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Abstract

Retinex theory addresses the problem of separating the illumination from the re-

ectance in a given image and thereby compensating for non-uniform lighting. This
is in general an ill-posed problem. In this paper we propose a variational model for
the Retinex problem that uni�es previous methods. Similar to previous algorithms,
it assumes spatial smoothness of the illumination �eld. In addition, knowledge of the
limited dynamic range of the re
ectance is used as a constraint in the recovery pro-
cess. A penalty term is also included, exploiting a-priori knowledge of the nature of
the re
ectance image. The proposed formulation adopts a Bayesian view point of the
estimation problem, which leads to an algebraic regularization term, that contributes
to better conditioning of the reconstruction problem.

Based on the proposed variational model, we show that the illumination estimation
problem can be formulated as a Quadratic Programming optimization problem. An
e�cient multi-resolution algorithm is proposed. It exploits the spatial correlation in
the re
ectance and illumination images. Applications of the algorithm to various color
images yield promising results.

zR. Kimmel is also a�liated with the Computer Science Dept., Technion, Haifa 32000, Israel.
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1 Introduction

Retinex theory deals with compensation for illumination e�ects in images. The primary goal
is to decompose a given image S into two di�erent images, the re
ectance image R, and
the illumination image L, such that, at each point (x; y) in the image domain, S(x; y) =
R(x; y) � L(x; y). The bene�ts of such a decomposition include the possibility of removing
illumination e�ects of back/front lighting, enhancing shots that include spatially varying
illumination such as images that contain indoor and outdoor zones, and correcting the colors
in images by removing illumination induced color shifts.

Recovering the illumination from a given image is known to be a mathematically ill-posed
problem, and algorithms proposed in the literature for its solution vary in their way of
overcoming this limitation. The Retinex methodology was motivated by Land's landmark
research of the human visual system [11]. Through his experiments it was shown that our
visual system is able to practically recognize and match colors under a wide range of di�erent
illuminations, a property that is commonly referred to as the Color Constancy Phenomenon.
As a matter of fact, Land's �ndings indicated that even when retinal sensory signals coming
from di�erent color patches under di�erent illuminations are identical, subjects were able
to name the surface re
ectance color [11]. The ability to extract the illumination image is
su�cient but not nessecary to achieve this property.

In this paper we de�ne the Retinex reconstruction problem for gray-level images through
physically motivated considerations. The proposed formulation is shown to be a mathe-
matically well-posed problem. A variational expression is obtained by de�ning the optimal
illumination as the solution of a Quadratic Programming (QP) optimization problem. It is
shown that di�erent previous algorithms are essentially solutions to similar variational prob-
lems. We introduce an e�cient algorithm that exploits knowledge on QP solvers and the fact
that the unknown illumination is spatially smooth. Our algorithm uses a multi-resolution
reconstruction of the illumination with few relaxation iterations at each resolution layer.

We apply and compare the proposed algorithm in two color spaces. The �rst operates in
the RGB space, in which each spectral channel is processed separately. The second is the
HSV color space in which only the Value (V) channel is processed. Color corrections can
be obtained as a by-product of the Retinex algorithm in the RGB space. In this case the
resulting re
ectance image usually appears to be over-enhanced. A relaxation algorithm for
this e�ect is proposed. Tests on various images support the assumption that the results of
the proposed formulation are similar to those of the human visual system.

This paper is organized as follows: In the next section we review several di�erent Retinex
algorithms. Some of those were motivated by assumptions based on the color constancy
process in the human visual system. Section 3 presents the proposed formulation along
with an e�cient numerical algorithm for the illumination reconstruction. Uniqueness and
convergence of the solution are also discussed in Section 3. Section 4 extends the proposed
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formulation to color images. In Section 5 we apply the method to di�erent images and
demonstrate the algorithm`s performances and the e�ects of its free parameters. Section 6
summarizes the paper and presents topics for future research.

