, 1988].

L SF provides some distributed operating system facili-
ties, such as distributed process scheduling and transpar-
ent remote execution, on top of various operating system
kernels without change. LSF primarily relies on initial
process placement to achieve load balancing, but also
uses process migration via checkpointing as a comple-
ment. L SF currently runson most UNIX-based operating
systems.

Checkpointing and Migration Mechanisms. LSF’s

» UNIX signals can be used by the checkpointed pro-
cess. The state information concerning the signals
used by the process is recorded in the checkpoint file
and restored at restart time.

In addition to user-level transparent process checkpoint-

ing, LSF can also take advantage of checkpointing al-

ready supported in the OS kernel (such as in Cray Unicos
and ConvexOS), and application-level checkpointing.

The latter is achievable in classes of applications by the

programmer writing additional code to save the data

structures and execution state information in a file that
can be interpreted by the user program at restart time in
order to restore its state. This approach, when feasible,
often has the advantage of a much smaller checkpoint
file because it is often unnecessary to save all the dirty
virtual memory pages as must be done in user-level
transparent checkpointing. Application-level check-
pointing may also allow migration to work across heter-
ogeneous nodes.

The checkpoint file is stored in a user-specified directory
and, if the directory is shared among the nodes, the pro-
cess may be restarted on another node by accessing this
file.

Load Information Exchange. Similar to Sprite, LSF
employs a centralized algorithm for collecting load in-
formation. One of the nodes acts as the master, and every
other node reports its local load to the master periodical-
ly. If the master node fails, another node immediately as-
sumes the role of the master. The scheduling requests are
directed to the master node, which uses the load informa-
tion of all the nodes to select the one that is likely to pro-
vide the best performance.

Although many of the load information updates may be
wasted if no process need to be scheduled between load

support for process user-level process migration is bas&fiformation updates, this algorithm has the advantage of
on Condor’s approach [Litzkow and Solomon, 1992]. Amaking (reasonably up-to-date) load information of all
checkpoint library is provided that must be linked with nodes readily available, thus reducing the scheduling de-
application code. Part of this library is a signal handlefay and considering all nodes in scheduling to ensure op-
that can create a checkpoint file of the process so thatiiimality. Zhou et al. [1994] argue that the network and
can be restarted on a machine of compatible architectulePU overhead of this approach is negligible in modern
and operating system. Several improvements have be@admputers and networks. Measurements and operational
made to the original Condor checkpoint design, such assxperience in clusters of several hundred hosts confirm

* No core dump is required in order to generate the
checkpoint file. The running state of the process is di-
rectly extracted and saved in the checkpoint file to

this observation. Such a centralized algorithm also
makes it possible to coordinate all process placements -
once a process is scheduled to run on a node, this node is

gether with the executable in a format that can be usé@?s likely tq be considlereq for other processes for a
to restart the process. This not only is more efficientwhile to avoid overloading it. For systems with thou-
but also preserves the original process and its IBands of nodes, several clusters can be formed, with se-

across the checkpoint.

lective load information exchange among them.

30

Scheduling Algorithms. LSF uses checkpoint and re- it is used more as an exception rather than the rule, for
start to achieve process migration, which inturnisused three reasons. First, transparent user-level checkpointing
to achieve load balancing. If a node is overloaded or ~ and migration are usable by only those processes linked
needed by some higher priority processes, aprocessrun- with the checkpoint library, unless the OS kernel can be
ning on it may be migrated to another node. The load modified; in either case, their applicability is limited.
conditions that trigger process migration can be config- Secondly, intelligent initial process placement has been
ured to be different for various types of jobs. To avoid found to be effective in balancing the load in many cases,
undesirable migration due to temporary load spikesand reducing the need for migration [Eager et al., 1988]. Fi-
to control migration frequency, LSF allows users to nally, and perhaps most importantly, the same load bal-
specify atime period for which aprocessissuspendedon ancing effect can often be achieved by process placement
its execution node. Only if the local load conditionsre- with much less overhead. The remote process execution
main unfavorable after this period would the suspended mechanism in LSF maintains the connection between the
process be migrated to another node. application and the Remote Execution Server on the ex-
ecution node and caches the application’s execution con-
text for the duration of the application execution, so that
repeated remote process executions would incur low
overhead (0.1 seconds as measured by Zhou et al. on a
network of UNIX workstations [1994]). In contrast, it is
not desirable to maintain per-application connections in
a kernel implementation of process migration, thus every
process migration to a remote node is “cold”. In the case
of Sprite, the overhead of exec time migration was mea-
sured to be approximately 330ms on Sparcstation 1
workstations over the course of one month [Douglis and

select[sparc && swap >= 120 && Ousterhout, 1991].

mem >= 64] order[cpu:mem)]

which indicates that the selected node should have are-
source called “sparc”, and should have at least 120 MBn this section, we compare the various migration imple-
of swap space and 64 MB of main memory. Among thenentations described in the paper. We cover the case
eligible nodes, the one with the fastest, lightly loadedstudies, as well as some other systems mentioned in
CPU, as well as large memory space, should be selecteSlection 4.
A heuristic sorting algorithm is employed by LSF to con-

. . - Table 3 summarizes process migration classification
sider all the (potentially conflicting) resource preferenc-

. L a{)rowded in Section 4. We mentiexamples of each
es and select a suitable host. Clearly, such optimality ¢ Y Co : .
. . o __class of migration, followed by threain characteristic
only be achieved if the load condition of all nodes is

Known to the scheduler. of each clas§. These col'u.mng are self-explanatqry. The
OS v. Application Modification column describes
The resource requirements of a process may be specifihere the majority of modifications to support migration
by the user when submitting the process to LSF, or mais performed. Migration in the early work, UNIX-like
be configured in a system process file along with the prosystems, message passing and microkernels require
cess name. This process file is automatically consulteshodifications to the underlying OS. User-space and ap-
by LSF to determine the resource requirement of eachlication-specific systems require modifications to the
type of process. This process file also stores informatioapplication, typically relinking and in certain cases also
on the eligibility of each type of process for remote exetrecompiling. Mobile objects and agents require modifi-
cution and migration. If the name of a process is notations to the underlying programming environment.
found in this file, either it is excluded from migration However, they also have the least transparency, as de-
consideration, or only nodes of the same type as the locatribed below.
node would be considered.

The target node is selected based on the dynamic load
conditions and the resource requirements of the process.
Recognizing that different processes may require differ-
ent types of resources, LSF collects a variety of load in-
formation for each node, such as average CPU run queue
length, available memory and swap space, disk paging
and 1/O rate, and the duration of idle period with no key-
board and mouse activities. Correspondingly, a process
may be associated with resource requirement expres-
sions such as

6 COMPARISON

The Migration Complexity column describes the
Process Migration vs. Initial Placement. Although amount of effort required to design and implement mi-
LSF makes use of process migration to balance the loadration. Complexity is high for kernel implementations.

31

Migration/ Examples Main OSv. Appl. | Migration Complexity |Extensibility Transoaren
Characteristics P Characteristics |Maodification| (Other Complexity) |& portability » <y
XOS, Worm, ad-hoc solutions, HW low -
Barly Work DEMOS, Butler dependent oS (lack of infrastructure) poor limited
Transp. Migration Locus, MOSIX, major changes to the os high fair full
in UNIX-like OS Sprite underlying env. (Supporting SSI) (OS depend.)
M essage-Passing Charlotte, Accent, complex OS support os low fair full
oS V Kernel easy PM implement. (Message Passing) (OS depend.)
. Amoeba, Arcade, BirliX, no UNIX semantics low good
Microkernels Chorus, Mach, RHODOS | complex OS support oS (DMM and DIPC) | (OS depend.) full
Condor, Alonso& Kyrimis, application low very good -
User Space Mandelberg, LSF lesstransparency | aiinked) | (forwarding system calls) | (appl. depy | e
N Freedman, Skordos, min. transparency, | application lowest -
Application Bharat& Cardel li more appl. knowledge| (recompiled) | (app migration awareness) very good minimal
. . Emerald, SOS,) . programming moderate
M obile objects COOL object oriented environment (communication) good full
. Agent-TCL, Aglets . programming lowest]
Mobile Agents TACOMA, Telescript heterogeneity environment (security & safety) good fair

Table 3: Summary of the different migration implementations.

Exceptions are message-passing kernels, which already
provide much of the required functionality in their sup-
port for message passing. Thisresultsinasimpler migra-
tion mechanism. Microkernels also support migration
more easily because of simpler abstractions and reduced
functionality (for example, no UNIX compatibility).
However, extensive complexity is introduced for sup-
porting distributed | PC and distributed memory manage-
ment. The least complex implementations are those done
at user level and those done as part of an application.

knowledge of the application semantics in order to inte-
grate migration calls at appropriate places.

Extensibility describes how easy it is to extend a process
migration implementation. Examples include support for
multiple data transfer and location strategy. In most cas-
es,extensibility is inversely proportional to complexity.
An exception to this rule are message-passing kernels,
which have simple migration implementations, but are
not as extensible. Extensions to a migration mechanism
for performance and improved fault resilience typically

The “other complexity” subfield describes where the'®quire complex changes to the underlying mechanism
complexity in the system exists. Early work incurred’0" message passingortability describes how easy itis

complexity in infrastructure support for the underlying ©© POrt the migration mechanism to another operating
hardware and software, such as Alto computers in thgystem or computer. User-space and application-specific

case of Worms, and the X-Tree architecture in the Cas|g1plementations have superior portability. Condor and
of XOS. Transparent migration on UNIX-like systems LSF run on numerous versions of operating systems and

incurs a lot of complexity for the support of Single Sys_computers. Kernel-level implementations are typically

)~ closely related to the underlying system and consequent-
tem Image and extending UNIX semantics to a distribut- y ying sy q

ed system. As already pointed out, message passil their portability is limited to the portability of the op-

. .) : ating system. For example Mach and MOSIX were
typically requires a lot of complexity; examples include .
. _ported to a number of computer architectures.
Charlotte and the V kernel, as well as some of the micro-

kernels, such as Mach and Chorus. In addition, some @f is hard to compare thger formance of various migra-

the microkernels (e.g. Mach) also support distributedion mechanisms because the implementations were
memory management, which is even harder to supportione on a number of different architectures. It is also
User-space migrations trade off the simplicity of the un-hard and inaccurate to normalize performance (some at-
derlying support for redirecting system calls or imposingtempts toward normalizations were done by Roush
limits on them. Application-specific migrations require [1995]). Therefore, we have not provided a column de-

32

Migration/ open files | fork children communication) need t'o re_:link changesto kernel | shared memory
supported channels application
MOSIX yes yes yes no yes no
Sprite yes yes yes no yes no
Mach & OSF/1AD yes yes yes no yes yes
L SF some no no yes no no

Table 4: Transparency “checklist”.

scribing performance. Neverthel ess, we note that the per-
formance of user- and application-level migrations
typicaly fall intherange of seconds, even minutes, when
migrating processes with large address spaces. The ker-
nel supported migrations, especialy the newer imple-
mentations, fall in the range of tens of milliseconds. The
most optimized kernel implemented migration (Choices)
has initial costs of only 14ms [Roush and Campbell,
1996], and it is better even if some rough normalization
is accounted for (see [Roush, 1995]).

Asmentioned earlier, the dominant performance element
isthe cost to transfer the address space. Kernel-level op-
timizations can cut down this cost, whereas user-level
implementations do not have access to the relevant data
structures and cannot apply these optimizations.

Recently, trends are emerging that allow users more ac-
cessto kernel data, mechanism, and policies [Bomberger
et al., 1992]. For example, microkernels export most of
the kernel state needed for user-level implementations of
migration [Milojicic, 1993c]. Extensible kernels provide
even more support in thisdirection [Bershad et al., 1995;
Engler et al., 1995]. These trends decrease the relevance
of user versus kernel implementations.

