

Design and Performance of SMPs
With Asynchronous Caches

Fong Pong, Michel Dubois*, Ken Lee
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-149
November, 1999

E-mail: fpong@hpl.hp.com
 kenlee@exch.hpl.hp.com
 dubois@paris.usc.edu

Asynchronous,
cache coherence,
shared-memory
multiprocessor,
SMP

We propose and evaluate a cache-coherent symmetric multiprocessor system
(SMP) based on asynchronous caches. In a system with asynchronous
caches, processors and memory controllers may observe the same coherence
request at different points in time. All protocol transactions are uni-
directional and processors do not report snoop results. The need for an
extensive interlocking protocol between processor nodes and memory
controller which is characteristic of snooping buses is thus removed.

This design overcomes some of the scalability problem of a multi-drop
shared-bus by employing high-speed point-to-point links, whose scalability
prospects are much better than for shared buses. Memory and processors
communicate through a set of queues. This highly pipelined memory system
design is a better match to emerging ILP processors than bus-based
snooping. Simulation results for ILP processors show that the shared-bus
design is limited by its bandwidth. By contrast the parallel link design has
ample bandwidth and yields large performance gain for the transaction
processing and scientific benchmarks that we have considered.

Besides higher performance the asynchronous design we propose
considerably simplifies the behavior expected from the hardware. This is
important because snooping bus protocols are so complex today that their
verification has become a major challenge.

∗ Department of Electrical Engineering-Systems. University of Southern California Los Angeles,
California
 Copyright Hewlett-Packard Company 1999

2

1 Introduction

Because of their simplicity, shared-bus SMPs are a dominant architecture for small-scale systems.

By taking advantage of the broadcast nature of a shared-bus, snooping protocols are the de facto

schemes for achieving cache coherence. Figure 1 shows the basic configuration to support a four-

states MESI protocol [22] which is widely used in cache-coherent shared-memory multiprocessor

systems. In such a system, every processor is associated with a bus watcher (a “snooper”) which

monitors all bus activities. When a processor initiates a coherence transaction such as a load miss

on the bus, all snoopers in all processors latch in the request. These snoop requests consult the

local caches, take necessary actions and respond with appropriate snooping results. Each protocol

transaction on the bus is deemed complete when all caches have reported their snoop result.

Although the snooping bus-based design is a classic, well-understood design and offers many

good features, it is becoming harder to design a shared bus-based SMP that keeps pace with

emerging ILP processor technology.

First and foremost, the multi-drop bus architecture is reaching its speed limit. When the clocking

speed was low, the electrical length of the bus was short enough that distributed behavior of the

bus could be ignored. However, as bus speeds increase, the processor boards connected to the bus

behave as stubs resulting in reflections and ringing of bus signals. There exist several schemes for

terminations and signaling to reduced reflections, but none solves the fundamental problem of

stubs. Because of design constraints such as heat dissipation the space needed between stubs is

longer at high speeds. This limits the operating speed of buses to 150MHz in current systems.

Figure 1 A Bus-based Cache System with Shared/Dirty Signals.

For future processor designs with deep speculation, multiple cores, and/or multithreading [13, 14,

P0

C0

P1 P3

Control+Address

P2
bus-watcher

Dirty

C1 C2 C3

Shared

3

23], the shared-bus will no doubt become a major bottleneck even in small multiprocessor config-

urations. An alternative is to have multiple short bus segments bridged by the memory controller

[15, 18]. This approach has its own limitations. It is difficult to connect more than two full busses

to the memory controller without an inordinate number of I/O pins. Furthermore, all bus transac-

tions that occurs in one bus segment must be propagated to other bus segments unless the memory

controller is equipped with coherence filters. A coherence filter essentially keeps track of memory

blocks that are cached in the bus segment. Regardless of these possible extensions, the fundamen-

tal problem of a shared-bus design remains. For instance, every request must start with an arbitra-

tion cycle and spend one cycle for bus turnaround at the end. The protocol sets an upper bound on

the maximum attainable throughput.

Secondly, the bus snooping scheme requires all processors (and all snooping agents such as I/O

bridge chips with I/O caches) to synchronize their responses. Generally speaking, the snoop results

serve three purposes: 1) they indicate the safe completion of the snoop request in the cache hierar-

chy of the local processor, 2) they provide sharing information, and 3) they identify which entity

should respond with the missing data block, i.e, either another processor or memory. For the pur-

pose of illustration (see Figure 1), assume that the snooping results are propagated to all proces-

sors via two bus lines Shared and Dirty. For a load miss, the processor may load the data block into

the exclusive (E) or shared (S) state depending on whether the Shared or Dirty signal is asserted. In

the case where a processor has the most recently modified copy of the requested data, it asserts the

Dirty signal preventing the memory from responding with the data.

Figure 2 Illustration of Snooping Paths in Modern Multiprocessors.

The common approach is to require that all caches connected to the bus generate their snoop

D$ I$

L2$

Concentration

write-back$ prefetching$

L3$

snoop result

4

results in exactly the same bus cycle. This requirement imposes a fixed latency time constraint

between receiving each bus request and producing the snoop result and this fixed snooping delay

must accommodate to the worst possible case. This constraint presents a number of challenges for

the designers of highly-integrated processors with cache hierarchies. As illustrated in Figure 2,

many modules must be snooped and the final results must be concentrated. In order to meet the

fixed latency constraint, the processors may require ultra-fast snooping logic paths. The processor

may have to adopt a priority scheme assigning a higher priority to snoop requests than to requests

from the processor’s execution unit.