2 Previous Work

The �rst Retinex algorithms proposed by Land et al., were of random walk type [12, 14].
Subsequent algorithms [8, 9, 13] used Homomorphic Filters [5, 21]. Yet another group of
Retinex algorithms is based on solving a Poisson equation [2, 7, 20]. A recent Retinex
algorithm by McCann and Sobel [17], is an iterative multi-resolution type of non-linear
�lter.

A �rst step taken by most algorithms is the conversion to the logarithmic domain by
s = logS; l = logL; r = logR, and thereby s = l + r. This step is motivated both
mathematically, preferring additions over multiplications, and physiologically, referring to
the sensitivity of our visual system [11]. The di�erent Retinex algorithms usually have the
same 
ow chart as shown in Figure 1, and the di�erence between them concentrates on the
actual estimation of the illumination image. Let us review these di�erent algorithms.

S Rrls
Log

Estimate 
the 

Illumination
Exp

Input 
Image

Figure 1: The general 
ow chart of Retinex algorithms

2.1 Random Walk Algorithms

A random walk is a discrete time random-process in which the `next pixel position' is chosen
randomly from the neighbors of the current pixel position. Random walk type Retinex
algorithms are variants of the following basic formulation [4]: A large number of walkers are
initiated at random locations of an input image s, adopting the gray-value of their initial
position. An accumulator image A that has the same size as s is initialized to zero. As
the walkers walk around, they update A by adding their values to each position they visit.
Finally, the illumination image is obtained by normalizing the accumulator image, i.e., its
value at each location divided by the number of walkers visited it.

By using many walkers with long paths, it is easily veri�ed that each accumulator value

3



assimptotically converges to a Gaussian average of its neighbors, which is a low-pass �lter
of the image s [19]. A low-pass �lter for the reconstruction of l from s was also proposed
under the name of Homomorphic Filtering.

2.2 Homomorphic Filtering

Homomorphic Filtering type Retinex algorithms [5, 8, 9, 13, 21] share the following basic
motivation: Assume the re
ectance image corresponds to the sharp details in the image
(i.e. edges), whereas the illumination image is expected to be spatially smooth, a reasonable
guess for l is l̂ = LPfsg, where LP is usually a convolution with a wide Gaussian kernel.
This way, one actually applies the same process as the random walk algorithms by a single
direct convolution.

2.3 Poisson Equation Solution

Following the above reasoning, since the illumination is expected to be spatially smooth, its
derivative should be close to zero everywhere. On the other hand, by the assumption that
the re
ectance is piece-wise constant, its derivative is expected to vanish almost everywhere,
and get high values along the edges. Thus, if we take the derivative of the sum s = l + r
and clip out the high derivative peaks, we can assume that the clipped derivative signal
corresponds only to the illumination.

Poisson Equation type Retinex algorithms [2, 7, 20] rely on Land's Mondrian world model.
The Mondrian model boils down to the above assumption on the re
ectance as a piece-wise
constant image. Applying the Laplacian, and the following clipping operation

�(�s) =

(
�s where j�sj < T
0 otherwise,

we get the following Poison equation

�l̂ = �(�s):

As to the solution of the resulting Poisson equation, Horn [7] suggested an iterative procedure
which e�ectively inverts the Laplacian operator. Similar to the previous methods, a low-pass
�lter is applied in order to solve the above equation. Blake [2] introduced an improvement
to Horn's method. He proposed to extract the discontinuities from the image gradient
magnitude instead of the Laplacian and thereby came up with better boundary conditions
that deal with less trivial scenarios along the image boundary.

2.4 McCann's Algorithm

Recently, McCann and Sobel [17] proposed an algorithm that can be equivalently written as
follows: The illumination image l̂0 is initialized to be s, the original image. The algorithm
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performs the following iterative procedure,

l̂n+1 = max

(
l̂n + s

2
;
l̂n +Dn[l̂n]

2

)

where Dn is a translation operator, shifting the image by the nth element of a sequence
of spirally decaying translation vectors fdng, as shown in Figure 2. The size of the �rst
displacement is set to be half the minimum between the image width and height.
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Figure 2: The sequence of displacement vectors for the Dn operator in McCann-Sobel algorithm.

