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In engineering systems, diagnosis is the process of
detecting anomalous system behavior and then
isolating the cause for this behavior. This report is
concerned with the detection and isolation of abrupt
faults through analysis of the transients that occur
after the fault. We have developed a comprehensive
framework for monitoring and diagnosis of dynamical
systems that attempts to overcome the difficulties
associated with quantitative techniques. A key step in
our monitoring and diagnosis framework is the
transformation of measurements into symbols that
encode the trends in the measurements. That is, the
symbols are the signs of the first and second time
derivatives of the measurements. This report outlines
how these symbols are used in diagnosis, considers
several methods for estimating the symbols from
measured data, and shows the behavior of the method
we have chosen to use on measurements taken with
our cooling system diagnosis testbed.

*Center for Intelligent Systems, Vanderbilt University, Nashville, TN
†Institute of Robotics and System Dynamics, DRL Research Center, Oberpfaffenhaffen, Germany
  Copyright Hewlett-Packard Company 1999

Internal Accession Date Only



Derivative Estimation for Diagnosis

Lee Barford1, Eric J. Manders2, Gautam Biswas2,

Pieter J. Mosterman3, Vishnu Ram2 and Joel Barnett2.
1Hewlett-Packard Laboratories, 1501 Page Mill Rd. 4A-D, Palo Alto, CA 94304-1126, USA.

Phone: +1-650-857-3606 Fax: +1-650-852-8092 Lee Barford@hp.com
2Center for Intelligent Systems, Vanderbilt University, Nashville, TN, USA.

3Institute of Robotics and System Dynamics, DLR Research Center, Oberpfa�enha�en, Germany.

January 27, 1999

1 Introduction

Diagnosis is an important potential application for the emerging class of distributed mea-
surement systems. In engineering systems, diagnosis is the process of detecting anomalous
system behavior and then isolating the cause for this behavior. This cause may be a faulty
control setting or a faulty component in the system. The model-based approach to diagnosis
typically requires a model of normal operation of the system and a number of observable
variables. The model relates functionally redundant observed variables and hypothesizes
changes in model parameters { possible faults { when inconsistencies arise. We distinguish
three types of faults: intermittent faults, incipient faults (gradually evolving) and abrupt
faults. Our work concentrates on the detection and isolation of abrupt faults through anal-
ysis of the transients that occur after the fault.

Transients require more complex dynamic models and are harder to analyze. First, the
system model may contain modeling de�ciencies (signi�cant higher order phenomena) and
system parameters may not be estimated accurately enough. This lack makes it di�cult to
interpret system behavior. Second, measured signals are typically noisy and sensors may
have responses that are a function of environmental conditions, may have characteristics
which drift over time, or may become faulty. Third, quantitative techniques such as pa-
rameter estimation may not work well for complex systems because of di�culties inverting
functions by either analytic or numeric methods.

We have developed a comprehensive framework for monitoring and diagnosis of dynam-
ical systems that attempts to overcome the di�culties associated with such quantitative
techniques [12]. This advantage comes from the judicious use of qualitative reasoning (as
opposed to quantitative computation) when testing whether various failure hypothesis ex-
plain the behavior of the failing system. Another advantage of our framework is that it
separates the measurement and signal processing tasks from the reasoning tasks in a way
that we believe will facilitate the framework's deployment in a distributed measurement and
diagnosis system.

Our framework for monitoring and diagnosis uses bond-graphs as the modeling paradigm.
We exploit systematic methods for generating temporal causal graphs for behavior propa-
gation from the bond-graph representation. Bond-graphs are suited for either quantitative
or qualitative analysis. Our diagnosis algorithms process system parameter values based on



their qualitative behavior, that is, magnitude and temporal e�ect. Magnitude deviations
are predicted in terms of low or high values with respect to normal operating values. The
temporal e�ect is introduced by energy storing elements (related to state variables) and is
applied to predict �rst order behavior, whether signal slope is positive or negative. If the
behavior of multiple of energy storage elements accumulates, the prediction may be in terms
of higher order derivatives.