More relaxed designs such as Intel’s P6 bus [16] allow processors and memory controllers to insert

wait states when they are slow to respond. This scheme complicates the logic design because

every processor must closely monitor the activities of other processors on the bus in order to re-

generate snooping results when wait states are observed. In the case of Intel’s bus, for instance, the

processor must repeat its snooping result two cycles after observing a wait state cycle.

Yet another approach to synchronizing snoop results is the use of a shared wired-or Inhibit signal

on the bus as was implemented in the SGI Challenge [12]. Processors may snoop at different

speeds but must report the end of their snoop cycle on this new bus line. The transaction remains

“open” for as long as any processor has not pulled down its Inhibit line. Again this interlocking of

processor and memory signals on the bus results in complex bus protocols and bookkeeping of

pending transactions in the interface of each processor, which in fact limits the number of concur-

rent transactions on the bus. The design still relies on a shared line and on bus watching and is

complex to verify. This complexity increases with the number of concurrent transaction tolerated

on the bus. Current designs are so complex that verification has become a major development cost.

In this paper, we propose an efficient cache-coherent shared-memory multiprocessor system based

on an asynchronous-snooping scheme. In this paper asynchronous refers to a model of cache-

coherent systems first theoretically introduced and proven correct in [2]. It does not refer to vari-

able-delay snooping using an inhibit line as described above. In fact it does not require reporting

snoop results or synchronizing the snoops in any way. Because of this simplification, fast, high-

bandwidth point-to-point links can be used to communicate requests and data between processors

and memory. Snooping requests to different processors are propagated independently through

queues. The number of pending and concurrent protocol transactions is only limited by the size of

5

these FIFO queues. However by emulating a shared-bus broadcast protocol, the topology of the

point-to-point interconnection is made transparent to the processors and the memory.

The various design aspects of the new system are given in Sections 2 and 3. Section 4 is dedicated

to the evaluation methodology and system simulation models. We compare the effectiveness of

various bus-based configurations with our parallel link design. These results are presented and dis-

cussed in Section 5 and our final comments conclude the paper in Section 6.

2 A New Asynchronous Cache System Design

2.1 The Architectural Organization

We advocate an asynchronous cache system such as the one shown in Figure 3. In this design, pro-

cessors and memory controller communicate via unidirectional high-speed links [10, 25]. A set of

queues buffer requests and data blocks in case of access conflicts and also serve as adaptor

between data paths of different width.

Figure 3 The Proposed Asynchronous Cache System.

On the memory controller side, received requests are stored in a request queue. Through a high-

state data

state data
blocks

bank0

state data

state data

bank1

{

M
em

Q

memory controller

Sn
oo

pQ

parallel links

D$

address bus

I$

L2$

Scheduling Window/

data bus

D
at

aQ

R
eq

Q

bank2 bank3

processor 0

D$ I$

L2$

processor 1

p2 p3

R
eq

ue
st

D
at

a

Memory Disambiguation

Incoming Buffer

6

speed address bus internal to the memory controller, requests are routed to the snoop queues of all

processors. Emerging from the snoop queue, request packets are transmitted through the links to

the incoming buffers of processors. When they reach their destination, packets may snoop various

caches in the node and a data response may be generated as a point-to-point packet to the request-

ing processor through a data bus internal to the memory controller chip.

Note that the on-chip address and data busses may be both implemented by a multiplexer to data

lines feeding into all processors incoming queues. Speed of this path can be made very fast,

depending on the distance and the RC delay of the process technology.

2.2 Memory Disambiguation and Access Ordering

All the queues in this design are FIFOs (First-In-First-Out). In term of ordering of memory

accesses, the behavior of this system has been shown to be indistinguishable from a platform with

a shared bus [2, 19]. The address bus internal to the memory controller serves as a global ordering

point for all memory accesses.

For correctness, there are certain rules the system must support:

1. The processor keeps track of all pending instructions in the scheduling window or the memory

disambiguation buffer. Instructions are retired in program order.

2. Loads that are executed, but have yet to retire from the memory disambiguation buffer are sub-

ject to snooping requests. A write-invalidation arriving before retiring the load will cause the

load to be re-issued and all instructions depending on the load to be re-played.

3. Values of stores are written to the cache/memory system only when they are retired from the

scheduling window, although the fetch of an exclusive cache line can proceed speculatively.

Specifically, when a store operation is inserted into the scheduling window, a speculative access

may be issued to the cache system to obtaining a local writable copy of the block. However, the

store is actually executed only when it emerges at the head of the scheduling window.

4. When the memory controller receives a request, the request is routed via the internal address

bus to the input snoop queues of all processors, including the processor that made the

request. At this point, a global ordering point has been established so that all processors

observe the same sequence of events.

5. Before processor pi can retire a request from its incoming snoop buffer, all requests received

7

before it in the buffer must have been completed.

It is really not difficult to comprehend that a total order on all stores can be constructed in this sys-

tem and that all the stores can only be observed in that order by any processor. Thus the system is

sequentially consistent, the strongest form of memory consistency.

2.3 The Cache Protocol

Because we have no Shared, Dirty or Inhibit bus lines, we need to adapt parts of the protocol that

rely on such lines. First, we cannot implement the E (Exclusive) state of the MESI protocol. This is

easily done by using a simpler, MSI protocol. Second we need to make sure that one and only one

cache or memory responds with the data on a cache miss. A classical solution to this problem is to

maintain one Valid bit per block in memory. A memory block can be in one of two states: memory-

invalid (MI) and memory-valid (MV). If a memory block is in the MI state, one of the processors

must have a modified copy and supply the copy on a miss. If a memory block is in the MV state,

some processor caches may have a shared block that must be consistent with the memory copy and

the memory delivers the copy. Because of this valid bit processors or memory controller do not

need to report who provides a data copy. Third the inhibit line or the fixed latency snoop delay

become useless because the protocol is now asynchronous and does not rely on the broadcasting

snoop results.

