[cickano

Improving Proxy Cache
Performance-Analyzing Three
Cache Replacement Policies

John Dilley, Martin Arlitt
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto

HPL-1999-142
October, 1999

World-Wide
Web, proxy
caching,
replacement
policies,
performance
evaluation

Caching in the World Wide Web has been used to enhance the
scalability and performance of user access to popular web
content. Caches reduce bandwidth demand, improve response
times for popular objects, and help reduce the effects of so
called "flash crowds". There are several cache implementations
available from software and appliance vendors as well as the
Squid open source cache software.

The cache replacement policy determines which objects remain
in cache and which are evicted to make room for new objects.
The choice of this policy has an effect on the network
bandwidth demand and object hit rate of the cache (which is
related to page load time). This paper reports on the
implementation and characterization of two newly proposed
cache replacement policies in the Squid cache.

Internal Accession Date Only

6] Copyright Hewlett-Packard Company 1999

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

Improving Proxy Cache Performance -
Analyzing Three Cache Replacement Policies

John Dilley, Martin Arlitt - HP Laboratories, Palo Alto, CA, USA

ABSTRACT

Caching in the World Wide Web has been used to enhance the scalability and performance of user access to popular web con-
tent. Caches reduce bandwidth demand, improve response times for popular objects, and help reduce the effects of so called
“flash crowds”. There are several cache implementations available from software and appliance vendors as well as the Squid

open source cache software.

The cache replacement policy determines which objects remain in cache and which are evicted to make room for new objects.
The choice of this policy has an effect on the network bandwidth demand and object hit rate of the cache (which is related to
page load time). This paper reports on the implementation and characterization of two newly proposed cache replacement pol-
icies in the Squid cache.

1.0 INTRODUCTION 1.1 The Role of a Cache Replacement Policy

In the World Wide Web, caches store copies of previously® cache server has a fixed amount of storage for holding
retrieved web objects to avoid transferring those object@Pi€cts. When this storage space fills up the cache must
upon subsequent request. By preventing future transfer, tHg100S€ @ set of objects to evict in order to make room for
cache reduces the network bandwidth demand on the extef€Wly requested objects. Theache replacement policy

nal network, and usually reduces the average time it takes fgf€termines which objects should be removed from the cache.
aweb page to load. Web caches are located throughout tHa1€ 90al of the replacement policy is to make the best use of
Internet, from the user's browser cache through local proxy?vailable resources, including disk and memory space, and
caches and backbone caches, to the so called reverse pra%twerk bandwidth. Since web use is the dominant cause of
cache located near the origin of web content. These cach&§tWork backbone traffic today the choice of cache replace-

different sets of users and have slightly different goals. ment policies can have a significant impact in global network
traffic, as well as local resource utilization.

Proxy caches can be implemented either as explicit or trans- o
parent proxies. Explicit proxies require the user to configurel.1.1 Web Proxy Workload Characterization

their browser to send HTTP GET requests to the proxy.

Transparent proxies do not require the browser to be explicf‘ cach?r re;;lacenlllent dpE)I!IhCy musktl bed%valugtt)ed vtvr:th rﬁspect
itly configured; instead, a network element (switch or router) 0 an offered workioad. The workioad describes the charac-
ristics of the requests being made of the cache. Of particu-

in the connection path intercepts requests to TCP port 80~ " .) .
(the standard HTTP port) and redirects that traffic to thear interest is the pattern of references: how many objects are
qferenced, and what is the relationship among accesses.

cache. The cache then determines if it can serve the object : " .
all, and if so whether the object is already in cache. Since ypically workloads are sufficiently complicated that they

cached objects can change on the origin server without thgannot be described with a simple formula. Instead, traces of

cache being informed, a proxy cache must determin@cwal live execution are often the best way to describe a
whether each object it slervesfieshor not: if not, the cache realistic workload. This has the advantage of being real (as

validates the object with its origin server, otherwise it Servescompared with a synthetic workload), but has the drawback

it directly. This freshness decision is typically based uponOf not capturing changing behavior, or the behavior of a dif-

the object's last modification time and the time of Iastferent set of users. Once a workload is available, either ana-

retrieval or validation. The validation returns a fresh copy of!yt'clal ort (imp|r|cal,bthe efﬁuegcy of various cache
the object or a status code indicating the object has ngfnpiementations can be compared.
changed.