Transparency describes the extent to which a migrated
process can continue execution after migration as if mi-
gration has not happened. It also determines whether a
migrated process is alowed to invoke al system func-
tions. Many user- or application-level implementations
do not alow a process to invoke al system calls.
Migration that isimplemented inside the kernel typically
supports full functionality. In general, the higher thelev-
el of theimplementation, the less transparency is provid-
ed. User-space implementations are aware of migration
and they can invoke migration only at predefined places
in the code. Kernel-supported implementations typically
have higher levels of transparency. Single system image
supports transparent migration at any point of applica-
tion code; migration can transparently be initiated either
by the migrating process or by ancther process. Most

mobile agent implementations do not allow transparent
migration invocation by other applications; only the mi-
grating agent caninitiateit. Eventhough lesstransparent,
this approach simplifies implementation.

More specifics on transparency in the case studies are
presented in Table 4. Migration for each case study is
categorized by whether it transparently supports open
files, forking children, communication channels, and
shared memory. If migration requires changes to the ker-
nel or relinking the application, that isalso listed.

Support for shared memory of migrated tasksin Machis
unique. In practice, it was problematic due to a number
of design and implementation issues [Black et al. 1998].
Other systems that supported both shared memory and
migration either chose not to provide transparent access
to shared memory after migration (e.g. Locus [Walker
and Mathews, 1989; Fleisch and Popek, 1989]), or disal-
lowed migration of processes using shared memory (e.g.,
Sprite [Ousterhout et al., 1988]).

Kernel-level migration typically supports all features
transparently, whereas user-level migrations may limit
access to NFSfiles and may not support communication
channels or interprocess communication. In addition, a
user-level migration typically requires relinking applica-
tions with specid libraries. Migration done as part of an
application requires additional re-compilation.

In Table 5, we compare different data transfer strategies
with respect to freeze time, freeze costs, residual time
and costs, residual dependencies, and initial migra-
tion time (time passed since request for migration until
process started on remote node).

We can see that different strategies have different goals
and introduce different costs. At one end of the spectrum,
systems that implement an eager (all) strategy in user
space eliminate residual dependenciesand residual costs,
but suffer from high freeze time and freeze costs.

Modifying the operating system allows an eager (dirty)
strategy to reduce the amount of the address space that

33

data transfer example freezetime frocecogs | residual time& residual initial
strategy P costs dependency migration time
eager (all) most user-level and high high none none high
early migrations
eager (dirty) MOSIX, Locus moderate moderate none none moderate
precopy V kernel very low extremely high none none very high
copy on reference Accent, Mach low small high yes low
flushing Sprite moderate moderate moderate none moderate

Table5: Summary of Various Data Transfer Strategies.

needs to be copied to the subset of its dirty pages. This
increasesresidual costs and dependencieswhilereducing
freeze time and costs.

Using a precopy strategy further improves freeze time,
but has higher freeze coststhan other strategies. Applica-
tions with real-time requirements can benefit from this.
However, it has very high migration time because it may
require additional copying of already transferred pages.

Copy on reference requires the most kernel changes in
order to provide sophisticated virtual mappings between
nodes. It also has more residual dependencies than other
strategies, but it has the lowest freeze time and costs, and
migration time is low, because process can promptly
start on the remote node.

Finally, the flushing strategy also requires some amount
of changesto the kernel, and has somewhat higher freeze
time than copy-on-reference, but improves residual time
and costs by leaving residual dependencies only on a
server, but not on the source node. Process migration in
the Choices system, not listed in the table, represents a
highly optimized version of eager (dirty) strategy.

The data transfer strategy dominates process migration
characteristics such as performance, complexity, and
fault resilience. The costs, implementation detailsand re-
sidual dependencies of other process elements (e.g. com-

muni cation channels, and naming) are a so important but
have less impact on process migration.

In the Mach case study, we saw that most strategies can
be implemented in user space. However, this requires a
pager-like architecture that increases the complexity of
OS and migration design and implementation.

Table 6 summarizes load information database charac-
teristics. Database type indicates whether the informa-
tion is maintained as a distributed or a centralized
database. Centralized databases have shown surprising
scalability for some systems, in particular LSF. Never-
theless, achieving the highest level of scalability requires
distributed information management.

Maximum nodes deployed is defined as the number of
nodes that were actually used. It is hard to make predic-
tions about the scal ability of migration and load informa-
tion management. An approximate prediction is that
centralized load information management could scale up
to 500 nodes without hierarchical organization, such as
in Sprite. With hierarchical organization, such asin L SF,
it could scale beyond 2000 nodes. Decentralized infor-
mation management, such asin MOSIX, can scale to an
even larger number of nodes. Even though Mach task mi-
gration has not been used on larger systemsthan a5-node
Ethernet cluster, most of its components that can impact
scalability (distributed IPC, distributed memory man-

MCi E:gg.]/ Database type M axlgsz;glyeNdod% Database Scope Fault Tolerance knowledge relevance
MOSIX distributed 64 partial yes aging

Sprite centralized 30 global limited Ve’”ﬁﬂ,‘;”e'g‘fgﬁf’o‘;?fae
Mach distributed 5 global no negotiation

LSF centralized 500 global yes none

Table 6: Load Information Database.

Migration/| Per Process System Parameters Retained Negotiation) eri((?)g:Le;:ft:on)) eDrIiodicI(?ra“O;
Charact. Parameters (also disseminated) Information Parameters p req. P \req.
- event driv. (event) |- event driv. (event)
age, /0 patterns, partial migrating process L periodic (1-60s)
MOSIX file access average ready queue (random subset)] may be refused periodic (worm-like)

. time since last local user .) migration - periodic (1min) and
Sprite none input, ready queue length al info retained version periodic (5¢) upon a state change
Mach age, remote IPC, | averageready qUeUS, | o e deStinationload, g g periodic (19)

and remote paging | remote | PC, remote paging free paging space
arbitrary .] system parameters - -
LSF none configurable al info retained of all nodes periodic periodic

Table 7: Load Information Collection and Dissemination

agement, and remote address space creation) have been
demonstrated to scale well. The Intel Paragon computer,
the largest MM P machine that runs Mach, has over 2000
nodes[Zajcew et a., 1993]. However, in order to use mi-
gration for load distribution some decentralized informa-
tion management algorithm would have to be deployed,
similar to the one used for TNC.

Database scope defines the amount of information that
is considered. Some systems, like MOSI X, maintain par-
tia system information in order to enhance scalability.
Large systems need to address fault tolerance. One
drawback of centralized databases isthat storing the data
on one node introduces a single point of failure. This
problem can be alleviated by replicating the data.

Once knowledge about the state of a system is collected
and disseminated, it startsto loseitsrelevance asthe state
of the system changes. Thisis an intrinsic characteristic
of distributed systems. The last column, knowledgerel-
evance, lists the methods used by the load information
management modul es to account for this.

Table 7 describes the type of information managed by
load information collection and dissemination. Load in-
formation is maintained for each processin a system, as
well as for each machine in a system. Process parame-
terslists the information gathered about individual pro-
cesses while system parameter s shows the information
gathered per node. All systems use processor utilization
information while some of them also consider system
communication patterns and access to off-node devices.

Disseminated parameters describes how much of the
information is passed on to other nodes in a system. In
most cases, only system information is disseminated, and
the average ready queue length is of most interest. In
some systems, not al available information is retained,
as described in the retained information column. For

35

example, MOSI X retains only asubset of collected infor-
mation during dissemination phase. Negotiation pa-
rameter s details the information exchanged at the time
of an attempted migration. Process parameters are used
during negotiation phase. Finaly, the collection and dis-
semination columns detail the frequency of collection
and dissemination in four case studies. In all cases both
collection and dissemination are periodic, with the ex-
ception of Sprite--it also disseminates upon a state
change.

Table8 summarizes the characteristics of distributed
scheduling. The migration class column indicates the
type of migration mechanism employed. The considered
costs column indicates whether and how systems weigh
the actual cost of migration. The migration costs are con-
sidered in the case of MOSIX and LSF, and not in the
case of Sprite and Mach. In addition to CPU costs,
MOSIX aso accounts for communication costs.

Migration trigger summarizesthereasonsfor migration
activation. Examples include crossing a load threshold
on a single node or on demand after an application-spe-
cific request, or only for specific events like process
eviction. Sprite process migration can be initiated as a
part of the pmake program or a migratory shell, or as a
conseguence of the eviction of aremotely executed pro-
Cess.

Some of the systems use a priori knowledge, typically
in the form of specifying which processes are not al-
lowed to migrate. These arefor examplewell known sys-
tem processes, such asin the case of MOSI X, Sprite and
Mach, or commands in the case of LSF. The learning
from the past column indicates how some systems adapt
to changing loads. Examples include aging load vectors
and process residency in MOSI X, and limiting consecu-
tive migrationsin Mach. Stability is achieved by requir-

System/ Migration Considered . . . A priori L earning from -
Characteristics Class Costs Migration Trigger knowledge the Past Stability
MOSIX process migration CPU & threshold cross + non eligible aging load vector mmlnn;s:r;iglency

(UNIX-likeOS) | communication load difference processes process residency . o
info weighting

. process migration pma_ke_, migratory shell, non ellglbl_e bias toward
Sprite . no eviction (due to user | processes or list of none))

(UNIX-like OS) L } S long-idle machines
activity or fairness) eligible ones
task migration predefined non-€li-| limit consecutive)
Mach (microkernel) no threshold cross gible tasks migration high threshold
LSk process migration | - ; \erhead | configurable thresnolgs| Predefined non- | lowering standard | ;o oo
(user-level migr.) eligible commands deviation

Table 8: Distributed Scheduling

ing a minimum residency for migrated processes after a
migration (such as in MOSIX), by introducing a high
threshold per node (such asin Mach and LSF), or by fa-
voring long-idle machines (such asin Sprite). It can also
be achieved by manipulating load information aswasin-
vestigated in MOSIX. For example, dissemination poli-
cies can be changed, information can be weighed subject
to current load, and processes can be refused.

7 WHY PROCESSMIGRATION
HASNOT CAUGHT ON

In this section, we attempt to identify the barriers that
have prevented a wider adoption of process migration
and to explain how it may be possible to overcome them.
We start with an analysis of each case study; we identify
misconceptions; we identify those barriers that we con-
sider the true impediments to the adoption of migration;
and we conclude by outlining the likelihood of overcom-
ing these barriers.

7.1 CaseAnalysis

MOSI X. The MOSIX distributed operating systemisan
exception to most other systems supporting transparent
process migration in that it is still in general use. Several
things worked against the wider adoption of the MOSIX
system: the implementation was done on a commercial
operating system which prevented wide-spread distribu-
tion of the code. One commercial backer of MOSIX
withdrew from the operating system business.

The current outlook is much brighter. The latest versions

Sprite. Sprite as a whole did not achieve a long-lasting
success, so its process migration facility suffered with it.
Sprite’s failure to expand significantly beyond U.C. Ber-
keley was due to a conscious decision among its design-
ers not to invest the enormous effort that would have
been required to support a large external community. In-
stead, individual ideas from Sprite, particularly in the ar-
eas of file systems and virtual memory, have found their
way into commercial systems over time.

The failure of Sprite’s process migration facility to sim-
ilarly influence the commercial marketplace has come as
a surprise. Ten years ago we would have predicted that
process migration in UNIX would be commonplace to-
day, despite the difficulties in supporting it. Instead,
user-level load distribution is commonplace, but it is
commonly limited to applications that can run on differ-
ent hosts without ill effects, and relies either on explicit
checkpointing or the ability to run to completion.

Mach and OSF/1. Compared to other systems, Mach
has gone the furthest in technology transfer. Digital
UNIX has been directly derived from OSF/1, NT inter-
nals resemble the Mach design, and a lot of research was
impacted by Mach. However, almost no distributed sup-
port was transferred elsewhere. The distributed memory
management and distributed IPC were extremely com-
plex, requiring significant effort to develop and to main-
tain. The redesign of its distributed IPC was
accomplished within the OSF RI [Milojicic et al., 1997],
but distributed memory management has never been re-

of MOSIX support process migration on BSDI's versiondesigned and was instead abandoned [Black et al. 1998].
of UNIX and work is underway to port MOSIX to Linux. Consequently, task and process migration have never
These efforts should eliminate the legal barriers that preseen transferred elsewhere except to Universities and
vented the distribution of early versions of the system. Labs.