The protocol uses only MSI states, which is a derivation from the MESI protocol. By definition, we

have:

1. Modified (M). When a cache is in the modified state, it has the most recent copy. This cache is

also responsible for responding to a subsequent miss. The memory state must be invalid (MI).

2. Shared (S). The block may be shared among processors. The memory copy is valid (MV) and

the memory is to respond to a subsequent miss.

3. Invalid (I). The cache does not have the memory block.

The protocol works as follows:

8

1. Read miss. If another cache has a modified copy, it responds to the requesting cache with a data

copy, and updates the main memory as well. Otherwise, the memory must have a valid copy

which is directly supplied to the requesting cache. At the end, all cached copies are in the

shared state, and the memory is in the memory-valid state.

2. Write hit. If the block is in the modified state, the write can proceed without delay. Otherwise,

the cache block is always re-loaded, as in a write miss1.

3. Write miss. A write miss request is sent to the memory and to all other processors. If the mem-

ory has a valid copy, the memory will provide its copy to the requesting processor. Otherwise,

the current owner will respond to the request. At the end, the requesting processor will load the

block in the modified state. All other processors with a valid block set their state to invalid. The

memory state is set to memory-invalid so that the memory will ignore subsequent misses.

2.4 Self-Regulation and Credit-Based Flow Control

In the asynchronous cache system, the number of pending protocol transactions is only limited by

the finite sizes of the queues. To avoid overflow of the request and data buffers a simple credit-

based flow control scheme will do. Each processor limits the number of its outstanding requests to

n. As shown in Figure 3, each processor has its own dedicated buffer at the memory controller and

thus each buffer must hold n entries at the memory controller. Initially, the processor has n credits.

The processor decreases its credits by one when a new request is sent and increases its credits by

one when a reply is propagated back from the memory controller.

The memory controller may also inform the processor on the amount of available buffer space in

its incoming request and data buffers. For instance, when the memory controller propagates a

snoop request to processor pi, it may piggyback the number of available entries for pi’s out-bound

data buffers with the request.

In the asynchronous design, flow control is achieved by self-regulation without overhead. By con-

trast, in the pipelined shared-bus design, processors and memory controller must arbitrate for the

memory bus when they want to send requests. For data transfer, the sender must listen to the ready

1. This is done to simplify the protocol. However, the protocol would be more efficient and consume less interconnect
bandwidth if the processor issued an Upgrade request instead [9]

9

signal from the receiver, and wait until the data bus is freed by a prior transfer.

To illustrate the complexity introduced by the shared-bus interface design consider the case of

back-to-back requests issued to the bus for the same memory block shown in Figure 4.

Figure 4 Race Condition for Back-to-Back Requests in a Shared-bus System.

In this example, every processor receives two back-to-back requests to the same memory block, in

cycle 1 and in cycle 3. For the first request, the processor looks up its cache in cycle 2, computes a

new state in cycle 3, and then installs the new state in cycle 4. Unfortunately, the snooping result

of the second request depends on the new state computed after the first request, which will be only

available after cycle 4. The situation is even more complex from the point of view of the processor

issuing the first request. This processor may receive the second request before it even knows if its

own request will complete, be deferred or be retried [16]. This is why concurrent requests to the

same block are often disallowed in split-transaction bus systems. In the proposed asynchronous

design, all these problems are solved without undue complexity by respecting the FIFO order of

all requests and responses throughout the memory system. The asynchronous protocol does not

check for nor constraint the number of concurrent transactions to the same block.

2.5 Trade-offs Made in the Proposed Design

2.5.1 Elimination of the Exclusive State

Traditionally, the exclusive (E) state has been advocated to reduce the consumption of bus band-

width when a load miss is followed by a store hit to the same cache line. This is because store

accesses to cache lines in the E state are resolved locally in the processor without incurring bus

accesses.

snoop&latch

snoop_result

snoop&latch

lookup

addr1

addr2=addr1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

lookup

compute

install new
state

10

Since processors do not report sharing status in our proposed design, the exclusive state cannot be

supported, at least in a simple way. The minimum cost of not having the exclusive state, is the

additional bus bandwidth required to propagate an Upgrade request (one control packet) on the bus

on the first write following a read miss. Since our design accommodates a much larger bandwidth

than current bus designs and is highly pipelined, the absence of an exclusive state is not a problem.

Even in the context of bus-based systems, the absence of the exclusive state create negligible addi-

tional bandwidth consumption in parallel and multiprogrammed workloads as is shown in [9]

when Upgrades are used. In our MSI protocol, the absence of an exclusive state is more costly

because we take a miss on every write hit to a Shared copy (see Section 2.3) in order to simplify

the protocol.

In the future, we can expect that the exclusive state may become totally useless if hardware and/or

compiler can detect migratory sharing in parallel workloads [7, 21] and accesses to private data in

multiprogrammed workloads and give hints to the cache on load misses. In section 5, we will show

the impact of dropping the exclusive state on system performance.

2.5.2 Increased Memory Bandwidth Consumption

Another potential drawback of the proposed design is that it may require more memory bandwidth

support because, if the valid bit in each memory block is stored in the same DRAM as the data, the

valid bit in memory must be always consulted and sometimes updated on every main memory

access.