Page 1 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

Recent studies of web workloads have shown tremendouNote that object hit rate and byte hit rate trade off against
breadth and turnover in the popular object set [AFJ99Jeach other. In order to maximize object hit rate it is better to
[DFK97]. In [AFJ99] we describe in detail the characteriza- keep many small popular objects. A single large object, say
tion of a large data set obtained by tracing every requesiO MB, will displace many smaller objects (1024 10 KB
made by a population of thousands of home users connecteibjects). However, to optimize the byte hit rate it is better to
to the web via cable modem technology over a five monttkeep large popular objects. It is clearly preferable to keep
period. With this trace it is possible to observe long-termobjects that will be popular in the future and evict unpopular
dynamics in request traces of real users. We developed @nes; the trade-off is whether to bias against large objects or
simulator that could explore the behavior of various cachenot. To summarize, an ideal cache replacement policy should
replacement policies under this empirical workload. Thisbe able to accurately determine future popularity of docu-
workload characterization led to the development of newments and choose how to use its limited space in the most
cache replacement policies, which we implemented and valiadvantageous way. In the real world, we must develop heu-
dated. The remainder of this article summarizes the impleristics to approximate this ideal behavior.

mentation and validation of these policies in the Squid open

source proxy cache. 1.2 Related Work

1.1.2 Measures of Efficiency Cache replacement has been described and analyzed since
- o processor memory caching was invented. In each case, the

The most popular measure of cache efficiency is hit rat€gompination of replacement policy and offered workload
This is the number of times that objects in the cache are regetermine the efficiency of the cache in optimizing the utili-
referenced. A hit rate of 70% indicates that seven of every 1Q4tion of system resources. One of the most popular replace-
requests to the cache found the object being requested. pent policies is theLeast Recently UsedLRU) policy,

hich evicts the object that has not been accessed for the
ongest time. This policy works well when there is a high
mporal locality of reference in the workload (that is, when

Another important measure of web cache efficiency is byt
hit rate. This is the number of bytes returned directly from
the cache as a fraction of the total bytes accessed. This me . .
sure is not often used in cache studies in computer syster[ﬁ]ost recen.tly.referenced objects are most I|ker_ to .be refer-
architecture because the objects (cache lines) are of consta?‘ﬂce‘d agan in .the hear futgre). The LRU policy is ofFen

size. However, web objects vary greatly in size, from a fev\)mplg_mented using a Imket_d list ordered by I‘.”ISt access tume.
bytes to millions. Byte hit rate is of particular interest Addition anq removal of opjects from thg list s dgne in O(1)

because the external network bandwidth is a limited resourcgconStant) “'T”e b_y accessing only the tail of the list. Update;
(sometimes scarce, often expensive). A byte hit rate of 300)6vhen an pbject IS referenced glso can be accomplished in
indicates that 3 of 10 bytes requested by clients Werﬁonstant time by moving the object to the head of a doubly-

returned from the cache; conversely 70% of all bytes nked list.
returned to users were retrieved across the external networknother common policy id east Frequently UsedFU).

Other measures of cache efficiency include the cache servg}['thte:cg] refere%e tﬂfﬁ? Oblj.eCt' a rttafe;;]enc%_cotmt |_?h|ntcr:]re—
CPU or 10 system utilization, which are driven by the cache/Mented by oneé. 1The policy evicts the objects wi e

server's implementation. Average object retrieval latency (Ollowest reference count when it makes replacement decisions.

page load time) is a measure of interest to end users and ot __n||ke LRU, the LFU policy cannot be implemented with a

ers. Latency is inversely proportional to object hit rate -- a inked list (either removal or insertion in the list upon update

cache hit served without remote communication is quicker td’VOUId take O(N) (linear) time). Sometimes a priority queue

complete than a request that must pass through the cache%eap) is used to implement the LFU policy. With a heap,

an origin server and back. However, it is not possible to guar'—nsert'on and updafce are done on Olog N) time. _Unfc_)rtu—
ately, the LFU policy can suffer from cache pollution: if a

antee that latency is minimized by increasing hit rate. It ma)}1 ; L -
formerly popular object becomes unpopular, it will remain in

be that caching a few documents with high download latenc ; . .
would reduce average latency more than caching many |0§Pe cache a long time, preventing other newly (or slightly

latency documents. End user latency is difficult to measure a{?ss) popular objects from replacing it. A variant of the LFU

the cache, and can be significantly affected by factors outsid@oncy’ theLFU-Aging policy considers both_the access fre-
quency of an object and the age of the object in cache (the

the cache. Our study focused primarily on (object) hit rate : .
and byte hit rate. We also examine CPU utilization to asses cency of last access). The aging policy addresses the cache

whether the new replacement policies are viable for use in BOHU'[IOI’] that occurs due to turnover in the popular object
large, busy cache. se

Page 2 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

Other research has defined additional replacement policie#d/e also implemented and tested a variant of GDSF that did
optimized for the web. Th&reedyDual-Siz€d GDS) policy not include the aging factor. Since the SPECweb workload
takes into account size and a cost function for retrievingdoes not exhibit turnover in the set of popular objects, these
objects. The GDS policy is proposed in [CI97], which alsoreplacement policies behaved identically in our benchmark.
provides a good survey of existing replacement policiesHowever in real usage frequency based policies can suffer
GDS is explored as well in [AFJ99], where the alternativesignificant cache pollution. This underscores the need for
replacement policies we explore are proposed. Ircaution when interpreting benchmark results.