36

LSF. Platform Computing has not aggressively ad-
dressed process migration because the broad market is
still not ready - partially due to an immature distributed
system structure, and partially due to alack of coopera-
tion from OS and application vendors. But most impor-
tantly there was no significant customer demand.

Since a vast majority of users run Unix and Windows
NT, for which dynamic process migration is not support-
ed by the OSkernel, Platform Computing has been using
user-level job checkpointing and migration as an indirect
way to achieve process migration for the users of LSF. A
checkpoint library based on that of Condor is provided
that can be linked with Unix application programsto en-
able transparent process migration. This has been inte-
grated into a number of important commercial
applications. For example, a leading circuit simulation
tool from Cadence, called Verilog, can be checkpointed
on one workstation and resumed on another.

It is often advantageous to have checkpointing built into
the applications and have L SF manage the migration pro-
cess. The checkpoint file is usually smaller compared to
user-level, because only certain data structures need to
be saved, rather than all dirty memory pages. With more
wide-spread use of workstations and servers on the net-
work, Platform Computing is experiencing a rapidly in-
creasing demand for process migration.

7.2 Misconceptions

Frequently, process migration has been dismissed as an
academic exercise with little chance for wide deploy-
ment [Eager et al., 1988; Kremien and Kramer, 1992;
Shivaratri et a., 1992]. Many rationales have been pre-
sented for this position, such as:

« significant complexity,

* unacceptable costs,

« the lack of support for transparency, and
* the lack of support for heterogeneity.

If we analyze implementations, we see that technical so-
lutions exist for each of these problems (complexity,
cost, non-transparency and homogeneity). Migration has
been supported with various degrees of complexity: as
part of kernel mechanisms; as user-level mechanisms;
and even as a part of an application (see Sections 4.2-
4.6). The time needed to migrate has been reduced from
the range of seconds or minutes [Mandelberg and
Sunderam, 1988; Litzkow and Solomon, 1992] to as low
as 14ms [Roush and Campbell, 1996]. Various tech-
nigues have been introduced to optimize state transfer
[Theimer et al., 1985; Zayas, 1987a; Roush and Camp-
bell, 1996] (see Section 3.2). Transparency has been
achieved to different degrees, from limited to complete
(see Section 3.3). Finally, recent work demonstrates im-
provements in supporting heterogeneous systems, as
done in Emerald [Steensgaard and Jul, 1995], Tui [Smith
and Hutchinson, 1998] and Legion [Grimshaw and
Wulf, 1996] (see Section 3.6).

7.3 TrueBarriersto Migration Adoption

We believe that the true impediments to deploying mi-
gration include the following:

» A lack of applications. Scientific applications and ac-
ademic loads (e.gpmake andsimulations) represent a
small percentage of today’s applications. The largest
percentage of applications today represent standard
PC applications, such as word-processing, and desktop
publishing. Such applications do not significantly ben-
efit from migration.

» A lack of infrastructure. There has not been a wide-
ly-used distributed operating system. Few of the dis-
tributed features of academically successful research
operating systems, such as Mach, Sprite, or the V ker-
nel, have been transferred to the marketplace despite
initial enthusiasm. This lack increases the effort need-
ed to implement process migration.

* Migration isnot arequirement for users. Viable al-
ternatives, such as remote invocation and remote data
access, might not perform as uniformly as process mi-

Some implementations. even successful ones indeedgration but they are able to meet user expectations with
P ' ' a simpler and well understood approach [Eager

have reinforced such beliefs. Despite the absence of wide etal., 1986a, Kremien and Kramer, 1992].

spread deployment, work on process migration has per- . . . o
P ploy b g pet Sociological factors have been important in limiting

sisted. In fact, recently we have seen more and more at-,[he deployment of process migration. In the worksta-

tempts to provide migration and other forms of mobility tion model, each node belongs to a user. Users are not
[Steensgaard and Jul, 1995; Roush and Campbell, 1996jjined to allow remote processes to visit their ma-
Smith and Hutchinson, 1998]. Checkpoint/restart sys- chines. A lot of research has addressed this problem,
tems are being deployed for the support of long-running such as process eviction in Sprite [Douglis and
processes [Platform Computing, 1996]. Finally, mobile OQusterhout, 1991], or lowering the priority of foreign
agents are being investigated on the Web. processes in the Stealth scheduler [Krueger and

37

Chawla, 1991]. However, the psychological effects of a fiber-channel), the difference between remote execu-

workstation ownership still play arole today. tion and migration becomes greater. Being able to move
7.4 How these Barriers Might be Overcome processes during execution (e.g. because it was realized
that there is a lot of remote communication) can improve
performance significantly. Secondly, with the larger
scale of systems, the failures are more frequent, thereby
increasing the relevance of being able to continue pro-
gram execution at another node. For long-running or crit-
ical applications (those that should not stop executing)
We address each of the barriers identified in previous migration becomes a more attractive solution. Finally,
section and try to predict how migration might fitthefu- the increasing popularity of hardware mobile gadgets
ture needs. The rest of the section is highly speculative will require mobility support in software. Examples in-
because of the attempts to extrapolate market needsand clude migrating applications from a desktop, to a laptop,
technology. and eventually to a gadget (e.g. future versions of cellu-
lar phones or palmtops).

It often takes a long time for good research ideas to be-
comewidely adopted in the commercial arena. Examples
include object-orientation, multi-threading, and the In-
ternet. It may be the case that process mobility is not ripe
enough to be adopted by the commercial market.

Applications. To become popular in the marketplace,
migration needs a “killer application” that will provide a Sociology. There are a few factors related to sociology.
compelling reason for commercial operating system venThe meaning and relevance of someone’s own worksta-
dors to devote the resources needed to implement atidn is blurring. There are so many computers in use to-
support process migration. The types of application thaglay that the issue of computing cycles becomes less
are well-suited for process migration include processorrelevant. Many computers are simply servers that do not
intensive tasks such as parallel compilation and simulaselong to any single user, and at the same time the pro-
tion, and I/O-intensive tasks that would benefit from thecessing power is becoming increasingly cheap. A second
movement of a process closer to some data or anothaspect is that as the world becomes more and more con-
process (see also Section 2.4). These applications are avected, the idea of someone else’s code arriving on one’s
ceedingly rare by comparison to the typical uses of toworkstation is not unfamiliar anymore. Many security is-
day’s computers in the home and workplace, such asues remain, but they are being actively addressed by the
word processing, spreadsheets, and games. However, apebile code and agents community.

plications are becoming more distributed, modular, angh, summary, we do not believe that there is a need for any
dependent on external data. In the near future, because @{o|ytionary development in process migration to make
the exceeding difference in network performance, it willit \yidely used. We believe that it is a matter of time, tech-

be more and more relevant to execute (migrate) applicq,l-obgy development, and the changing needs of users
tions close to the source of data. Modularity will makey, 4t will trigger a wider use of process migration.

parallelization easier (e.g. various component models,
such as Java Beans and Microsoft DCOM). 8 SUMMARY AND FURTHER RESEARCH

Infrastructure. The NT operating system is becoming a !N this paper we have surveyed process migration mech-
de facto standard, leading to a common environment@nisms. We have classified and presented an overview of

UNIX is also consolidating into fewer versions. All these@ number of systems, and then discussed four case stud-
systems start to address the needs for clustering, ai@f in more detail. Based on this material, we have sum-
large-scale multicomputers. Both environments are suitharized various migration characteristics. Throughout
able for process migration. These operating systems atBe text we tried to assess some misconceptions about
becoming more and more distributed. A lot of missingProcess migration, as well as to discover the true reasons
infrastructure is becoming part of the standard commerfor the lack of its wide acceptance.

cial operating systems or its programming environmentsWe believe there is a future for process migration. Dif-
Convenience vs. requirement (impact of hardware ferent streams of development may well lead to a wider
technology). The following hardware technology trends dePloyment of process migration. Below we include
may impact process migration in the future: high speed©Me Possible paths.

networks, large scale systems, and the popularity obne path is in the direction of LSF, a user-level facility
hardware mobile gadgets. With the increasing differenc¢hat provides much of the functionality of full-fledged

in network speeds (e.g. between a mobile computer angtocess migration systems, but with fewer headaches and

38

complications. The checkpoint/restart model of process tion are not competitive with solutions based on mobili-
migration has already been relatively widely deployed. ty. Users are ready to allow foreign code to be
Packages such as Condor, LSF and Loadleveler areused ~ downloaded to their computer if this code is executed
for scientific and batch applications in production envi- within a safe environment. In addition, there are plenty
ronments. Those environments have high demands on of dedicated servers where foreign code can execute.
their computer resources and can take advantage of load Heterogeneity is supported at the language level. Gener-
sharing in a simple manner. ally speaking, the use of mobile agents in a Web environ-
ment overcomes each of the real impediments to
deploying process migration, and will be a growing ap-
plication of the technology (albeit with new problems,
such as security, that are currently being addressed by the
mobile agents community). Mobile agents bear a lot of
similarity and deploy similar techniques as process mi-
A third path, one closer to the consumers of the vast ma- gration.

jority of today’s computers (Windows systems on Intel-prqcess migration will continue to attract research inde-
based platforms), would put process migration right ifendently of its success in market deployment. It is
the home or office. Sun recently announced their Jini algeemed an interesting, hard, and unsolved problem, and
chitecture for home electronics [Sun Microsystems c s.ch is ideal for research. However, reducing the
1998] and other similar systems are sure to follow. Ongmount of transparency and the OS-level emphasis is
can imagine a process starting on a personal computefommon for each scenario we outlined above. Eventual-

and migrating its flow of control into another device in ly this may result in a less transparent OS support for mi-
the same domain. Such activity would be similar to thegration, reflecting the lack of transparency to the

migratory agents approach currently being developed fog,jication level while still providing certain guarantees
the Web [Rothermel and Hohl, 1998]. about connectivity.

A second path concerns clusters of workstations. Recent
advances in high speed networking (eg. ATM
[Partridge, 1994] and Myrinet [Boden et al., 1995]) have
reduced the cost of migrating processes, allowing even
costly migration implementations to be deployed.

Still another possible argument for process migration, Op ckK NOWLEDGMENTS
another Worm-like facility for using vast processing ca-

pability across a wide range of machines, would be an% i " i hapin. Al
sort of national or international computational effort. olinger, Bill Bryant, Luca Cardelli, Steve Chapin, Alan

Several years ago, Quisquater and Desmedt [1991] SuB_owney, Shai Guday, Mor Harchol-Balter, Dag Johans-

gested that the Chinese government could solve comple%P' and Dan Teodosiu for providing many useful sugges-

problems (such as factoring large numbers) by permit-ions that significantly improved the paper. The

ting people to use the processing power in their televi@nonymous reviewers provided an extensive list of gen-
al, as well as very detailed suggestions that have

sion sets, and offering a prize for a correct answer as aeff thened ¢ tati q ; ¢
incentive to encourage television owners to participate? rengthened our focus, presentation and correctness o

In case of extraordinary need, process migration couIH1e paper. We are indebted to them and to the ACM

provide the underlying mechanism for large-scale Com_Computing Surveys editor, Fred Schneider.

putation across an ever-changing set of computers. = REFERENCES

We would like to thank Amnon Barak, David Black, Don

Finally, the most promising new opportunity is the use ofAccetta M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Te-

mobile agents in the Web. In this setting, both technical ~Vanian, A., and Young, M. (Summer 1986). Mach: A New

and sociological conditions differ from the typical dis- <&M® Foundation for UNIX Development. Proceedings

. . . of the Summer USENIX Conference, pages 93-112.

tributed system where process migration has been de- _

ployed (see the analysis in Section 7.2). Instead of th@9rawal, R. and Ezzat, A. (August 1987). Location Indepen-
| and K . dels. the Web . dent Remote Execution in NESTEEE Transactions on

processor pool and workstation models, the Web envi- gare Engineering, 13(8):905-912.

ronment connects computers as interfaces to the “nel N Barak A and Manber. U (September 1987). On

work-is-computer” model. The requ'.r?ments. for Disseminating Information Reliably without Broadcasting.
transparency are relaxed, and user-specific solutions are proceedings of the 7th International Conference on Dis-

preferred. Performance is dominated by network latency tributed Computing Systems, pages 74-81.

and therefore State transfer iS not as dominant as |t iS monsoy R. and Kyrimisy K. (February 1988) A Process Migra_
a local area network; remote access and remote invoca- tion Implementation for a UNIX Syster®roceedings of

39

the USENIX Winter Conference, pages 365—-372. Baumann, J., Hohl, F., Rothermel, K., and StralRer, M. (Sep-
Amaral, P., Jacqemot, C., Jensen, P., Lea, R., and Mirowski, A. tember 1998). Mole-Concepts of a Mobile Agent System.