By contrast, traditional shared-bus design may allow a memory access to be squashed to save

memory bandwidth whenever a processor replies. As shown in Figure 5, when the processors

probe their local caches on snoop requests, the memory controller normally starts a “speculative”

access in parallel in order to reduce latency in case no processor owns the requested block. This

memory access is termed “speculative” because it proceeds without knowing whether the data

copy from memory will be used. With a proper design, “speculative” memory accesses may be

dequeued from the memory queues when one of the processors asserts the Dirty line on the bus. It

is, however, important to note that in many cases the memory access may still be unavoidable:

Since the “speculative” access may start as early as the address is known, the snoop result may

arrive too late to cancel the access. As a result, the speculative access may still have to complete,

11

but the memory does not return the copy.

Figure 5 Speculative Memory Access by the Memory Controller in Snooping Protocols.

Another problem is that the valid bit must at times be updated, which requires another DRAM

access in some cases.

A radical solution to these problems would be to store the valid bits in a separate, fast SRAM chip,

which is accessed in parallel with the memory. However our results show that, for our bench-

marks, bus-based snooping protocols are not really able to save much memory bandwidth by can-

celling DRAM block accesses.

The idea of a valid bit associated with each memory block is not new. In the Synapse protocol

[11], when the cache with a modified line does not respond fast enough to a miss, the valid bit

inhibits the memory from responding. This idea was also adopted in [3] in the design of a snoop-

ing protocol for unidirectional slotted rings. In this design a snoop request propagates from node to

node and the memory state must be snooped together with the cache state because a snoop request

visits each node only once.

3 Advances in Serial-Links Technology

The performance of high-speed CMOS serial links is growing rapidly [10, 25]. These links are

suitable for point-to-point connection in impedance controlled environment. The reflection prob-

lems plaguing multi-drop bus are eliminated. Data rates up to 4Gbit/sec have been demonstrated

using conventional CMOS technology.

It is still premature to consider these technologies in massively parallel implementations because

of their power, area, latency, and error rate characteristics. However, with the advances in CMOS

P0 puts request and address on the control bus

P1 latches in the request A

Pn latches in the request

local cache lookup

if the Dirty signal is asserted, the
fetched memory block is droppedspeculative memory accessMemory controller

A

A

A

local cache lookup

Clock

latches in the request

12

technology and circuit implementation, it is conceivable that differential 4Gbit/sec links will

become available in the near future. The chip area needed by each link is basically the I/O pad area

and power consumption is sufficiently low that hundreds of these links could be implemented on a

single chip. The latency could be as small as 2-3 cycles plus time of flight.

The following performance evaluations of the proposed asynchronous cache system have been

carried out assuming links with bandwidths of 1 and 2 Gbit/sec.

4 Methodology for Performance Evaluation

The primary goal of this study is to provide some quantitative comparison of the proposed asyn-

chronous protocol design with typical bus-based designs. We use cycle-accurate, trace-driven sim-

ulation models for both the asynchronous design and traditional bus-based SMPs. Both models are

described below in some details.

4.1 Workloads

In this study, we use an Oracle, TPC-C trace which was collected on a 4-way HP server by a tool

based on object-code-translation technology [1]. The tool instruments the code to dump memory

traces. In this configuration, the TPC-C traces are composed of trace files for 22 processes. These

processes are partitioned and scheduled on the four processors in a dedicated manner. The traces

contains user-space accesses only. We also use three benchmarks from the SPLASH2 suite [24].

Table 1 lists the footprints and number of instruction fetches, loads and stores in each benchmark.

4.2 Simulation Model

4.2.1 The Asynchronous Cache Model

The asynchronous caching model is shown in Figure 3. We simulate a 4-way SMP node. Every

Table 1 Characterization of Workloads.

Benchmarks
Code Space
Footprint Data-set Size

Num. of
Instructions Num. of Loads Num. of Stores

TPCC 2MB 15MB 200,000,000 47,278,610 26,462,984

FFT 4KB 3MB 36,709,821 4,964,999 2,868,340

RADIX 4KB 8MB 101,397,013 41,039,729 9,544,862

OCEAN 45KB 15MB 292,565,301 77,345,166 18,326,143

13

processor has a 128KB, level-1 write-through data cache, a 128KB, level-1 instruction cache and a

1MB level-2 write-back cache. All caches are 4-way set-associative and lockup-free.

The Processor Model

We approximate an processor core which enables out-of-order issuances and in-order completions

of memory accesses. It is an approximation because information of data dependency is not avail-

able in our traces. The traces contain all instructions. Instructions are inserted one by one in a 96-

entry buffer and are retired one by one. Loads and stores can retire at the head of the buffer if they

do not access a pending block in the second level caches. Instruction accesses are also simulated.

The histogram of the number of pending instructions, loads and stores misses at the time when a

new second-level cache miss is issued is displayed in Figure 6. In most cases there are no or few

pending misses. The figure shows that the average number of pending misses is quite reasonable

and that the absence of dependency information in the trace does not unduly stress the memory

system.

Figure 6 The Number of Pending Misses When Issuing a New Miss.

Furthermore, in the SPLASH2 benchmarks, most data elements are accessed by indexing into data

arrays within loops. For instance, one code line may read as:

dest[n+m]= x[i*k] +x[i*k+1]

where n, m, i, k are typically private variables of processes that control the loop. The computation

14

of the indices should not cause global coherence traffic and should hit in the cache. As a result, the

danger of issuing the loads to data array x much too early is limited. The only problem is the store

to the dest data array. In this case, our approximation tends to aggressively prefetch the destination

data block based on addresses. Nevertheless, we believe the number of pending accesses as shown

in Figure 6 is reasonable, in particular for future processors with deep speculative execution.