Let us link this procedure to the previous methods. If we remove the max operation we get
the simpli�ed version

l̂n+1 =
l̂n +Dn[l̂n]

2
:

This is a simple averaging operation that smoothes the image. Actually, it is possible to show
that with the displacements shown in Figure 2, the e�ective smoothing kernel approaches a
Gaussian.

The non-linear (max) operation inside the loop forces the illumination image to satisfy the
constraint l̂ � s. This operation thus incorporates a physical property that previous methods
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neglect. The physical nature of re
ecting objects is such that they re
ect only part of the
incident light. Thus, the re
ectance is restricted to the range R 2 [0; 1], and L � S, which
implies l � s.

A multi-resolution version is also proposed in [17]. A Gaussian pyramid is constructed for the
given image s. The algorithm starts at the coarsest level, and the size of the displacements
for Dn are one pixel in each direction for each resolution. The multi-resolution version is
signi�cantly faster, yet produces lower quality results compared to the original version.

2.5 Summary of Previous Work

The discussion in this section suggests that the previous seemingly di�erent algorithms are
actually very similar. They are all based on the spatial smoothness assumption of the
illumination l. All the above algorithms apply some sort of Gaussian smoothing to s in
order to extract l̂. Some methods add more assumptions about the re
ectance, such as its
limited range, or its Mondrian form. Eventually, `skinning' the illumination from the given
image yields the re
ectance image, which is expected to be free of non-uniform illumination,
have a reduced dynamic range, and present a sharper view of the scene.

3 The Variational Framework

3.1 Functional De�nition

We start by listing the known information about the illumination image.

1. The �rst important assumption about the illumination is its spatial smoothness.

2. We also know that, since R is restricted to the unit interval, we can add the constraint
L � S. Since the log function is monotone, we also have l � s.

3. By setting l = Const, where Const is any constant above the maximal value of s, we
get a trivial solution that satis�es the two previous assumptions. We therefore add
the assumption that the illumination image is close to the intensity image s, i.e., it
minimizes a penalty term of the form dist(l; s), e.g., the L2 norm (l � s)2.

4. The re
ectance image r = s � l can be assumed to have a high prior probability
[3, 6, 10, 16]. One of the simplest prior functions used for natural images assigns high
probability to spatially smooth images [10].

5. We can assume that the illumination continues smoothly as a constant beyond the
image boundaries. This is an arti�cial assumption required for boundary conditions
that would have minor e�ect on the �nal results.
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Collecting all the above assumptions into one expression we get the following penalty func-
tional

Minimize: F [l] =
Z



�
jrlj2 + �(l � s)2 + � jr(l � s)j2

�
dxdy

Subject to: l � s; and hrl; ~ni = 0 on @
; (1)

where 
 is the support of the image, @
 its boundary, and ~n is the normal to the bound-
ary. � and � are free non-negative real parameters. In the functional F [l], the �rst penalty
term (jrlj2) forces spatial smoothness on the illumination image. This choice of smoothness
penalty is natural, if we keep in mind that minimizing

R
(jrlj2) dxdy translates into the

Euler-Lagrange (EL) equation �l = 0. Its steepest descent solution is a Gaussian smoothing
operation with increasing variance of the initial condition. As mentioned in the previous sec-
tion, several authors proposed Gaussian smoothing of s for the illumination reconstruction.

The second penalty term (l� s)2 forces a proximity between l and s. The di�erence between
these images is exactly r, which means that the norm of r should be small (i.e., R tends to
Black). This term is weighted by the free parameter �. The main objective of this term is a
regularization of the problem that makes it better conditioned. Notice that, in addition, we
force the solution l to be l � s.

The third term represents a Bayesian penalty expression. It forces the re
ectance image r to
be a `visually pleasing' image. This term forces r to be spatially smooth, and it is weighted
by the free parameter �. Note that more complicated Bayesian expressions may be used
allowing sharp edges, textures, 1=f behavior, etc. [3, 6, 10, 16]. As long as this expression
is purely quadratic, the above minimization problem remains fairly simple.