(June 1992). Transparent Object Migration in COOL-2. World Wide Web, 1(3), to appear.

Proceedings of the ECOOP. Beguelin, A., Dongarra, J., Geist, A., Manchek, R., Otto, S.,
and Walpole, J. (November 1993). PVM: Experiences,
Current Status and Future DirectioRsoceedings of Su-
percomputing 1993, pages 765—766.

Andersen, B. (June 1992). Load Balancing in the Fine-Grained
Object-Oriented Language Ellieroceedings of the Work-
shop on Dynamic Object Placement and Load Balancing in
Parallel and Distributed Systems Programs, pages 97— Bernstein, P. A. (February 1996). Middleware: A Model for
102. Distributed System ServicgSommunications of the ACM,

Anderson, T. E., Culler, D. E., and Patterson, D. A. (February 39(2):86-98,
1995). A Case for NOW (Networks of Workstations). Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Fiuczinski,
|EEE Micro, 15(1):54-64. M., Becker, D., Chambers, C., and Eggers, S. (December
1995). Extensibility, Safety and Performance in the SPIN
Operating SystenProceedings of the 15th Symposium on
Operating Systems Principles, pages 267—284.

Bharat, K. A. and Cardelli, L. (November 1995). Migratory

Artsy, Y. and Finkel, R. (September 1989). Designing a Pro- Applications.Proceedings of the Eight Annual ACM Sym-
cess Migration Facility: The Charlotte ExperienteEE posium on User Interface Software Technology.

Computer, pages 47-56.]
])] Black, A., Hutchinson, N., Jul, E., Levy, H., and Carter, L.
Baalbergen, E.H. (Spring 1988). Design and Implementation of (January 1987). Distributed and Abstract Types in Emer-

Parallel MakeComputing Systems, 1:135-158. ald. IEEE Transactions on Software Engineering, SE-
Banawan, S. A. and Zahorjan, J. (1989). Load Sharing in Hier- 13(1):65-76.
archical Distributed System$roceedings of the 1989 Black, D., Golub, D., Julin, D., Rashid, R., Draves, R., Dean,

Artsy, Y., Chang, Y., and Finkel, R. (January 1987). Interpro-
cess Communication in CharlottelEEE Software,
pages 22-28.

Winter Smulation Conference, pages 963-970. R., Forin, A., Barrera, J., Tokuda, H., Malan, G., and Bo-
Barak, A. and Litman, A. (August 1985). MOS: a Multicom- ~ hman, D. (April 1992). Microkernel Operating System Ar-
puter Distributed Operating Syste®oftware - Practice chitecture and Mach.Proceedings of the USENIX
and Experience, 15(8):725—-737. Workshop on Micro-Kernels and Other Kernel Architec-

. o tures, pages 11-30.
Barak, A. and Shiloh, A. (September 1985). A Distributed

Load-Balancing Policy for a MulticomputeBoftware- Black, D., Milgjicic, D., Dean, R., Dominijanni, M., Langer-
Practice and Experience, 15(9):901-913. man, A., Sears, S. (July 1998). Extended Memory Manage-

ment (XMM): Lessons Learnedsoftware-Practice and
Barak, A. and Wheeler, R. (February 1989). MOSIX: An Inte- Experience, 28(9):1011-1031.

grated Multiprocessor UNIXProceedings of the Winter) .
1989 USENIX Conference. pages 101-112. Boden, N., Cohen, D., Felderman, R. E., KU'aWIk, A. E., Seitz,

) i C. L., Seizovic, J.N., and Su, W.-K. (February 1995).
Barak, A., Shiloh, A., and Wheeler, R. (Winter 1989). Flood Myrinet: A Gigabit-per-Second Local Area NetwolEEE

Prevention in the MOSIX Load-Balancing SchentEE Micro, 15(1):29-38.
Technical Committee on Operating Systems Newsdletter,) . .
3(1):24-27. Bokhari, S. H. (July 1979). Dual Processor Scheduling with

Dynamic ReassignmentEEE Transactions on Software
Barak, A., Guday, S., and Wheeler, R. G. (1993). The MOSIX Engineering, SE-5(4):326-334.

Distributed Operating SysterSpringer Verlag. Bomberger, A. C., Frantz, W. S., Hardy, A. C., Hardy, N., Lan-

Barak, A., Laden, O., and Braverman, A. (Summer of 1995). dau, C.R., and Shapiro, J. S. (April 1992). The Key-
The NOW MOSIX and its Preemptive Process Migration KOS(R) Nanokernel Architectur&SENIX Workshop on
SchemeBulletin of the IEEE Technical Committee on Op- Micro-Kernelsand Other Kernel Architectures, pages 95 —
erating Systems and Application Environments, 7(2):5-11. 112.

Barbou des Places, F.B., Stephen, N., and Reynolds, F. Bond, A. M. (1993). Adaptive Task Allocation in a Distributed
(February 1996). Linux on the OSF Mach3 Micro-kernel. Workstation Environmen®h.D. Thesis, Victoria Univer-
Proceedings of the First Conference on Freely Redistribut- sity of Wellington.

able Software, pages 33-46. Bonomi, F. and Kumar, A. (June 1988). Adaptive Optimal
Barrera, J. (November 1991) A Fast Mach Network IPC Imple- Load Balancing in a Heterogeneous Multiserver System

mentation Proceedings of the Second USENIX Mach Sym+ with a Central Job Schedulér.oceedings of the 8th Inter-

posium, pages 1-12. national Conference on Distributed Computing Systems,

Baskett, F., Howard, J., and Montague, T. (November 1977). pages 500-508.
Task Communication in DEMO®roceedings of the 6th Borghoff U. M., (1991). Catalogue of Distributed File/Operat-
Symposium on OS Principles, pages 23-31. ing SystemsSpringer Verlag.

40

Bowen, N. S., Nikolaou, C. N., and Ghafoor, A. (August 1988). Chapin, S.J. (March 1996). Distributed and Multiprocessor

Hierarchical Workload Allocation for Distributed Systems. SchedulingACM Computing Surveys, 28(1):233-235.
Zrlglceedlnspf the.1%828 In(t)zrnatlonal Conference on Par- Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and
Processing, 11:102-109. Littlefield, R. J. (1989). The Amber System: Parallel Pro-

Brooks, C., Mazer, M.S., Meeks, S., and Miller, J. (December gramming on a Network of MultiprocessoPsoceedings
1995). Application-Specific Proxy Servers as HTTP of the 12th ACM Symposium on Operating Systems Princi-
Stream Transducer®roceedings of the Fourth Interna- ples, pages 147-158.

tional World Wide Web Conference, pages 539-548. Cheriton, D.R. (March 1988). The V Distributed System.
Bryant, B. (December 1995). Design of AD 2, a Distributed ~ Communications of the ACM, 31(3):314—333.

UNIX Operating SystemOS- Research Insiitte. Cheriton, D. (June 1990). Binary Emulation of UNIX Using the
Bryant, R. M. and Finkel, R. A. (April 1981). A Stable Distrib- V Kernel. Proceedings of the Summer USENIX Confer-
uted Scheduling AlgorithnProceedings of the 2nd Inter- ence, pages 73-86.

national Conference on Distributed Computing Systems, Chess, D., B., G., Harrison, C., Levine, D., Parris, C., and

péges 314_3?3' . Tsudik, G. (October 1995). Itinerant Agents for Mobile
Bugnion, E.,Devine, S.,Govil, K.,Rosenblum, M. (November Computing.| EEE Personal Communications Magazine.

1997) Disco: running commodity operating systems on
scalable multiprocessor&CM Transactions on Computer Ch‘?”’ T C.’ K'. and Abraham, J. A. (July 1.982)' Load Balanc-
Systems 15(4):412-447. ing in Distributed System$EEE Transactions on Software
Engineering, SE-8(4):401-419.
Butterfield, D. A. and Popek, G. J. (1984). Network Tasking in h d Abrah b q
the Locus Distributed UNIX Systenfroceedings of the Chou, T C K', and Abral a}m, ‘],' A. .(St.aptem er 1983). Loa
Redistribution under Failure in Distributed SystetEEE

Summer USENIX Conference, pages 62—-71. -
Transactions on Computers, C-32(9):799-808.
Cabrera, L. (June 1986). The Influence of Workload on Load

Balancing Strategie®roceedings of the Winter USENIX ~ Chow, Y.-C. and Kohler, W. H. (May 1979). Models for Dy-
Conference, pages 446—458. namic Load Balancing in a Heterogeneous Multiple Pro-

. . o cessor SystemlEEE Transactions on Computers, C-
Cardelli, L. (1995). A Language with Distributed Scopmo- 28(5):354-361.

ceedings of the 22nd Annual ACM Symposiumon the Prin-

ciples of Programming Languages, pages 286-297. Cohn, D.L., Delaney, W.P., and Tracey, K. M. (October

1989). Arcade: A Platform for Distributed Operating Sys-

Casas, J., Clark, D. L., Coyuru, R., Otto, S. W.,, Proqty, R M., tems.Proceedings of the USENIX Wor kshop on Experienc-
and Walpole, J. (Spring 1995). MPVM: A Migration es with Disributed and Multiprocessor Systems
Transparent Version of PVM.Computing Systems, (WEBDMS), pages 373-390.

8(2):171-216. _
4 Kuhl b fConcepuon, A.l. and Eleazar, W. M. (1988). A Testbed for
Casavant, T. L. and Kuhl, J. (February 1988a). A Taxonomy o Comparative Studies of Adaptive Load Balancing Algo-

Scheduling in General-Purpose Distributed Computing rithms. Proceedings of the Distributed Smulation Confer-
Systemsl EEE Transactions on Software Engineering, SE- ence, pages 131-135

14(2):141-152. b (o) H
Dannenberg, R. B. (December 1982). Resource Sharing in a
Casavant, T. L. and Kuhl, J. (November 1988b). Effects of Re- Network of Personal Compute@h.D. Thesis, Technical

sponse and Stability on Spheduling in Distribqted Qomput- Report CMU-CS-82-152, Carnegie Mellon University.

ing systemslEEE Transactions on Software Engineering,

SE-14(11):1578-1588. Dannenberg, R. B. and Hibbard, P. G. (July 1985). A Butler
Chapin, J., Rosenblum, M., Devine, S., Lahiri, T., Teodosiu, ?:gr?se;cii(f)?]rs Ij)ﬁsgl;frizg Isnk;g::?gngg gjigﬁ: l\g?;)tgtgf_

D., and Gupta, A. (December 1995). Hive: Fault Contain- 259 ' '

ment for Shared-Memory MultiprocessoPsoceedings of '

the Fifteenth ACM Symposium on Operating Systems Prin- Dearle A. di Bona R., Farrow J., Henskens F., Lindstrom A.,

ciples, pages 12-25. Rosenberg J. and Vaughan F. (Sumer 1994). Grasshopper:

Chapin, S. J. (April 1995). Distributed Scheduling Support in An Orthogonally Persistent Operating Systéomputer

the Presence of Autonomigroceedings of the 4th Hetero- Systems 7(3):289-312.
geneous Computing Workshop, |PPS, pages 22-29. Dediu, H., Chang, C. H., and Azzam, H. (April 1992). Heavy-

Chapin, S. J. (December 1993). Scheduling Support Mecha- \;\f‘e'ght IT:rotcesi_Ml%ratll?gr;qﬁlerégéof thetThlrd \;Vork—
nisms for Autonomous, Heterogeneous, Distributed Sys- Op on FULUre Trends of DISrbu ompuiting Systens,

tems. Ph.D. Thesis, Technical Report CSD-TR-93-087, pages 221-225.
Purdue University. Denning, P. J. (January 1980). Working Sets Past and Present.