The Memory Subsystem

A cache miss injects a request into the processor’s outgoing request queue. The request packet is

128 bits long. The request packet is then muxed out through the parallel links (1gbps or 2gbps),

entering the request queue (ReqQ) of the memory controller. Subsequently, the request is routed to

the snoop queues of all processors as well as to the memory queue via an 128-bits wide internal

bus. Finally, data blocks are routed through a separate 256-bits wide internal data bus in the model.

Figure 7 Basic Timing for a Read Burst.

There are four memory banks. The memory devices are 100MHz SDRAMs2 with four internal

banks [20]. For these devices, a memory access starts with an ACTIVE command. A READ/

WRITE command is given after tRCD. For a READ, the first bit of data is available after a read

latency tCAS; for a write, the data is driven on the inputs at the same cycle where the WRITE

command is given. Figure 7 shows the basic timings.

It is important to note that a subsequent ACTIVE command to a different row in the same internal

2. The experiment can be extended to other types of DRAMs such as DDR-SDRAM and DRDRAM. We choose the
simple SDRAMs to study memory bandwidth issues. The simulated system supports a data bandwidth of 6.4GB/s. It
is a reasonable configuration for today’s design.

Active

Clock

Read

tRCD tCAS

tRRD

D0 D1 D2 D3

tRC

15

bank can only be issued after the previous active row is closed. Therefore, the minimum time

interval between successive accesses to the same internal bank is defined by tRC. On the other

hand, a subsequent ACTIVE command to another internal bank can be issued when the first bank

is being accessed. The minimum time interval between successive ACTIVE commands to differ-

ent banks is defined by tRRD. In our simulation, we model the DRAM modules accordingly.

However, we do not model an optimal memory controller design that may schedule accesses to

interleaved banks in order to maximize throughput.

We list the parameters for the simulated asynchronous cache system in Table 2.

4.2.2 The Shared-Bus Based Synchronous Cache Model

As a point of reference, we also simulate the traditional shared-bus based design. The bus-based

model has the same memory configurations as the model of Figure 3 except that the parallel links

are replaced by a multi-drop shared-bus.

We assume a P6 bus-like configuration and protocol [16]. The basic timing for this pipelined bus is

illustrated below. In our simulation, we assume an ideal design that does not limit the number of

Table 2 Parameters for Simulated Asynchronous Cache Configurations.

Module Parameters Ranges

Processor Core Speed 500MHz

block size 64 bytes

Cache
I$ 128KB, 4-way set-associative, 0-cycle cache hit

D$ 128KB, 4-way set-associative, 0-cycle cache hit

L2$ 1MB, 4-way set-associative, 6-cycles cache hit

Link

Address 8 parallel links (1gbps, or 2gbps)

Data 16 parallel links (1gbps, or 2gbps)

Flight Time (Req) 16ns for 8x1gbps links
8ns for 8x2gbps links

Flight Time
(Data)

32ns for 16x1gbps links
16ns for 16x2gbps links

Memory Controller 200MHz
128bits addr/control path

256bits data path

SDRAM 100MHz, 128bits-width/bank, 4 banks, tRCD=2
memory cycles, tCAS=2 memory cycles, tRC=8

memory cycles for a 64B cache line.

16

concurrent bus transactions.

Figure 8 Pipelined Bus Transactions.

In general, a transaction starts with an arbitration cycle, followed by two request cycles. The snoop

result is reported at the 4th cycle after the first request phase. Finally, the data phase starts at the

6th cycle after the first request cycle. As clearly shown in the timing diagram of Figure 8, the max-

imum request rate to the bus is one request every three bus cycles. Furthermore, the data phase

may incur a long queueing delay for data returns.

Table 3 summarizes the parameters for our simulations of bus-based systems.

5 Performance Evaluation Results

5.1 Cache Misses

Table 4 lists the percentages of types of L2 cache accesses. Since most instruction fetches and

Table 3 Parameters for Simulated Shared-Bus Configurations.

Module Parameters Ranges

Processor Core Speed 500MHz

block size 64 bytes

Cache
I$ 128KB, 4-way set-associative, 0-cycle cache hit

D$ 128KB, 4-way set-associative, 0-cycle cache hit

L2$ 1MB, 4-way set-associative, 6-cycles cache hit

Bus
clock 100MHz

Data 64-bits data bus, 8 bus cycles for 64B cache line

Data (double-pumped) 64-bits data bus, 4 bus cycles for 64B cache line

Data(double-pumped) 128-bits data bus, 2 bus cycles for 64B cache line

Memory SDRAM 100MHz, 128bits-width/bank, 4 banks, tRCD=2
memory cycles, tCAS=2 memory cycles, tRC=8

memory cycles for a 64B cache line.

Arb Req Req Err Err SNP RSP D0 D1 D2 D3 D4 D5 D6 D7

Arb Req Req Err Err SNP RSP D0

Arb Req Req Err Err SNP RSP D0 D1 D2 D3 D4 D5 D6 D7

Arb Req Req Err Err SNP RSP D0

Arb Req Req Err Err SNP RSP D0

17

loads hit in the L1 caches, stores accesses count for most of L2 cache accesses. Given a 1MB L2

cache, the miss rates are reasonably small.

From Table 4, one can see that the stores to cache lines in the exclusive state represent a very small

percentage of all accesses to the second level cache. In [17], Keeton reported a similar result and

suggested that the E state is not very useful for OLTP applications. However, when we remove the

E state as we did in the proposed asynchronous design, the net result is that the number of L2

cache misses increases by about 18% for TPC-C and OCEAN, whereas it is negligible for the

other benchmarks. This comes from the fact that in our protocol we take a miss on every write to a

shared copy.