The problem we have just de�ned has a Quadratic Programming (QP) form [1, 15]. The
necessary and su�cient conditions for its minimization are obtained via the Euler-Lagrange
equations

8(x; y) 2 


8>>>>>><
>>>>>>:

@F [l]
@l

= 0 = ��l + �(l � s)� ��(l � s) and l > s

or

l = s

9>>>>>>=
>>>>>>;

(2)

Note that the di�erential equation does not have to hold when l = s.

3.2 Numerical Solution

The minimization problem is QP with respect to the unknown image l. Many algorithms
for solving such problems are known in the literature [1, 15]. In this paper we chose to
focus on the Projected Normalized Steepest Descent (PNSD) algorithm, accelerated by a
multi-resolution technique.
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3.2.1 Projected Normalized Steepest Descent

The PNSD algorithm requires the application of a Normalized Steepest Descent (NSD)
iteration that minimizes the functional F [l], followed by a projection onto the constraints.
A NSD iteration has the format:

lj = lj�1 � �NSD �G;

where lj and lj�1 are the illumination images at step j and j � 1, respectively, G is the
gradient of F [l], and �NSD is the optimal line-search step size. In our case, Equation (2), the
gradient of F [l] is given by:

G = ��lj�1 + (�� ��) (lj�1 � s) ;

and �NSD is given by:

�NSD =

R
jGj2R

(�jGj2 + (1 + �)jrGj2)

Observe that, by integration by parts,
R
jrGj2 = �

R
G�G up to boundary conditions.

An alternative approach is the Steepest Descent (SD) algorithm, where �NSD is replaced by
a constant value �SD, such that:

�SD 2

 
0;

2

�max f�(1 + �)� + �Ig

!
;

where �maxfAg refers to the greatest eigenvalue of the linear operator A. This alternative
method saves computations at the expense of a slightly slower convergence.

Finally, projecting onto the constraint l � s is done by lj = max(lj; s).

Notice that G can be calculated by:

G = GA + � (lj�1 � s)� � (GA �GB) ;

where

GA
4
= �lj�1;

GB
4
= �sk:

Similarly, �NSD is given by:

�NSD =
�A

��A + (1 + �)�B
;

where

�A
4
=

Z
jGj2;

�B
4
=

Z
jrGj2:
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We approximate the Laplacian by a linear convolution with the kernel �LAP

�LAP =

2
6666664

0 1 0

1 �4 1

0 1 0

3
7777775
;

and the integrations are approximated by summations:

Z
jGj2 �

X
n

X
m

G[n;m]2

Z
jrGj2 = �

Z
G�G

� �
X
n

X
m

G[n;m] (G � �LAP) [n;m];

where G[m;n] = G(m�x; n�y) In order to accommodate the boundary conditions, as given
in Equation (1), the above convolution is applied on an expanded version of the imageG. Ths
extension is done by replicating the �rst and last columns and rows. After the convolution,
the additional rows and columns are removed.

3.2.2 Multi-Resolution

Although simple, the PNSD algorithm usually converges slowly [1, 15]. Instead of general
acceleration schemes, we use the fact that the unknown image l is assumed to be smooth.
Speci�cally, we apply a multi-resolution algorithm that starts by estimating a coarse resolu-
tion image l, expands it by interpolation and uses the result as an initialization for the next
resolution layer. This way, few iterations at each resolution are enough for convergence.

3.2.3 The Algorithm

Summarizing the above, a proposed algorithm for the solution of Equation (1) involves the
following steps,

1. Input: The input to the algorithm is an image s of size [N;M ], and two parameters
� and �.

2. Initialization: Compute a Gaussian pyramid of the image s. This pyramid is con-
structed by smoothing the image with the kernel �PYR:
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�PYR =

2
6666664

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

3
7777775

and decimating by 2:1 ratio. The process is repeated p times and produces a sequence
of images fskg

p
k=1. The image s1 is the original image s, and sp is the one with the

coarsest resolution in this pyramid. De�ne the numerical inner product

hG;F i =
NX
n=1

MX
m=1

G[n;m]F [n;m];

and the numerical Laplacian at the kth resolution as �kG = G � kLAP2
�2(k�1).