Chapin, S.J. and Spafford, E. H. (1994). Support for Imple- |EEE Transactions on Software Engineering, SE-6(1):64—

menting Scheduling Algorithms Using MESSIAHSien- 84.
tific Programming, 3:325-340. Dikshit, P., Tripathi, S. K., and Jalote, P. (May 1989). SA-

41

HAYOG: A Test Bed for Evaluating Dynamic L oad-Shar- tributed Computing Systems.

ing Policies. Software-Practice and Experience, 19:411~ Farmer, W.M., Guttman, J.D., and Swarup, V. (1996). Security
435. for Mobile Agents: Issues and RequiremeRr&ceedings

Douglis, F. and Ousterhout, J. (September 1987). Process Mi- of the National Information Systems Security Conference,
gration in the Sprite Operating SystePnoceedings of the pages 591-597.

_Seventh International Cortference on Distributed Comput- Feitelson, D. G. and Rudolph, L. (August 1990). Mapping and

ing Systems, pages 18-25. Scheduling in a Shared Parallel Environment Using Dis-
Douglis, F. (October 1989). Experience with Process Migration tributed Hierarchical ControProceedings of the 1990 In-

in Sprite.Proceedings of the USENIX Workshop on Expe- ternational Conference on Parallel Processing, 1:1-8.

riences with Distributed and Multiprocessor Systems Ferrari, D. and Zhou., S. (November 1986). A Load Index for

(WEBDMS), pages 59-72. Dynamic Load BalancingProceedings of the 1986 Fall
Douglis, F. (September 1990). Transparent Process Migration Joint Computer Conference, pages 684—690.

in the Sp“t/e Oper;’:ltlng Syster.D. Th?ﬂs’ Techfmcall Finkel, R., Scott, M., Artsy, Y., and Chang, H. (June 1989). Ex-

Repqrt UCB/CD 90/598, CSD (EECS), University of Cal- perience with Charlotte: Simplicity and Function in a Dis-

ifornia, Berkeley. tributed Operating systertfEEE Transactions on Software
Douglis, F. and Ousterhout, J. (August 1991). Transparent Pro- Engineering, SE-15(6):676—685.

cess Migration: Design Alternatives and the Sprite Imple'FIeisch B.D. and Popek, G. J. (December 1989). Mirage: A
r7n 895ntat|0n.80ftware~Pract|ce and Experience, 21(8):757— Coherent Distributed Shared Memory Desigroceedings
) of the 12th ACM Symposium on Operating System Princi-
Dubach, B. (1989). Process-Originated Migration in a Hetero- ples, pages 211-223.
geneous EnvironmerRroceedings of the 17th ACM Annu-

al Computer Science Conference, pages 98-102. Freedman, D. (January 1991). Experience Building a Process

Migration Subsystem for UNIXProceedings of the Winter
Eager, D., Lazowska, E., and Zahorjan, J. (April 1986a). A USENIX Conference, pages 349-355.

Comparison of Receiver-Initiated and Sender-Initiated . _. . S
. : .) Gait, J. (March 1990). Scheduling and Process Migration in
Adaptive Load Sharingerformance Bvaluation, 6(1):53— Partitioned Multiprocessorgournal of Parallel and Dis-

68. tributed Computing, 8(3):274-279.

Eager, D., Lazowska, E., and Zahorjan, J. (May 1986b). Dy'Gao C., Liu,J. W. S., and Railey, M. (August 1984). Load Bal-

namic Load Sharing in Homogeneous Distributed Systems: . . . L
|EEE Transactions on Software Engineering, 12(5):662— ancing Algorithms in Homogeneous Distributed Systems.
' ' Proceedings of the 1984 International Conference on Par-

675. allel Processing, pages 302—-306.
Eager, D., Lazowska, E., and Zahorjan, J. (May 1988). Th%errity G. W., Goscinski, A., Indulska, J., Toomey, W., and

Limited Performance Benefits of Migrating Active Pro- .
.) Zhu, W. (March 1991). Can We Study Design Issues of
cesses for Load Sharingroceedings of the 1988 ACM Distributed Operating Systems in a Generalized \Wrig?

OSIfG(I:\fI) Hﬁlgsg/;n;?sm;ea%rmmbg?gysgﬁﬁ ceedings of the Second USENIX Symposium on Experienc-
mp ' es with Distributed and Multiprocessor Systems,

16(1):63-72. pages 301-320.

Efe, K. (Jurle 1982)..He.=ur|st|c Models of Task ASSlgnmentGoldberg, A. and Jefferson, D. (1987). Transparent Process
Scheduling in Distributed Systemd$EEE Computer, o o
15(6):50-56. Cloning: A Tool for Load Management of Distributed Sys-

tems.Proceedings of the 8th International Conference on

Efe, K. and Groselj, B. (June 1989). Minimizing Control Over- Parallel Processing, pages 728—734.
heads in Adaptive Load Sharirfer.oceedings of the Sth In- . .

. L . Golub, D., Dean, R., Forin, A., and Rashid, R. (June 1990).
ternational Conference on Distributed Computing Systers, UNIX as an Application PrograrRroceedings of the Sum-

pages 307-315. mer USENIX Conference, pages 87-95.

Engler, D. R., Kaashoek, M. F., and O'Toole, J. J. (December, . .
1995). Exokernel: An Operating System Architecture forGOpmath’ P. and Gupta, R. (March 1991). A Hybrid Approach

Application-Level Resource Managemetoceedings of :Eﬁ Laggl\?;lancmg n Dlstrllkz);:ted_ Systerﬁ;}o;e_e;tdl_nbgsteo;
the 15th Symposium on Operating Systems Principles, © . SyMposium on Experiences wi ISrbu
pages 267-284. and Multiprocessor Systems, pages 133-148.

- ; ... _Goscinski, A. (1991). Distributed Operating Systems The Log-
Eskicioglu, M. R. (1990). Design Issues of Process Migration™ .)
clog u () 9 . 'grati ical Design Addison Wesley.

Facilities in Distributed SystemKzEE Technical Commit-
tee on Operating Systems Newsletter, 4(2):3—-13. Gosling, J., Joy, B., and Steele, G. (May 1996). The Java Lan-

Ezzat, A., Bergeron, D., and Pokoski, J. (May 1986). Task Al- guage Specificatiorddison Wesley.
location Heuristics for Distributed Computing Systems. Gray, R. (1995). Agent Tcl: A flexible and secure mobile-agent
Proceedings of the 6th International Conference on Dis- systemPh.D. thesis, Technical Report TR98-327, Depart-

42

ment of Computer Science, Dartmouth College, June 1997. pages 42-45
Grimshaw, A. and Wulf, W., and the Legion Team (January Jul, E., Levy, H., Hutchinson, N., and Black, A. (February

1997). The Legion Vision of aWorldwide Virtual Comput- 1988). Fine-Grained Mobility inthe Emerald System. ACM
er. Communications of the ACM, 40(1):39-45. Transactions on Computer Systei®l):109-133.

Gupta, R. and Gopinath, P. (April 1990). A Hierarchical Ap-Jul, E. (December 1988). Object Mobility in a Distributed Ob-
proach to Load Balancing in Distributed Systerfgo- ject-Oriented SystenilTechnical Report 88-12-06, Ph.D.
ceedings of the Fifth Distributed Memory Computing Thesis, Department of Computer Science, University of
Conference, 11:1000-1005. WashingtonAlso Technical Report no. 98/1, University of

Hac, A. (November 1989a). A Distributed Algorithm for Per- CoPenhagen DIKU.
formance Improvement Through File Replication, File Mi- Jul, E. (Winter 1989). Migration of Light-weight Processes in

gration, and Process MigratiohEEE Transactions on Emerald.|EEE Technical Committee on Operating Sys-
Software Engineering, 15(11):1459-1470. tems Newsletter, 3(1)(1):20-23.

Hac, A. (February 1989b). Load Balancing in Distributed SysKaashoek, M. F., van Renesse, R., van Staveren, H., and
tems: A Summary.Performance Evaluation Review, Tanenbaum, A. S. (February 1993). FLIP: An Internetwork
16:17-25. Protocol for Supporting Distributed SysterAEM Trans-

Haertig, H., Kowalski, O. C., and Kuehnhauser, W. E. (1993). actionson Computer Systems, 11(1).

The BirliX Security Architecture. Kemper, A., Kossmann, D. (July 1995) Adaptable Pointer

Hagmann, R. (May 1986). Process Server: Sharing Processing Swizzling Strategies in Object Bases: Design, Realization,
Power in a Workstation Environmefroceedings of the and Quantitative Analysis. VLDB Journal 4(3): 519-
6th International Conference on Distributed Computing 566(1995).

Systems, pages 260-267. Khalidi, Y. A., Bernabeu, J. M., Matena, V., Shiriff, K., and

Hamilton, G. and Kougiouris, P. (June 1993). The Spring Nu- Thadani, M. (January 1996). Solaris MC: A Multi-Com-
cleus: A Microkernel for Object®roceedings of the 1993 puter OSProceedings of the USENIX 1996 Annual Tech-
Summer USENIX Conference, pages 147—-160. nical Conference, pages 191-204.

Han, Y. and Finkel, R. (August 1988). An Optimal Scheme forKleinrock, L. (1976). Queueing Systems vol. 2: Computer Ap-
Disseminating InformatiorProceedings of the 1988 Inter- plications.Willey, New York.
national Conference on Parallel Processing, 11:198-203. Knabe, F. C. (December 1995). Language Support for Mobile

Harchol-Balter, M. and Downey, A. (August 1997). Exploiting ~ Agents.Technical Report CMU-CS-95-223, Ph.D. Thesis,
Process Lifetime Distributions for Dynamic Load Balanc- ~ School of Computer Science, Carnegie Mellon University,
ing. ACM Transactions on Computer Systems, 15(3):253— Also Technical Report ECRC-95-36, European Computer
285. Previously appeared in tReoceedings of ACM Sig- Industry Research Centre.
metrics 1996 Conference on Measurement and Modelingof kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S., and Cybenko.,
Computer Systems, pages 13-24, May 1996. G. (July/August 1997). Agent Tcl: Targeting the needs of

Hildebrand, D. (April 1992). An Architectural Overview of mobile computerd EEE Internet Computing, 1(4):58-67.
QNX. Proceedings of the USENIX Workshop on Micro- Kremien, O. and Kramer, J. (November 1992). Methodical

Kernels and Other Kernel Architectures, pages 113-126. Analysis of Adaptive Load Sharing Algorithm$EEE

Hofmann, M.O., McGovern, A., and Whitebread, K. (May = Transactions on Parallel and Distributed Systems,
1998). Mobile Agents on the Digital Battlefielfroceed- 3(6):747-760.
ings of the Autonomous Agents ‘Béges 219-225. Krueger, P. and Livny, M. (September 1987). The Diverse Ob-

Hohl, F. (July 1998). A Model of Attacks of Malicious Hosts jectives of Distributed Scheduling Polici€soceedings of
Against Mobile Agents. Proceedings of the 4th Workshop the 7th International Conference on Distributed Comput-
on Mobile Objects System&\RIA Technical Report, ing Systems, pages 242—-249.
pages 105-120. Krueger, P. and Livny, M. (June 1988). A Comparison of Pre-

Hwang, K., Croft, W., Wah, B., Briggs, F., Simons, W., and emptive and Non-Preemptive Load BalanciRgoceed-
Coates, C. (April 1982). A UNIX-Based Local Computer ings of the 8th International Conference on Distributed
Network with Load Balancing. IEEE Computerl5:55-66. Computing Systems, pages 123-130.