This drastic miss rate increase may have a profound impact on overall system performance, espe-

cially when the processor is clocked at very fast speeds and/or the hit rate of the cache system is

high. A system with the MSI protocol used in this paper must resolve cache misses quicker in

order to compensate for the higher number of cache misses. In a system with ILP processors, this

means that the memory system must support greater bandwidth such that contention for shared

resources such as the system bus is reduced.

5.2 Total Execution Time and Average Latency Per Cache Miss

Figure 9 shows the total execution times. All runs are normalized to the baseline shared-bus archi-

tecture with a simple 64-bits data bus that takes 8 cycles to transfer a 64B data block. The second

and the third columns show the results of shared-bus designs with data bus bandwidths two and

four times that of the baseline system. The fourth and the fifth columns correspond to the proposed

Table 4 Characterization of L2 Cache Accesses (MESI Protocol).

Applications Read Hits Read Miss Write Miss Write to Shared Write to Exclusive Write to Modified

TPC-C 6.82% 1.88% 0.50% 0.18% 0.44% 90.18%

FFT 1.2% 2.14% 1.15% 0.41% 0.12% 94.98%

RADIX 0.41% 3.67% 2.10% 0.06% 0.06% 93.70%

OCEAN 14.97% 4.25% 3.78% 0.26% 1.94% 74.80%

18

asynchronous system using 1gbps and 2gbps links.

Figure 9 Total Execution Times.

In general, the proposed design reduces total execution time by 25% to 40%, as compared to base-

line. In the case of OCEAN, the improvement is impressively 60%. We also observe drastic

improvement for traditional shared-bus systems when we double the data bus bandwidth. When

the data bus bandwidth is quadrupled in the double-pumped 128 bits bus, we see further improve-

ments.

The data bus bandwidth is critical to system performance because it is a dominant factor for the

average latency time of cache misses as demonstrated by Figure 10. In a shared-bus architecture,

we roughly divide the miss latency into three elements: 1) the queueing delay for address bus arbi-

tration (QueueT-ReqBus), (2) the queueing delay to contend for the data bus (QueueT-DataBus),

and 3) all other time spent on such activities as cache lookup, accessing the memory, and execut-

ing the bus protocol (Misc). For the link-based design, the miss latency consists of five elements:

1) the queueing delay for address links (QueueT-ReqLinks), (2) the delay in competing for the

address bus internal to the memory controller (QueueT-MemC-Internal-Bus), 3) the packet flight

time on the links (Packet-Flights), 4) the time spent on waiting for data return (QueueT-WaitData),

and 5) miscellaneous time such as cache lookup (Misc).

As shown in Figure 10, the average latency time for resolving a cache miss in a shared-bus design

is much longer than in the proposed link-based design. The long queueing delay in contending for

the data bus is the primary cause. When we double and quadruple the data bus bandwidth, conten-

tion for the data bus drops significantly. A minor side result of it is that contention to the request

19

bus may increase slightly. This is because the processors can resolve misses quicker and, conse-

quently, issue accesses quicker.

Figure 10 Average Latency for a Cache Miss.

When we quadruple the data bus bandwidth (double-pumped 128-bits wide bus), the average

latency time of a cache miss is about the same as for the asynchronous system based on 1 gbps

links. Recall that, as we have shown in section 5.1, the number of cache misses for the asynchro-

nous design using the MSI protocol is higher than for the baseline shared-bus system using the

MESI protocol. As a result, we have observed that the shared-bus design with a 128-bits wide dou-

ble-pumped data bus performs slightly better than the 1gbps link-based system for TPC-C and

RADIX as shown in Figure 9.

Figure 11 The Data Bus Occupancy.

For OCEAN, the data bus is simply overwhelmed due to higher cache miss rate and heavy write-

back traffics. Figure 11 shows random snapshots of data bus occupancy. It is clear that the data bus

traffic is constantly high for OCEAN. On the other hand, the proposed linked-based design can

TPC-C FFT RADIX OCEAN

OCEAN

RADIX

FFT

TPC-C

Time Window

20

accommodate this high traffic. Because every processor to memory data path supports 2GB/s

(4GB/s) of bandwidth with 16x1gbps (16x2gbps) links. The total aggregate bandwidth is 8GB/s

(16GB/s), which is much higher than the data bus bandwidth (3.2GB/s for a double-pumped 128-

bits bus).

Figure 10 also shows that the average miss latency in the link-based design is dominated by the

time waiting for data returned from the memory system. In our simulations, we consider a conser-

vative design in which the memory controller fetches the entire data block before it attempts to

stream the data down the links. Therefore, from the point in time when the memory bank control-

ler receives the request, it will take about 70ns to fetch a block, and an additional 30-to-40ns to

return the packet. We also observe that the contention delays for memory banks are around 14ns,

18ns, 6ns and 72ns for TPC-C, FFT, RADIX and OCEAN. It is very important to realize that the

proposed asynchronous design still has room for performance improvement. For instance, by add-

ing small on-chip caches by the side of memory bank controllers, the memory access time and

bank contention can be cut down significant if the hit rates are high.

5.3 Memory System Performance

In this section, we investigate issues related to the memory system performance. For shared-bus

based systems, an important criteria is how effective the snooping protocol is at reducing memory

bandwidth consumption. Recall that the memory controller usually starts a “speculative” access in

parallel with the processor cache lookup operation (Figure 5). Ideally, a speculative memory

access should be squashed before it is scheduled to access the memory data array. This means that

the snooping results should be delivered in time.