Set k = p, i.e., start at the coarsest resolution layer, and set the initial condition
l0 = max fspg.

3. Main Loop: For the kth resolution layer,

� Calculate GB
4
= �ksk.

� For j = 1; ::; Tk Do:

(a) Calculate gradient:

GA
4
= �klj�1;

G  GA + � (lj�1 � sk)� � (GA �GB) :

(b) Calculate �NSD:

�A
4
= hG;Gi;

�B
4
= �hG;�kGi;

�NSD  �A= (��A + (1 + �)�B) :

(c) Complete NSD iteration:

lj  lj�1 � �NSD �G;

(d) Project onto the constraints

lj = max flj; skg :
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� End j Loop;

The above loop solves the intermediate problem

Minimize: Fk[l] =
Z

k

�
jrlj2 + �(l � sk)

2 + � jr(l � sk)j
2
�
dxdy

Subject to: l � sk andhrl; ~ni = 0 on @
;

4. Update the next resolution layer:

If k > 1, the result lTk is up scaled (2:1 ratio) by pixel replication into the new l0,
the initialization for the next resolution k � 1 layer. The resolution layer is updated
k = k � 1, and the algorithm proceeds by going again to Step 3. If k = 1, the result
lT1 is the �nal output of the algorithm.

3.3 Relation to previous methods

Let us revisit the algorithms described in Section 2 and analyze them in light of the proposed
formulation. First, by setting � = � = 0, and removing the constraint l � s we get the
Homomorphic �ltering, that was shown to be equivalent to the basic formulation of the
random walk algorithms. Next, setting � = � = 0, with the constraint l � s, one possible
numerical relaxation scheme for the solution of the resulting problem is the McCann-Sobel
algorithm.

The Poisson Equation approach seems to be unrelated directly to our formulation. However,
if we set �(x; y) = �(�s) and set the second distance term to

R
�(x; y)(l � s), keeping the

constraint l � s, we get that the optimal illumination should satisfy the equation

�l = �(�s); (3)

subject to l � s, which is identical (up to the constraint) to Horn's formulation.

3.4 Uniqueness and Convergence

In this section we prove the uniqueness of the solution to Equation (1), and the convergence
of the proposed numerical algorithm. The following theorem shows that the convexity of the
problem guarantees existence and uniqueness of the solution.

Theorem: The variational optimization problem P, given by

Minimize: F [l] =
Z



�
jrlj2 + �(l � s)2 + � jr(l � s)j2

�
dxdy

Subject to: l � s; and hrl; ~ni = 0 on @
;

with � > 0 and � � 0, has a unique solution.
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The proof is given in Appendix A.

Regarding the convergence of the numerical scheme, the core of the proposed algorithm is the
Projected Normalized Steepest Descent (PNSD) algorithm, which is known to converge for
convex optimization problems, such as our case [1, 15]. The pyramidal shell of the algorithm
can be considered as an e�cient method for creating a good initialization for the highest
resolution layer stage. We found that few iterations at the �ner resolution layer are su�cient
for e�ective convergence.

4 Color Images

Thus far we dealt with a single channel. In this section, we apply our method to color images.
When we process color images one option is to deal each color channel separately. We refer
to channel-by-channel processing as `RGB Retinex'. Treating the R, G, and B channels
separately usually yields a color correction e�ect. For example, RGB Retinex on a reddish
image is expected to modify the illumination in such a way that the red hue is removed so
that the resulting image is brightened and corrected. Therefore, for some kinds of images,
RGB Retinex actually improves the colors. In few other cases, such color correction can
cause color artifacts that exaggerate color shifts, or reduce color saturation.