Jacgmot, C. (January 1996). Load Management in Distribute{rueger, P. and Chawla, R. (June 1991). The Stealth Distribut-
Computing Systems: Towards Adaptive Stratedglesh- ed SchedulerProceedings of the 11th International Con-
nical Report, Ph. D. Thesis, Departement d’Ingenierie In- ference on Distributed Computing Systems, pages 336—
formatique, Universite catholique de Louvain 343.

Johansen, D., van Renesse, R., and Schneider, F. (1995). Oper- Kunz, T. (July 1991). The Influence of Different Workload De-
ating System Support for Mobile Agents. Proceedings of scriptions on a Heuristic Load Balancing Schehi#=E

the 5th Workshop on Hot Topics in Operating Systems, Transactions on Software Engineering, 17(7):725-730.

43

Lampson, B. (1983). Hints for Computer System Design. Pro- Lu, C. (October 1988). Process Migration in Distributed Sys-

ceedings of the Ninth Symposium on Operating System tems.Ph.D. Thesis, Technical Report, University of lllinois
Principles, pages 33-48. at Urbana-Champaign.

Lange, D. and Oshima, M. (September 1998). Programming Lux, W., Haertig, H., and Kuehnhauser, W. E. (1993). Migrat-
Mobile Agentsin Java™ - With the Java Aglet API. Add- ing Multi-Threaded, Shared ObjecBr.oceedings of 26th
ison Wesley Longman. Hawaii International Conference on Systems Sciences,

11:642—-649.

Lazowska, E. D., Levy, H. M., Almes, G. T., Fisher, M. J,
Fowler, R. J., and Vestal, S. C. (December 1981). The Ar- Lux, W. (April 1995). Adaptable Object Migration: Concept

chitecture of the Eden System. Proceedings of the 8th ACM and ImplementatiorOperating Systems Review, 29(2):54—

Symposium on Operating Systems Principles, pages 148- 69.

159. Ma, P. and Lee, E. (January 1982). A Task Allocation Model
Lea, R., Jacquemot, C., and Pillvesse, E. (September 1993). for Distributed Computing System&EE Transactionson

COOL: System Support for Distributed Programming. Computers, C-31(1):41-47.

Communications of the ACM, 36(9):37-47. Maguire, G. and Smith, J. (March 1988). Process Migrations:
Leland, W. and Ott, T. (May 1986). Load Balancing Heuristics Effects on Scientific ComputatioACM SIGPLAN Notic-

and Process BehavidProceedings of the SGMETRICS es, 23(2):102-106.

Conference, pages 54-69. Malan, G., Rashid, R., Golub, D., and Baron, R. (November
Liedtke, J. (December 1993). Improving IPC by Kernel De- 1991). DOS as a Mach 3.0 Applicatidroceedings of the

sign. Proceedings of the Fourteenth Symposium on Oper- Second USENIX Mach Symposium, pages 27—40.

ating Systems Principles, pages 175-188. Mandelberg, K. and Sunderam, V. (February 1988). Process

Litzkow, M. (June 1987). Remote UNIX - Turning Idle Work- Migration in UNIX Networks.Proceedings of USENIX

stations into Cycle Server®roceedings of the Summer Winter Conference, pages 357—363.

USENIX Conference, pages 381-384. Mehra, P. and Wah, B. W. (September 1992). Physical Level
Litzkow, M., Livny, M., and Mutka, M. (June 1988). Condor - Synthetic Workload Generation for Load-Balancing Ex-

A Hunter of Idle Workstation$?roceedings of the 8th In- periments.Proceedings of the First Symposium on High

ternational Conference on Distributed Computing Systems, Performance Distributed Computing, pages 208-217.

pages 104-111. Miller, B. and Presotto, D. (1981). XOS: an Operating System

Litzkow, M. and Solomon, M. (January 1992). Supporting for the XTREE ArchitectureOperating Systems Review,
Checkpointing and Process Migration outside the UNIX 2(15):21-32.
Kemnel. Proceedings of the USENIX Winter Conference, \sjjer, B. and Presotto, D., Powell, M (April 1987). DEMOS/
pages 283-290. MP: The Development of a Distributed Operating System.
Livny, M. and Melman, M. (1982). Load Balancing in Homo- Software-Practice and Experience, 17(4):277-290.
geneous Broadcast Distributed Systefsceedings of \ysiicic, D.S., Breugst, B., Busse, ., Campbell, J., Covaci, S.,
the ACM Computer Network Performance Symposium, Friedman, B., Kosaka, K., Lange, D., Ono, K., Oshima, M.,
pages 47-55. Tham, C., Virdhagriswaran, S., and White, J., (September
Lo, V. (May 1984). Heuristic Algorithms for Task Assign- 1998b). MASIF, The OMG Mobile Agent System Interop-

ments in Distributed Systenfaoceedings of the 4th Inter- erability Facility. Proceedings of the Second International
national Conference on Distributed Computing Systems, Workshop on Mobhile Agents, pages 50-67. Also to appear
pages 30-39. in the Soringer Journal on Personal Technologies.

Lo, V. (Winter 1989). Process Migration for Communication Milojicic, D.S., Chauhan, D., and laForge, W. (April 1998a).
PerformancelEEE Technical Committee on Operating Mobile Objects and Agents (MOA), Design, Implementa-
Systems Newdletter, 3(1):28-30. tion and Lessons Learnd@.oceedings of the 4th USENIX

Conference on Object-Oriented Technologies (COOTS),
pages 179-194. Also to appear EE Proceedings - Dis-
tributed Systems Engineering.

Lo, V. (August 1988). Algorithms for Task Assignment and
Contraction in Distributed Computing SysterRsoceed-
ings of the 1988 | nter national Conference on Parallel Pro-
cessing, 11:239-244. Milojicic, D., Douglis, F., Wheeler, R. (1999¥obility: Pro-

cesses, Computers, and Agents. Addison-Wesley Longman

Louboutin, S. (September 1991). An Implementation of a Pro-
and ACM Press. To appear.

cess Migration Mechanism using Minifroceedings of
1991 European Autumn Conference, Budapest, Hungary, Milojicic, D., Giese, P., and Zint, W. (September 1993a). Ex-

pages 213-224. periences with Load Distribution on Top of the Mach Mi-
Lu, C., Chen, A., and Liu, J. (March 1987). Protocols for Reli- crokernel. Proceedings of the USENIX Symposium on
able Process MigratiohNFOCOM 1987, The 6th Annual Experiences with Distributed and Multiprocessor Systems.
Joint Conference of IEEE Computer and Communication Milojicic, D., Zint, W., Dangel, A., and Giese, P. (April
Societies. 1993b). Task Migration on the top of the Mach Microker-

nel. Proceedings of the third USENIX Mach Symposium, Ousterhout, J. (1994). TcL and the Tk ToolRitidi son-Wesley

pages 273-290.fc Longman.

Milojicic, D. (1993c). Load Distribution, Implementation for Paindaveine, Y. and Milojicic, D. (January 1996). Process v.
the Mach MicrokernelPh.D. Thesis, Technical Report, Task Migration.Proceedings of the 29th Annual Hawaii
University of Kaiserslautern. Als&/ieweg, Wiesbaden, International Conference on System Sciences, pages 636—
1994. 645.

Milojicic, D., Langerman, A., Black, D., Sears, S., Dominijan- Partridge, C. (1994). Gigabit Networkingddison Wesley.

ni, M., and I_Dean, D. (Aprll-_June 199_7)._Concurrency, 4peine, H. and Stolpmann, T. (April 1997). The Architecture of

Case Study in Remote Tasking and Distributed IBEE the Ara Platform for Mobile Agent$roceedings of the

Concurrency 5(2):39-49. First International Workshop on Mobile Agents (MA'97)
Mirchandaney, R., Towsley, D., and Stankovic, J. (November LNCS 1219, Springer Verlagpages 50-61.

1989). Analys_ls of the Effects of Delays on Load Sharlng'Petri, S. and Langendorfer, H. (October 1995). Load Balancing

|EEE Transactions on Computers, 38(11):1513-1525. and Fault Tolerance in Workstation Clusters Migrating
Mirchandaney, R., Towsley, D., and Stankovic, J. (September Groups of Communicating Process@perating Systems

1990). Adaptive Load Sharing in Heterogeneous Distribut- Review, 29(4):25-36.

_‘Ed SyStemzjgfrgiIJf Parallel and Distributed Complit- Phelan, J. M. and Arendt, J. W. (April 1993). An OS/2 Person-
Ing, pages —o40. ality on Mach.Proceedings of the third USENIX Mach
Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Re- Symposium, pages 191-202.

nesse, R., and van Staveren, H. (May 1990). Amoeba — Ay,iin0 | (1993). Contribution & I'étude et Ia réalisation d‘un

Diftrib;;eg _22?;2“”9 System for the 1990EEE Com- systeme d‘exploitation & image unique pour multicalcula-
puter, 23(5): : teur. Ph.D. Thesis, Technical Report 308, Université de
Mutka, M. and Livny, M. (September 1987). Scheduling Re- Franche-comté.

mote Processing Capacity in a Workstation Processor Banﬂsike R., Presotto, D., Thompson, K., and Trickey, H. (July

Computing SystemProceedings of the 7th International 1990). Plan 9 from Bell Lab®roceedings of the UKUUG
Conference on Distributed Computing Systems, pages 2—7. Summer 1990 Conference, pages 1-9

NeIson\,/VM. Nf" agd _Ol;stecrgeodgt, J. If(.h(S;Jmmer ::;SbS?Opy'Platform Computing (February 1996). LSF User’'s and Admin-
on-Write for SpritePro Ings of the Summer istrator’'s Guides, Version 2.2, Platform Computing Corpo-
ENIX Conference, pages 187-201. ration

Nelson, M. N., V_Velc_h, B. B., a_nd Ousterhou_t, J. K. (Februarypopek, G., Walker, B. J., Chow, J., Edwards, D., Kline, C., Ru-
1988). Caching in the Sprite Network File SystéiGM disin, G., and Thiel, G. (December 1981). Locus: a Net-

Transaction on Computer Systens, 6(1):134-54. work-Transparent, High Reliability Distributed System.
Nelson, R. and Squillante, M. (June 1995). Stochastic Analysis Proceedings of the 8th Symposium on Operating System
of Affinity Scheduling and Load Balancing in Parallel Pro- Principles, pages 169-177.

cessing System#BM Research Report RC 20145. Popek, G. and Walker, B. (1985). The Locus Distributed Sys-
Ni, L. M. and Hwang, K. (May 1985). Optimal Load Balancing tem ArchitectureMIT Press.

in a Multiple P_rocessor System with l\/_lany_ Job Classespowe”, M. and Miller, B. (October 1983). Process Migration in
lEEE_ Transactions on Software Engineering, SE- DEMOS/MP.Proceedings of the 9th Symposium on Oper-
11(5):491-496. ating Systems Principles, pages 110-119.

Nichols, D. (November 1987). Using Idle Workstations in ap, c. Autrey, T., Black, A., Consel, C., Cowan, C
Shared Computing EnvironmerRroceedings of the 11th e B - L e
Symposium on OS Principles, pages 5-12.

, Inouye, J.,

Kethana, L., Walpole, J., and Zhang, K. (December 1995).

Optimistic Incremental SpecializatioRroceedings of the

Nichols, D. (February 1990). Multiprocessing in a Network of ~ 15th Symposium on Operating Systems Principles,
Workstations.Ph.D. Thesis, Technical Report CMU-CS pages 314-324.