Table 5 shows the percentage of memory accesses that are cancelled in time and the percentage of

memory accesses that are useless in the bus-based snooping protocol. The second and the third

columns of Table 5 show percentages with respect to the numbers of loads and stores accessing

memory blocks cached in the modified state by other processors, whereas the fourth and fifth col-

umns show percentages with respect to all accesses. The reason to show both percentage numbers

is that, when a load or a store accesses a valid memory block, the memory access is needed. As a

result, we are more interested in the effectiveness of the snooping bus to prevent memory accesses

21

that do not need to proceed., i.e., when the memory block is invalid.

For TPC-C, FFT, and RADIX, a majority of useless memory accesses occurs. For OCEAN, most

of the unnecessary accesses are cancelled in time. In all cases, one can see that cancelled requests

only account for a very small percentages of the total number of memory accesses. As a result, the

increase in memory traffic is small for our asynchronous design that always grants a memory

access. This provides a quantitative justification for the rationale of the proposed design: by add-

ing a single state bit to each memory block, the system does not require to report snooping results.

Moreover there is no need to add SRAM memory to host memory valid bits.

On the other hand, the increased complexity for the memory controller is very small. As shown in

Table 6, for the most important cases such as Load_MemValid (Ld_MV: Load to a block that is

valid in memory), Load_MemInvalid (Ld_MI) and Store_MemInvalid (St_MI), the memory con-

troller fetches the memory block, checks the single valid bit, and either return the data block, or

drops the data. For write-backs and memory updates caused by a read miss to an block owned in a

remote cache, the memory controller simply writes the data back to the data bank with its state bit

set to Mem-Valid. It is only in the case of Store_MemValid (St_MV) that the memory controller

needs to write the block back to the data array with the state bit set to Mem-Invalid.

As explained above, we expected that the asynchronous system would handle more memory

accesses to the data array than a shared-bus design, by an amount equal to that of cancelled

Table 5 Percentages of Cancelled and Useless Accesses to Memory Data Banks.

/(LD and ST to Owned Lines) /Total

Applications Cancelled Useless Cancelled Useless

TPC-C 15.39% 84.60% 2.01% 11.06%

FFT 41.21% 58.79% 9.10% 12.97%

RADIX 11.81% 88.19% 0.69% 5.17%

OCEAN 92.67% 7.33% 2.49% 0.20%

Table 6 Percentages of Memory Accesses to Data Block in Different States.

Applications Ld_MV Ld_MI St_MV St_MI WB Update

TPC-C 40.53% 8.28% 24.76% 3.41% 14.72% 8.28%

FFT 26.66% 16.92% 34.30% 0% 4.98% 16.92%

RADIX 42.75% 4.78% 28.35% 0.08% 19.26% 4.78%

OCEAN 24.61% 1.93% 37.39% ~0% 34.12% 1.93%

22

requests in Table 5. However, in our simulations, we actually observed 15.56%, 30.45%, 19.95%,

and 38.44% increases for TPC-C, FFT-RADIX and OCEAN, respectively. This is due to our

choice of the MSI protocol in which processors always re-load the data block when a write hits a

cache line in the shared state. If one optimizes the cache protocol such that writes hitting shared

lines simply request an upgrade from memory, one may see some performance improvements.

6 Conclusion and Future Research

The SMP architecture model is a predominant design style for small scale systems. However, the

traditional shared-bus based design is quickly approaching its scalability limitations. In [8], it was

shown that small-scale SMPs are limited by the bandwidth of the data bus. For medium or large

systems, the system performance is limited by the snooping rate of the bus. On the other hand, the

memory system bandwidth is not a limiting factor. Based on technology trends, future processors

will support more parallelism by supporting deep speculation or multiple cores. As a result, a

future small-scale SMP may have an equivalent level of demand for both snoop and data band-

width as today’s medium systems. The mature shared-bus design is not a viable solution for the

future.

Generally speaking, the data bandwidth problem can be solved by using high-bandwidth data

switches. However, for small scale systems, a bus-like interconnect is still a better solution

because of the latency overhead involved in routing data through switches [8]. Observing the rapid

improvement of parallel-link technology, we have proposed and evaluated a specific implementa-

tion of SMPs with a deeply pipelined memory system designed with parallel-link interconnection

and queues, which is a better match for future ILP processors. The parallel-link topology is trans-

parent to software since the proposed architecture uses a bus-like broadcast protocol.

Our results are consistent with Keeton [17] in that writes to cache lines in the exclusive state are a

very small percentage of the total number of accesses. However, if we compare the frequency of

these events with respect to cache misses, they can be a significant portion. Thus, we observed that

the number of cache misses may increase significantly when the exclusive state is not supported.

Since the system performance is eventually determined by the processor idle time, it may become

more important than ever to reduce the number of cache misses when the speed gap between pro-

cessor and memory keeps increasing. It would be interesting to study how much performance

23

improvement can be further achieved in the proposed asynchronous system design by incorporat-

ing the exclusive state.

As expected, the memory bandwidth requirement of the proposed design is higher by about 20 to

30 percents over traditional bus-based designs. A large portion of the bandwidth increase is due to

the fact that we systematically and deliberately pursed design simplicity. Simplicity is becoming

more and more important because of the cost of verifying the behavior of current very complex

designs. Nevertheless, we do find this extra bandwidth demand does not cause much contention

problem at the memory banks.

Given high-bandwidth links, we found that the latency for accessing the memory banks is the pri-

mary component of the overall cache miss latency. This problem can be solved by caching mem-

ory blocks at the memory controller in a shared cache. It would be interesting to understand how

big a shared cache is needed next to each memory bank controller in order to absorb the extra traf-

fic.