Another approach is to map the colors into a di�erent color space, such as HSV, apply the
Retinex correction only to the intensity layer, and then map back to the RGB domain. We
refer to this method as the `HSV Retinex'. Color shifts in such cases are less-likely. The
advantage is that we have to process a single channel. The main drawback is that colors are
no longer corrected with respect to the illumination hue.

5 Alternative Illumination Correction

The re
ectance image obtained by the Retinex process is sometimes an over-enhanced image.
This can be explained by the facts that i) the human visual system usually prefers some
illumination in the image, and that ii) removal of all the illumination exposes noise that
might exist in darker regions of the original image.

We propose adding a corrected version of the reconstructed illumination back to the re-
constructed re
ectance image. Figure 3 describes this operation. The proposed scheme
computes the illumination image L = exp(l) from the intensity image S = exp(s), and the
re
ectance image R = S=L, as discussed in previous sections. Then, we `tune up' the illu-
mination image L by a Gamma Correction operation with a free parameter 
, obtain a new
illumination image L0, and multiply it by R, that gives the output image S 0 = L0 � R. The
Gamma correction is performed by

L0 =W �
�
L

W

� 1



; (4)
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Figure 3: Returning part of the illumination to the re
ectance image

where W is the White value (equal to 255 in 8-bit images).

The �nal result S 0 is given, therefore, by:

S 0 = L0 �R =
L0

L
S

= W
(L=W )1=


L
S =

S

(L=W )1�1=

: (5)

For 
 = 1, the whole illumination is added back, and therefore S 0 = S. For 
 = 1, no
illumination is returned, and we get S 0 = R �W , which is the same re
ectance image, R, as
obtained by the original retinex, stretched to the interval [0;W ]. The later case can also be
considered as adding a maximum constant illuminationW to the re
ectance image R.

Adding part of the illumination to the �nal image can also be found in the homomorphic
�ltering approach. In [18, Chapter 10], the proposed linear �lter for the illumination calcu-
lation in the log domain, removes high-pass spatial components of s, yet also attenuates the
low-pass components by a factor of 
i (where i stands for illumination). This is analog to a
gamma correction of the illumination with 
 = 
i, since Equation (5) can be written in the
form:

S 0

W
=
�
L

W

�1=

�R; (6)

and therefore:

s0 � w =
1



(l � w) + r
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=
1



(low-pass components) + (high-pass components): (7)

6 Results

In our experiments we applied the numerical algorithm of Section 3 to several test images.
The results correspond to � = 0:0001 and � = 0:1, unless indicated di�erently. Four
resolution layers were used with Tk = 2; 4; 8, and 16 iterations at each layer, 2 iterations
at the �nest (k = 1) and 16 at the coarsest resolution (k = 4).

In the �rst test, we apply the RGB and the HSV Retinex algorithms to seven input images.
The results are shown in Figures 4{10.

The second test (Figure 11) presents the in
uence of the � values on the reconstructed
re
ectance image.

In Figure 12 we test the e�ect of the number of iterations on the re
ectance result. In all
cases, the number of iterations was �xed to Const � 2k, where k is the resolution layer, with
2 � Const iteration at the �nest resolution. The number of iterations is determined by the
constant Const 2 f1; 2; 4; 8; 16g.

In Figure 13, we restore the illumination through Gamma correction and add it back to the
re
ectance image. We use each of the values 
 = f1; 2; 6; 24; 96g for each output image,
respectively.

Finally, we demonstrate the convergence of the proposed numerical algorithm. Figure 14
shows the values of F [ln], the functional in Equation (1), as a function of the number of
iterations. The results correspond to the image in Figure 9. The algorithm in this case runs
on the R, G, and B layers separately, without the pyramidal structure, so that all ln are
computed at the same resolution. As can be seen, a rapid convergence is obtained for all the
three channels.

We conclude that

1. As we see in Figures 4{10, both the RGB and the HSV Retinex algorithms provided
the desired results. The re
ectance images are indeed enhanced versions of the original
one, although in some versions they are over-enhanced.