90-107, Carnegie Mellon University. Quisquater, J.-J. and Desmedt, Y.G. (November 1991). Chi-
Nuttal, M. (October 1994). Survey of Systems Providing Pro- nese Lotto as an Exhaustive Code-Breaking Machine.

cess or Object MigrationOperating System Review, IEEE Computer, 24(11):14-22.

28(4):64-79. Ranganathan, M., Acharya, A., Sharma, S.D., and Saltz, J.
OMG (March 1996). Common Object Request Broker Archi- (January 1997). Network-aware Mobile Prograrfso-

tecture and Specificatio®bject Management Group Doc- ceedings of the USENIX 1997 Annual Technical Confer-

ument Number 96.03.04. ence, pages 91-103.

Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M., andRashid, R. and Robertson, G. (December 1981). Accent: a
Welch, B. (February 1988). The Sprite Network Operating ~ Communication Oriented Network Operating System Ker-
System|EEE Computer, pages 23-26. nel. Proceedings of the 8th Symposium on Operating Sys-

45

tem Principles, pages 64-75. pages 271-290MIT Press.
Rashid, R. (November 1986). From RIG to Accent to Mach:Shoch, J. and Hupp, J. (March 1982). The Worm Programs -

The Evolution of a Network Operating SysteRnoceed- Early Experience with Distributed Computir@ommuni-

ings of the ACM/IEEE Computer Society Fall Joint Com- cations of the ACM, 25(3):172-180.

puter Conference, pages 1128_11377' Shub, C. (February 1990). Native Code Process-Originated Mi-
Rosenbe_rry, W., Kenney, D., and_ Fisher, G. (198R)der- gration in a Heterogeneous EnvironmePitoceedings of

standing DCE. O'Reilly & Associates, Inc. the 18th ACM Annual Computer Science Conference,

Rothermel, K., and Hohl, F. (September 1998) Mobile Agents. Pages 266-270.
Proceedings of the Second International Workshop, Singhal, M. and Shivaratri, N. G. (1994). Advanced Concepts

MA'98, Springer Verlag in Operating System#lcGraw Hill.

Roush, E.T. (August 1995) The Freeze Free Algorithmforpro- - ginha, P., Maekawa, M., Shimuzu, K., Jia, X., Ashihara, Ut-
cessMigration. Ph.D. Thesis, Technical Repddiversity sunomiya, N., Park, and Nakano, H. (August 1991). The
of illinois at Urbana-Champaign. Galaxy Distributed Operating SysterEEE Computer,

Roush, E.T. and Campbell, R. (May 1996). Fast Dynamic Pro- 24(8):34-40.
cess Migration. Proceedings of the International Confer- gyqrdos, P. (August 1995). Parallel Simulation of Subsonic
ence on Distributed Computing Systepages 637-645 Fluid Dynamics on a Cluster of WorkstatioRsoceedings

Rowe, L. and Birman, K. (March 1982). A Local Network of the Fourth IEEE International Symposium on High Per-
Based on the UNIX Operating System. IEEE Transactions formance Distributed Computing.
on Software EngineerinGE-8(2):137-146. Smith, J. M. (July 1988). A Survey of Process Migration Mech-

Rozier, M. (April 1992). Chorus (Overview of the Chorus Dis- anisms Operating Systems Review, 22(3):28-40.
tributed Operating SystemUSENIX Workshop on Micro- Smith, J. M. and loannidis, J. (1989). Implementing Remote

Kernelsand Other Kernl Architectures, pages 39-70. fork() with Checkpoint-RestartEEE Technical Commit-
Schill, A. and Mock, M. (December 1993). DC++: Distributed tee on Operating Systems Newsletter, 3(1):15-19.

t?fg;g%;';g;id;yfégg:uq‘zgylolnzg%gf OSF DOiE. Smith, P. and Hutchinson, N. (May 1998). Heterogeneous Pro-
9 9 ' ' cess Migration: The Tui SysterBoftware—Practice and
Schrimpf, H. (April 1995). Migration of Processes, Files and Experience28(6):611-639.

Virtual Devices in the MDX Operating Syste@peratin Lo
S)I/stu Re\\l/llew I29(2)'7O—81 perating Syste@perating Soh, J. and Thomas, V. (1987). Process Migration for Load
' ' ' Balancing in Distributed System$ENCON, pages 888—
Shamir, E. and Upfal, E. (October 1987). A Probabilistic Ap- 892,

proach to the Load Sharing Problem in Distributed Sys- |)
tems. Journal of Paralldl and Distributed Computing, Squillante, _M. S ar_1d Nelson, R. D. (May _1991). Analysis of
4(5):521-530. Task Migration in Shared-Memory Multiprocessor Sched-

) o uling. Proceedings of the ACM SSGMETRICS Conference,
Shapiro, M. (May 1986). Structure and Encapsulation in Dis- 19(1):143-155.

tributed Systems: The PROXY Principleroceedings of
the 6th International Conference on Distributed Comput-
ing Systems, pages 198-204.

Shapiro, M., Dickman, P., and Plainfossé, D. (August 1992).)
Robust, Distributed References and Acyclic Garbage ColSteensgaard, B. and Jul, E. (December 1995). Object and Na-

Stankovic, J. A. (1984). Simulation of the three Adaptive De-
centralized Controlled Job Scheduling algorithi@em-
puter Networks, pages 199-217.

lection. Proceedings of the Symposium on Principles of tive Code Thread MobilityProceedings of the 15th Sym-
Distributed Computing, pages 135-146. posium on Operating Systems Principles, pages 68—78.

Shapiro, M., Gautron, P., and Mosseri, L. (July 1989). PersisSteketee, C., Zhu, W., and Moseley, P. (June 1994). Implemen-
tence and Migration for C++ Objec®roceedings of the tation of Process Migration in Amoelfroceedings of the
ECOOP 1989-European Conference on Object-Oriented ~ 14th International Conference on Distributed Computer
Programming Systems, pages 194—-203.

Shivaratri, N. G. and Krueger, P. (May-June 1990). Two Adap- Stone, H. (May 1978). Critical Load Factors in Two-Processor
tive Location Policies for Global Scheduling Algorithms. Distributed System$EEE Transactions on Software Engi-
Proceedings of the 10th International Conference on Dis- neering, SE-4(3):254-258.
tributed Computing Systensages 502-509. Stone, H. S. and Bokhari, S. H. (July 1978). Control of Distrib-

Shivaratri, N., Krueger, P., and Singhal, M. (December 1992). uted Processel=EE Computer, 11(7):97-106.

Load Distributing for Locally Distributed System&EE Stumm, M. (1988). The Design and Implementation of a De-

Compuiter, pages 33-44. centralized Scheduling Facility for a Workstation Cluster.
Shoham, Y. (1997). An Overview of Agent-oriented Program- Proceedings of the Second Conference on Computer \Work-
ming. in J.M. Bradshaw, editorSoftware Agents, stations, pages 12—-22.

46

Sun Microsystems (July 1998). Jini™ Software Simplifies Net- Vaswani, R. and Zahorjan, J. (October 1991). The implications

work Computing. http://www.sun.com/980713/jini/fea- of Cache Affinity on Processor Scheduling for Multipro-

turejhtml grammed Shared Memory Multiprocesséhceedings of
Svensson, A. (May-June 1990). History, an Intelligent Load the Thirteenth Symposium on Operating Systems Princi-

Sharing Filter. Proceedings of the 10th International Con- ples, pages 26-40.

ference on Distributed Computing Systems, pages 546— Venkatesh, R. and Dattatreya, G. R. (August 1990). Adaptive

553. Optimal Load Balancing of Loosely Coupled Processors

Swanson, M., Stoller, L., Critchlow, T., and Kessler, R. (April with Arbitrary Service Time Distribution®roceedings of
1993). The Design of the Schizophrenic Workstation Sys- the 1990 International Conference on Parallel Processing,
tem. Proceedings of the third USENIX Mach Symposium, 1:22-25.
pages 291-306. Vigna, G. (1998).Mobile Agents Security, LNCS, Springer

Tanenbaum, A.S., Renesse, R. van, Staveren, H. van., Sharp, Verlag, to appear.

G.J., Mullender, S.J., Jansen, A.J., and van Rossum, Gitek, I., Serrano, M., and Thanos, D. (April 1997). Security
(December 1990). Experiences with the Amoeba Distribut- and Communication in Mobile Object SystemsMabile

ed Operating SystemCommunications of the ACM, Object Systems: Towards the Programmable Internet,
33(12):46-63. LNCS 1222 Soringer Verlag, pages 177-200.

Tanenbaum, A. (1992). Modern Operating Systefentice Walker, B., Popek, G., English, R., Kline, C., and Thiel, G.
Hall, Englewood Cliffs, New Jersey. (October 1983). The LOCUS Distributed Operating Sys-

Tardo, J. and Valente, L. (February 1996). Mobile Agent Secu- tem.Proceedings of the Sth Symposium on Operating Sys-
rity and Telescript. Proceedings of COMPCON’96 tems Principles, 17(5):49-70.
pages 52-63. Walker, B. J. and Mathews, R. M. (Winter 1989). Process Mi-

Teodosiu, D., (1999) End-to-End Fault Containment in Scal- 9ration in AIX’s Transparent Computing Facility (TCF).
able Shared-Memory MultiprocessoP$i.D. Thesis, Tech- IEEE Technical Committee on Operating Systems Newslet-
nical Report, Stanford University. ter, 3(1)(1):5-7.

Theimer, M. H. and Hayes, B. (June 1991). Heterogeneou¥vang, Y.-T. and Morris, R. J. T. (March 1985). Load Sharing
Process Migration by RecompilatioRroceedings of the in Distributed Systemd$EEE Transactions on Compuiers,
11th International Conference on Distributed Computer C-34(3):204-217.

Systems, pages 18-25. Wang, C.-J., Krueger, P., and Liu, M. T. (May 1993). Intelli-

Theimer, M. and Lantz, K. (November 1988). Finding Idle Ma- gent Job Selection for Distributed Schedulifigoceedings
chines in a Workstation-Based Distributed SystHEEE of the 13th International Conference on Distributed Com-
Transactions on Software Engineering, SE-15(11):1444— puting Systems, pages 288-295.

1458. Welch, B. B. and Ousterhout, J. K. (June 1988). Pseudo-Devic-

Theimer, M., Lantz, K., and Cheriton, D. (December 1985). ~ es: User-Level Extensions to the Sprite File Systro:
Preemptable Remote Execution Facilities for the V Sys- ceedings of the USENIX Summer Conference, pages 7—49.

tem.Proceedings of the 10th ACM Symposiumon OSPrin- \yelch, B. (April 1990). Naming, State Management and User-

ciples, pages 2-12. Level Extensions in the Sprite Distributed File System.
Tracey, K. M. (April 1991). Processor Sharing for Cooperative ~ Ph.D. Thesis, Technical Report UCB/CSD 90/567, CSD

Multi-task Applications.Ph.D. Thesis, Technical Report, (EECS), University of California, Berkeley.

Department of Electrical Engineering, Notre Dame, Indi-\yhjte, J. (1997). Telescript Technology: An Introduction to the

ana. LanguageWhite Paper, General Magic, Inc., Sunnyvale,

Tritscher, S. and Bemmerl, T. (February 1992). Seitenorienti- CA. Appeared in Bradshaw, J., Software Age#taAl/
erte Prozessmigration als Basis fuer Dynamischen Lastaus- MIT Press.

gleich.GI/ITG Pars Mitteilungen, no 9, pages 58—62. White, J.E., Helgeson, S., and Steedman, D.A. (February
Tschudin, C. (April 1997). The Messenger Environment MO— 1997). System and Method for Distributed Computation
a condensed description. Mobile Object Systems. To- Based upon the Movement, Execution, and Interaction of
wards the Programmable Internet, LNCS 1222 Springer Processes in a Networldnited States Patent no. 5603031.
Verlag, pages 149-156. Wiecek, C. A. (April 1992). A Model and Prototype of VMS

van Dijk, G. J. W. and van Gils, M. J. (March 1992). Efficient Using the Mach 3.0 KerneRroceedings of the USENIX
process migration in the EMPS multiprocessor system. Workshop on Micro-Kernels and Other Kernel Architec-

Proceedings 6th International Parallel Processing Sympo- tures, pages 187-204.

sium, pages 58-66. Wong, R., Walsh, T., and Paciorek, N. (April 1997). Concor-
van Renesse, R., Birman, K. P., and Maffeis, S. (April 1996). dia: An Infrastructure for Collaborating Mobile Agents.