Therefore, one of the primary functions of the monitoring component is extracting the
signs of the time derivatives (or perhaps even second derivatives) of measured quantities.

We have performed a number of di�erent simulations using lumped parameter models to
evaluate the approach [10, 11, 12]. In addition, we have contstructed a testbed for verifying
the framework. The testbed includes an automobile engine cooling system into which various
failures (e.g., leaks) can be introduced, sensors for measuring physical variables within the
cooling system, a PC-based data acquision system, and prototype diagnosis software. Details
of the testbed appear in [9], which also discusses some of the critical signal analysis issues
that must be dealt with to make the methodology work with real world signals.

This extended abstract focuses in more detail on one of the signal analysis issues: on-line
estimatation of the sign of �rst and second derivatives of measured signals. The next section
describes the technique we have used on measurents from our testbed for estimating signs of
derivatives and briey refer to other techniques in the literature. We show typical behavior
of our technique applied to measurements obtained from our testbed when the dynamic
e�ects of failure are present.

2 Determining signs of derivatives of measured signals

The derivative operation on measured data is inherently a high-pass �lter, accentuating
noise in the measurements. The key objective, then, in determining the sign of a derivative
is minimizing the inuence of noise in the determination.

2.1 Least squares polynomial �t

One way to estimate the value of the derivative of a measured signal is to �nd the least-
squares linear approximation to a set of consecutive measurements. The slope of the re-
sulting line is an estimate of the derivative of the signal within the window. The second
derivative can be estimated similarly by �nding a least-squares quadratic approximation.
This technique is intuitively correct and simple to implement. As long as the number of
data used in each �t remains constant, the technique is e�cient because the resulting ma-
trix needs to be factored only once, and the factorization can be re-used for each sucessive
derivative estimation.

2.2 FIR �lter with optimum noise attenuation

Another technique for estimating the value of the derivative is to use an FIR �lter that is an
unbiased estimate of the derivative and that has minimum estimate variance (i.e., maximum
noise attenuation) from among all such �lters.

The �lter coe�cients f = (f
�n; : : : ; fn)

T depend only on the sample rate � and the
number of taps 2n + 1. They are found by solving a least-squares problem [13]. First,
assume that the signal is a piecewise-polynomial with the same degree d as the order of
derivative desired (e.g., d = 2 for second derivative). Assume that the noise has zero mean
and �nite variance �2. Then the �lter is an unbiased estimate of the signal's derivative at



the center of the �lter's time window if and only if for all j 2 f0; : : : ; dg,

nX

i=�n

fi(i�)
j = �jdd!; (1)

where � is the Kronekker delta. The variance of each derivative estimate output from the
FIR �lter is

�2
f
= �2

nX

i=�n

f2i : (2)

Minimizing this quantity with respect to the linear constraints of Equation 1 is a linear least
squares problem that is easy to solve with o�-the-shelf numerical software.

The �lter coe�cients can also be derived by application of the Gauss-Markov Theo-
rem, [6] p. 141. Another implication of this theorem is that the outputs of the FIR �lter
will be the same as those of the polynomial �t technique described in the previous section.
Advantages of FIR �lter derivative estimation include a fast recursive implementation [13].
Moreover, the explicit formula for the variance of the derivative, can be used for setting
thresholds between derivative values to be considered positive, zero, and negative.

2.3 Other techniques

Other �lters for estimating derivative values include stochastic model-based di�erentia-
tion [2], error minimization at low frequencies [7], and adaptive di�erentiators [14].

All of the techniques above involve computing an estimate of the derivative and then
thresholding it to determine whether to classify it as positive, negative, or zero. An alterna-
tive might be to use the geometric V-mask technique ([1] p. 43) borrowed from statistical
process control ([3] pp. 519{527). Here, the derivative of a measurement would be classi�ed
as positive at the current time if the measurement had recently achieved a signi�cantly lower
value than the current one.