2. The illumination feedback through Gamma correction seems to improve both the RGB
and the HSV Retinex results. However, they have di�erent e�ects: In the RGB Retinex
this process restores some of the colors, whereas in the HSV Retinex, the result is merely
darker.

3. When we compare the RGB and the HSV Retinex algorithms it seems that the bet-
ter method depends on the input image. Generally speaking, for images with colored
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Example 1. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Example 2. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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Figure 6: Example 3. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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Figure 7: Example 4. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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Figure 8: Example 5. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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Figure 9: Example 6. Images (b)-(f) refer to processing of all RGB components separately, whereas
images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g) Original
image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination image,
(d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image (proposed
alg. with 
 =1).
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Figure 10: Example 7. Images (b)-(f) refer to processing of all RGB components separately,
whereas images (h)-(l) correspond to processing only the V component of the HSV space. (a),(g)
Original image, (b),(h) standard Gamma correction with 
 = 2:2, (c),(i) estimated illumination
image, (d),(j) proposed alg. with 
 = 2, (e),(k) proposed alg. with 
 = 4, (f),(l) re
ectance image
(proposed alg. with 
 =1).
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Figure 11: The in
uence of �. (a),(g) Original image, (b),(h) � = 1e-5, (c),(i) � = 1e-3, (d),(j)
� = 1e-1, (e),(k) � = 1, (f),(l) � = 10. Images (b)-(f) refer to processing of all RGB components
separately, whereas images (h)-(l) correspond to processing of V component of HSV space only.
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Figure 12: The in
uence of varying the number of iterations T . (a),(g) Original image, (b),(h)
T = 2, (c),(i) T = 4, (d),(j) T = 8, (e),(k) T = 16, (f),(l) T = 32. Images (b)-(f) refer to processing
of all RGB components separately, whereas images (h)-(l) correspond to processing of V component
of HSV space only.
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Figure 13: The in
uence of parameter 
 (amount of illumination return). (a),(g) Original image,
(b),(h) 
 = 1, (c),(i) 
 = 2, (d),(j) 
 = 6, (e),(k) 
 = 24, (f),(l) 
 = 96. Images (b)-(f) refer to
processing of all RGB components separately, whereas images (h)-(l) correspond to processing of
V component of HSV space only.
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Figure 14: The functional value F [ln] as a function of the number of iterations, for the layers R
(red), G (green) , and B (blue)

illumination, the RGB usually performs better, whereas for images with a milder illu-
mination hue, the HSV is somewhat better.

4. The Retinex approach obviously performs better than a simple Gamma correction.
The latter indeed improves the overall illumination of the image, but also decreases
details contrast and 
attens the objects. Retinex, on the other hand, usually increases
both detail contrast and depth sensation in the image, as well as improving the overall
illumination.

5. The proposed algorithm is robust to the choice of its parameters �, 
, and the number
of iterations.

6. The proposed numerical method converges very fast to its steady-state solution which
is also the minimizer of the de�ned functional in Equation (1).

7 Concluding Remarks

In this paper we surveyed several algorithms for image illumination correction and dynamic
range compensation, based on a common motivation known as the Retinex theory. We have
shown that in spite of their di�erent formulations, these algorithms can be derived from the
same variational principle.
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We introduced a comprehensive Retinex analysis, motivated by the di�erent Retinex al-
gorithms. Our variational approach provides solid mathematical foundation, that yields
e�cient and robust numerical solutions.

We introduced a fast multi-resolution solution to the corresponding variational problem,
resulting in an algorithm whose computational complexity amounts to less than 11 convo-
lutions of the full size image with a 3x3 kernel plus a few addition algebraic operations per
pixel. The advantages of the proposed algorithm are:

1. Computational e�ciency.

2. Image quality comparable to state of the art methods, and in some cases better results.

3. Parameter robustness. It was shown that for a wide range of the involved parameters,
the output quality is practically the same.