Horus: A flexible Group Communication SysteGommu- Proceedings of the First Inter national Workshop on Mobile

nication of the ACM, 39(4):76-85. Agents, LNCS 1219 Springer Verlag, pages 86-97.

47

Xu, J. and Hwang, K. (November 1990). Heuristic Methods for
Dynamic L oad Balancing in a M essage-Passing Supercom-
puter. Proceedings of the Supercomputing’@@ges 888—
897.

Zajcew, R., Roy, P., Black, D., Peak, C., Guedes, P., Kemp, B.,
LoVerso, J., Leibensperger, M., Barnett, M., Rabii, F., and
Netterwala, D. (January 1993). An OSF/1 UNIX for Mas-
sively Parallel Multicomputer$roceedings of the Winter
USENIX Conference, pages 449-468.

Zayas, E. (November 1987a). Attacking the Process Migration
Bottleneck.Proceedings of the 11th Symposium on Oper-
ating Systems Principles, pages 13-24.

Zayas, E. (April 1987b). The Use of Copy-on-Reference in a
Process Migration SysterRh.D. Thesis, Technical Report
CMU-CS-87-121, Carnegie Mellon University.

Zhou, D. (1987) A Trace-Driven Simulation Study of Dynamic
Load Balancing.Ph.D. Thesis, Technical Report UCB/
CSD 87/305, CSD (EECS), University of California, Ber-
keley.

Zhou, S. and Ferrari, D. (September 1987). An Experimental
Study of Load Balancing Performan&eoceedings of the
7th 1EEE International Conference on Distributed Com
puting Systems, pages 490-497.

Zhou, S. and Ferrari, D. (September 1988). A Trace-Driven
Simulation Study of Dynamic Load BalancingEEE
Transactions on Software Engineering, 14(9):1327-1341.

Zhou, S., Zheng, X., Wang, J., and Delisle, P. (December
1994). Utopia: A Load Sharing Facility for Large, Hetero-
geneous Distributed Computer Syste8uftware-Practice
and Experience.

Zhu, W. (March 1992). The Development of an Environment to
Study Load Balancing Algorithms, Process migration and
load data collectiorPh.D. Thesis, Technical Report, Uni-
versity of New South Wales.

Zhu, W., Steketee, C., and Muilwijk, B. (1995). Load Balanc-
ing and Workstation Autonomy on Amoebgustralian
Computer Science Communications (ACSG’95)
17(1):588-597.

48

	1 INTRODUCTION
	Organization of the Paper
	2 BACKGROUND
	Figure 1: High Level View of Process Migration. Process migration consists of extracting the stat...
	2.1 Terminology
	Figure 2: Taxonomy of Mobility.

	2.2 Target Architectures
	2.3 Goals
	2.4 Application Taxonomy
	2.5 Migration Algorithm
	1. A migration request is issued to a remote node. After negotiation, migration has been accepted.
	2. A process is detached from its source node by suspending its execution, declaring it to be in ...
	3. Communication is redirected by collecting messages directed to the migrated process, and by de...
	4. The process state is extracted, including memory contents; processor state (register contents)...
	5. A destination process instance is created into which the transferred state will be imported. A...
	6. State is transferred and imported into a new instance on the remote node. Not all of the state...
	7. Some means of forwarding references to the migrated process must be maintained. This is requir...
	Figure 3: Migration Algorithm. Many details have been simplified, such as user v. kernel migratio...

	8. The new instance is resumed when sufficient state has been transferred and imported. With this...

	2.6 System Requirements for Migration
	2.7 Load Information Management
	Figure 4: Load Information Management Module collects load information on local node and dissemin...

	2.8 Distributed Scheduling
	2.9 Alternatives to Migration

	3 CHARACTERISTICS
	3.1 Complexity and Operating System Support
	Figure 5: Migration levels differ in implementation complexity, performance, transparency, and re...

	3.2 Performance
	3.3 Transparency
	3.4 Fault Resilience
	3.5 Scalability
	3.6 Heterogeneity
	3.7 Summary

	4 EXAMPLES
	4.1 Early Work
	4.2 Transparent Migration in UNIX-like Systems
	4.3 OS with Message-Passing Interface
	4.4 Microkernels
	4.5 User-space Migrations
	4.6 Application-specific Migration
	4.7 Mobile Objects
	4.8 Mobile Agents

	5 CASE STUDIES
	5.1 MOSIX
	Figure 6: The MOSIX Architecture.

	read (1K)
	0.34
	1.36
	4.00
	write (1K)
	0.68
	1.65
	2.43
	open/close
	2.06
	4.31
	2.09
	fork (256Kb)
	7.8
	21.60
	2.77
	exec (256 KB)
	25.30
	51.50
	2.04
	Table 1: MOSIX System Call Performance
	5.2 Sprite
	1. The process is signaled, to cause it to trap into the kernel.
	2. If the process is migrating away from its home machine, the source contacts the target to conf...
	3. A “pre-migration” procedure is invoked for each kernel module. This returns the size of the st...
	4. The source kernel allocates a buffer and calls encapsulation routines for each module. These t...
	5. The source kernel sends the buffer via RPC, and on the receiving machine each module de-encaps...
	6. Each kernel module can execute a “post-migration” procedure to clean up state, such as freeing...
	7. The source sends an RPC to tell the target to resume the process, and frees the buffer.
	1. The time to migrate a process was a function of the overhead of host selection (36ms to select...
	2. A process that had migrated away from its home machine incurred run-time overhead from forward...
	3. Since the purpose of migration in Sprite was to enable parallel use of many workstations, appl...

	5.3 Mach
	Figure 7: Task Migration Design. Only task abstraction is migrated, while process abstraction rem...
	1. Suspend the task and abort the threads in order to clean the kernel state.
	2. Interpose task/thread kernel ports on the source node.
	3. Transfer the address space, capabilities, threads and the other task/thread state.
	4. Interpose back task/thread kernel ports on the destination node.
	5. Resume the task on the destination node.

	Processing
	Dhrystone
	1.00
	3.49
	0.35+0
	IPC
	find
	0.03
	512.3
	2.75+0
	VM
	WPI Jigsaw
	0.09
	2.46
	28.5+38.2
	Table 2: Processing, IPC and VM intensive applications
	Figure 8: Task migration performance as a function of VM size: initial costs are independent of t...
	5.4 LSF
	6 COMPARISON

	Migration/
	Characteristics
	Early Work
	XOS, Worm,
	DEMOS, Butler
	ad-hoc solutions, HW dependent
	OS
	low (lack�of�infrastructure)
	poor
	limited
	Transp. Migration in UNIX-like OS
	Locus, MOSIX,
	Sprite
	major changes to the underlying env.
	OS
	high (Supporting�SSI)
	fair
	(OS depend.)
	full
	Message-Passing OS
	Charlotte, Accent,
	V Kernel
	complex�OS�support easy PM implement.
	OS
	low (Message�Passing)
	fair
	(OS depend.)
	full
	Microkernels
	Amoeba, Arcade, BirliX, Chorus, Mach, RHODOS
	no UNIX semantics
	complex OS support
	OS
	low (DMM�and�DIPC)
	good
	(OS depend.)
	full
	User Space
	Condor, Alonso&Kyrimis, Mandelberg, LSF
	less�transparency
	application
	(relinked)
	low (forwarding�system�calls)
	very good
	(appl. dep.)
	limited
	Application
	Freedman, Skordos, Bharat&Cardelli
	min. transparency,
	more�appl. knowledge
	application
	(recompiled)
	lowest (app�migration�awareness)
	very good
	minimal
	Mobile objects
	Emerald, SOS,
	COOL
	object�oriented
	programming environment
	moderate (communication)
	good
	full
	Mobile Agents
	Agent-TCL, Aglets
	TACOMA, Telescript
	heterogeneity
	programming environment
	lowest (security�&�safety)
	good
	fair
	Table 3: Summary of the different migration implementations.

	MOSIX
	yes
	yes
	yes
	no
	yes
	no
	Sprite
	yes
	yes
	yes
	no
	yes
	no
	Mach & OSF/1 AD
	yes
	yes
	yes
	no
	yes
	yes
	LSF
	some
	no
	no
	yes
	no
	no
	Table 4: Transparency “checklist”.

	data transfer
	strategy
	eager (all)
	most user-level and early migrations
	high
	high
	none
	none
	high
	eager (dirty)
	MOSIX, Locus
	moderate
	moderate
	none
	none
	moderate
	precopy
	V kernel
	very low
	extremely high
	none
	none
	very high
	copy on reference
	Accent, Mach
	low
	small
	high
	yes
	low
	flushing
	Sprite
	moderate
	moderate
	moderate
	none
	moderate
	Table 5: Summary of Various Data Transfer Strategies.

	MOSIX
	distributed
	64
	partial
	yes
	aging
	Sprite
	centralized
	30
	global
	limited
	verification, update on state change or periodic
	Mach
	distributed
	5
	global
	no
	negotiation
	LSF
	centralized
	500
	global
	yes
	none
	Table 6: Load Information Database.

	MOSIX
	age, I/O patterns, file access
	average ready queue
	partial
	(random subset)
	migrating process may be refused
	periodic
	periodic (1-60s)
	(worm-like)
	Sprite
	none
	time since last local user input, ready queue length
	all info retained
	migration
	version
	periodic (5s)
	periodic (1min) and upon a state change
	Mach
	age, remote IPC, and remote paging
	average ready queue, remote IPC, remote paging
	all info retained
	destination load,
	free paging space
	periodic (1s)
	periodic (1s)
	LSF
	none
	arbitrary
	configurable
	all info retained
	system parameters of all nodes
	periodic
	periodic
	Table 7: Load Information Collection and Dissemination

	MOSIX
	process�migration
	(UNIX-like�OS)
	CPU &
	communication
	threshold cross +
	load�difference
	non eligible
	processes
	aging load vector
	process�residency
	minimum�residency
	node refusal
	info weighting
	Sprite
	process�migration
	(UNIX-like�OS)
	no
	pmake, migratory shell, eviction (due to user activity or fairness)
	non eligible
	processes or list of eligible ones
	none
	bias toward
	long-idle machines
	Mach
	task�migration
	(microkernel)
	no
	threshold�cross
	predefined non-eligible tasks
	limit consecutive migration
	high�threshold
	LSF
	process�migration
	(user-level migr.)
	CPU overhead
	configurable�thresholds
	predefined�non- eligible�commands
	lowering standard deviation
	high thresholds
	Table 8: Distributed Scheduling
	7 WHY PROCESS MIGRATION HAS NOT CAUGHT ON
	7.1 Case Analysis
	7.2 Misconceptions
	7.3 True Barriers to Migration Adoption
	7.4 How these Barriers Might be Overcome

	8 SUMMARY AND FURTHER RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES

	DEJAN S. MILOJICIC†, FRED DOUGLIS‡, YVES PAINDAVEINE††,
	RICHARD WHEELER‡‡ and SONGNIAN ZHOU*
	Process Migration

	† HP Labs, ‡ AT&T Labs–Research, †† TOG Research Institute, ‡‡ EMC, and *University of Toronto an...
	Abstract
	Process migration is the act of transferring a process between two machines. It enables dynamic l...
	This survey reviews the field of process migration by summarizing the key concepts and giving an ...
	Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems ...
	Additional Key Words and Phrases: process migration, distributed systems, distributed operating s...