Finally, we envision that a reasonably large-scale system can be implemented by using the pro-

posed design as a building block. There are many possibilities. For instance, one can imagine add-

ing another level of point-to-point interconnects to form a hierarchical bus-like topology.

24

Reference

[1] Abandah, G.A., Davidson, E.S., “Configuration Independent Analysis for Characterizing

Shared-Memory Applications”, Proc. of the 12th Int’l Parallel Processing Symposium, March

1998.

[2] Afek, Y., Brown, G. and Merritt, M., “Lazy Caching", ACM Transactions on Programming

Languages and Systems, vol. 15 , issue 1 (1993) , pp. 182-205.

[3] Barroso, L., and Dubois, M., “The Performance of Cache-Coherent Ring-based Multiproces-

sors,” Proc. of the 20th Annual International Symposium on Computer Architecture, pp. 268-

277, 1993.

[4] Bilir, E.E., Dickson, R.M. Hu, Y., Plakal, M., Sorin, D.J., Hill, M.D., and Wood, D.A., “Mul-

ticast Snooping: A New Coherence Method Using a Multicast Address Network”, Proc. of the

International Symposium on Computer Architecture, 1999.

[5] Borrill, P. L., “Why Open, and Why Buses”, Proc. of Open Bus System, pp. 25-31, 1991.

[6] Brown, G., "Asynchronous MultiCaches", Distributed Computing, vol. 4, pp. 31-36, 1990.

[7] Cox, A.L. and Fowler, R. J., “Adaptive Cache Coherency for Detecting Migratory Shared

Data”, Proc. of the 20th Annual International Symposium on Computer Architecture, pp. 98-

108, 1993.

[8] Charlesworth, A., “Starfire: Extending the SMP Envelope”, IEEE Micro, Jan./Feb. 1998, pp.

39-49.

[9] Culler, D.A. and Singh, J.P., “Parallel Computer Architecture: A Hardware/Software

Approach. Morgan-Kaufmann Publishers, San Francisco, California, 1999.

[10] Dally, W.J. and Poulton, J., "Transmitter equalization for 4Gb/s signalling", Proc. Hot Inter-

connects Symp., pp.29-39, Aug. 1996, pp.29-39.

[11] Frank, S. J., “Tightly Coupled Multiprocessor Systems Speed memory Access Times”, Elec-

tronics, 57, 1, pp. 164-169, 1984.

[12] Galles, M. and Williams, E., “Performance Optimizations, Implementation, and Verification

of the SGI Challenge Multiprocessor,” Proc. of the 27th Hawaii International Symposium on

System science. Vol 1: Architecture, January 1993.

[13] Hammond, L., Willey, M.m Olukotun, K., “Data Speculation Support for a Chip Multiproces-

sor”, Proc. the 8th ACM Conf. on Architectural Support for Programming Languages and

Operating Systems, October 1998.

25

[14] Hammond, L., Nayfeh, B., and Olukotun, K., “A Single Chip Multiprocessor”, IEEE Com-

puter Magazine, September 1997.

[15] Intel Corporation, “Profusion, An 8-Way Symmetric Multiprocessing Chipset”, July 1999.

[16] Intel Corporation, “Pentium Pro Family Developer’s Manual, Volume 1: Specifications”,

1996.

[17] Keeton, K., Patterson, D. A., He Y. Q., Raphael, R. C. and Baker W. E., "Performance Charac-

terization of a Quad Pentium Pro SMP Using OLTP Workloads," Proc. of the 25th Interna-

tional Symp. on Computer Architecture, June 1998.

[18] Keltcher, C., Kelly, J., Krishnsn, R., Peck, J., Polzin, S., Subramanian, S. and Weber, F.,

“AMD Athlon Northbridge with 4x AGP and Next Generation Memory Subsystem”, Hot

Chips 11, Aug. 1999.

[19] Landin, A., Hagersten, E. and Haridi, S., “Race-Free Interconnection Network and Multipro-

cessor Consistency”, Proc. of the Int’l Symp. on Computer Architecture, 1991.

[20] Micron Technology. Data Sheet, “64Meg:x4, x8, x16 SDRAM”, 1998.

[21] Stenstrom, P., Brorsson, M., Sandberg, L., “An Adaptive Cache Coherence Protocol Opti-

mized for Migratory Sharing”, Proc. of the 20th Annual International Symposium on Com-

puter Architecture, pp. 109-118, 1993.

[22] Sweazey, P. and Smith, A. J., “A Class of Compatible Cache Consistency Protocols and Their

Support by the IEEE Futurebus”, Proc. of the 13th International Symposium on Computer

Architecture, pp. 414–423, 1986.

[23] Tullsen, D. M., Eggers, S. J., and Levy, H., M., “Simultaneous Multithreading: Maximizing

On-Chip Parallelism”, Proc. of the 22rd Annual International Symposium on Computer Archi-

tecture, pp. 392-403, June 1995.

[24] Woo,S. C., Ohara, M., Torrie, E., Singh, J. P. and Gupta, A., “The SPLASH-2 Programs:

Characterization and Methodological Considerations”, Proc. of the 22nd Int’l Symp. on Com-

puter Architecture, pages 24-36, June 1995.

[25] Yang, C.K., Farjad-Rad, R. and Horowitz, M., "A 0.5 um CMOS 4Gbps transceiver with data

recovery using over sampling", IEEE J. Solid-State Circuits, vol. 33, pp. 713-722, May 1998.