As part of the proposed Retinex enhancement algorithm, we proposed a new method to
control the overall brightness of the image. Traditionally, after removing a non-uniform
illumination via the Retinex, standard point operations like the 
-correction are typically
required. According to the proposed method, the overall illumination correction is cou-
pled with the non-uniform illumination removal. Instead of removing the illumination from
the original image, the illumination is corrected via a standard point operation like the 
-
correction, and returned to the re
ectance image. Thus, dark regions in the image which
have been poorly illuminated are better illuminated, as if the actual illumination conditions
in the image are improved.

For color images, two modes of operations are possible, namely, performing Retinex on every
color layer, or alternatively only on the luminance component. We compared these two
Retinex modes. The later is naturally preferable in cases where the computational complexity
is critical. However the former (RGB Retinex) enables color illumination compensation, e.g.
removing Yellowish lighting in indoor images. For better results some of the reconstructed
illumination is piped back through 
 correction.
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A Uniqueness of The Solution

Theorem: The variational optimization problem P, given by

Minimize: F [l] =
Z



�
jrlj2 + �(l � s)2 + � jr(l � s)j2

�
dxdy

Subject to: l � s; and hrl; ~ni = 0 on @
;

with � > 0 and � � 0, has a unique solution.

Proof: First, we show that the functional F [l] is purely convex. The Hessian of the quadratic
functional F [l] is given by

@2F [l]

@l2
= � (1 + �)� + �I;

where I is the identity operator. The multiplication of the Laplacian operator by the negative
value �(1 + �) < �1 yields a positive semi-de�nite operator � (1 + �)� � 0. Since � > 0,
�I > 0, i.e., it is positive de�nite. Therefore, the Hessian is also a positive de�nite operator.
Thereby, the functional F [l] is a strictly convex functional [1, 15]. If � = 0, the Hessian is
semi-positive de�nite, and the convexity of F [l] is not strict.

De�ne the set C = fl j l � s and hrl; ~ni = 0 on @
g such that the constraints of P are
equivalent to requiring l 2 C. For every l1; l2 2 C, 8� 2 [0; 1], we have �l1 + (1� �)l2 2 C,
or in other words, C is a convex set. This is true since C is the intersection of two convex
sets (one per each original constraint).

Let us denote the minimum of the functional F [l] as l̂opt. This solution is unique since F [l]

is strictly convex. If l̂opt 2 C than l̂opt is the solution of P, and therefore we get a unique
solution as the theorem claims.

On the other hand, if l̂opt =2 C, the solution to P is obtained on the boundary of the constraint
set C = fl j l � sg. We prove this property by contradiction. Assume that the solution is
given as l0 2 InteriorfCg. De�ne l1 = (1 � �)l0 + �l̂opt for � 2 (0; 1). Due to the convexity

of F [l], it is clear that F [l1] < (1� �)F [l0] + �F [l̂opt] < F [l0]. Since l0 2 C, for � su�ciently
close to zero it can be guaranteed that l1 2 C as well. This way we get l1 as a better solution,
which contradicts our assumption. Thus, the solution for P is obtained on the boundary of
C.

Let us now assume that two solutions are possible, and prove that this assumption leads
to a contradiction. The two optimal solutions l1 and l2 must satisfy the following set of
conditions

1. The solutions should be feasible: l1; l2 2 C.
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2. Based on the previous results, the solutions should be on the boundary of C: l1; l2 =2
InteriorfCg.

3. The functional value of the two solutions should be the same: F [l1] = F [l2].

4. The solutions are optimal: 8l 2 C; F [l] > F [l1].

5. The solutions should not be equal to l̂opt, i.e., F [l]: l1; l2 6= l̂opt.

Since C is convex, 8� 2 (0; 1); l0 = (1� �)l1 + �l2 2 C. Moreover, by the strict convexity
of F [l], we have that F [l0] = F [(1� �)l1 + �l2] < (1� �)F [l1] + �F [l2] = F [l1] and again, we
got a better solution l0. This contradicts the previous assumptions, and therefore, there is a
unique solution to P. Q.E.D.
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