3 Results on measurements

The testbed described in [9] was used to collect the measurements shown in this section. The
instrumented automobile engine was started and allowed to come up to a normal operating
temperature. A valve was opened that allowed much of the coolant to run rapidly out of
the cooling system. The measurements were obtained at a sampling rate of 50 Hz. They are
shown in Figure 1. The upper graph shows three Celsius temperatures measured at various
locations around the cooling loop as a function of time in seconds into the experiment. The
lower graph shows two uncalibrated coolant pressure measurements as a function of time.
The failure occured just before t=20sec. The failure is visually aparent in the two pressure
measurements.

Optimum noise attenuation FIR �lters with 50 taps were used to estimate the �rst and
second derivatives of the temperature measurement T2. The �lter coe�cients are shown
in Figure 2. The frequency response of the �rst derivative �lter appears in Figure 3. The
amplitude response shows that the �lter suppresses high-frequency noise somewhat. The
variance of the noise in T2 was estimated as the sample variance of T2 within a portion of
the signal where T2 was almost constant. This variance was used as �2 in Equation 2 to
estimate the variances of the the �rst and second derivative �lter outputs. Thresholds for
classifying the deriviatives as positive or negative were chosen as four times the �lter output
variances.



Figure 5 shows the estimated derivative of the temperature T2 (thin solid line), the
thresholds used to classify the sign of the derivative (thin dashed lines), and the result of
the classi�cation as +1, 0, or -1 (thick grey lines). Figure 6 shows the estimated second
derivative of T2, the thresholds, and classi�cation in the same way.

4 Conclusions

Diagnosis of dynamical systems is an important potential application for the emerging class
of distributed measurement systems. Diagnosis of abrupt faults through analysis of transient
behavior measurements made during and after the onset of a fault is complicated because
an adequate system model may no longer available after the fault. Our diagnosis frame-
work attempts to make up for this lack through the use of qualitative reasoning on wide
discretizations of the measurements and their derivatives.

A key step in our diagnosis algorithm is determining the signs of the derivatives (and
sometimes second derivatives) of measurements of the transient behavior of the system being
diagnosed. We have demonstrated in this extended abstract that this determination can be
performed e�ciently and accurately in the presence of measurement noise using optimal
noise attenuation FIR �lters. The determination is probably e�cient enough that it can be
deployed within a measurement node of a distributed monitoring and diagnosis system.

The next step in our work is to collect a large set of data measured during di�erent failures
induced in our testbed, to verify that the diagnosis algorithm, including the derivative sign
classi�er, is reliable.
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Figure 1: Abrupt loss of coolant. Time in seconds vs. temperature in deg C (top) and
uncalibrated pressure (bottom). Various curves in each plot are temperatures or pressures
obtained at di�erent locations in the cooling system.

−30 −20 −10 0 10 20 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Filter index i

Fi
lte

r v
al

ue
 fi

FIR filter coefficients: d=m=1, τ=1/50 s

−30 −20 −10 0 10 20 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Filter index i

Fi
lte

r v
al

ue
 fi

FIR filter coefficients: d=m=2, τ=1/50 s

(a) (b)

Figure 2: Coe�cients of optimal noise attenuation derivative estimate �lters (a) �rst deriva-
tive �lter used in Figure 5, (b) second derivative �lter used in Figure 6.
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Figure 3: Frequency response of �lter in Figure 2(a).
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Figure 4: Temperature T2 for several seconds after the coolant loss.
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Figure 5: Estimate (thin solid line), thresholds (thin dashed lines), and sign classi�cation
(thick lines) of dT2

dt
.
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Figure 6: Estimate (thin solid line), thresholds (thin dashed lines), and sign classi�cation

(thick lines) of d2T2
dt2

.