[ACDFJ99] the GDS policy is refined to account for fre-

quency, leading to the definition of two new policies which2.1 Implementation Experiences - Squid 2

are examined in the next section.
We implemented our cache replacement policies in two sep-

2.0 NEW REPLACEMENT POLICIES arate versions of Squid, first version 1.1.20, then
2.2.STABLE3. These versions had significantly different
The most widely deployed proxy cache server today seemignplementations of the replacement algorithm. The earlier
to be theSquidopen source software package [Squid]. Squidversion was much easier to implement our policies, however
is highly portable, freely available in source code form, andthe later version is what is now being used in the field. We
has an active, experienced developer community that pramplemented and validated our policies in Squid 2 and have
vides free support. The availability of source code and techsince released the source modifications back to the Squid
nical assistance led to our choice of Squid to experimencommunity. Our code modifications will be available in the
with our new cache replacement policies. 2.3 version of Squid. Details of our implementation experi-

) ~ences can be found in [DAP99].
The replacement policy that has been used by Squid is the

LRU policy. We designed and implemented in Squid two3) REPLACEMENT PoLICY
new variants of the LFU and GDS policies, based upon anal-
ysis and trace-based simulation of the web workload men- VALIDATION

tioned earlier [ACDFJ99]. : . .
I arlier | | When developing the replacement policies we studied web

o GDS-FrequencyGDSF): This variant of the Greedy workloads to identify the characteristics that best identify the
Dual-Size policy takes into account frequency of refer-valuable objects to keep in the cache. Based upon this we
ence in addition to size. This policy is optimized to keepproposed the two parameterless replacement policies
more popular, smaller objects in cache to maximizedescribed earlier. We implemented the policies in a cache
object hit rate. The GDSF policy assigns a key to eachsimulator and ran the five-month trace on each replacement
object computed as the object’s reference count dividegbolicy to measure its effectiveness in terms of hit rate and
by its size, plus the cache age factor. By adding thepyte hit rate. We then wanted to validate our simulation
cache age factor we limit the influence of previously results through empirical measurement to assess how they
popular documents, as described below for LFUDA. performed in practice and to assess factors we could not

« LFU with Dynamic Aging(LFUDA): This variant of observe in the simulator, such as CPU resource consumption

LFU uses dynamic aging to accommodate shifts in theano| access latency.

set of popular objects. In the dynamic aging policy, an order to validate the cache replacement policies we built
cache age factor is added to the reference count when &hth an unmodified Squid cache server and versions that
object is added to the cache or an existing object is reysed each of our proposed policies. We configured the Squid
referenced. This prevents previously popular documentgeryer as an HTTP accelerator for an Apache web server on
from polluting the cache. Instead of adjusting all key the same node. In accelerator mode, the Squid server acts as
values in the cache, as some aging mechanisms requirg reverse proxy cache: it accepts client requests, serves them
the dynamic aging policy simply increments the cachegyt of cache if possible, or requests them from the origin
age when evicting objects from the cache [AFJ99], setxeryer for which it is the reverse proxy. This setup allowed us

t|ng it to the key value of the evicted ObjeCt. This has theto use the SPECweb benchmark package as a workload gen-
property that the cache age is always less than or equgkator.

to the minimum key value in the cache. This also pre-

vents the need for parameterization of the policy, whichSPECweb was designed to web servers performance, and is

LFU-Aging requires. not an ideal tool for characterization of proxy performance.
We had to modify the SPECweb client driver to cause it to
use a working set of sufficient breadth at lower demand lev-

Page 3 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

els. The standard SPECweb benchmark working set

. . Figure 1 - Squid 2 Hit rate (percent)
[SPECweb] is proportional to the target load (ops/sec), but gg

for a proxy benchmark we wanted the broadest possible GDSF g

workload to exercise the replacement policies. We modified 80 LL';LLJJDQ i s
the manager script so that client processes always used the |LRU L 0o 57
maximum working set size regardless of the target through—75 ////E’"/

put. We were also able to create a fileset on disk with 36,000 -l g 0 1o
unigue objects in only a fraction of the 2 GB disk space nor- -0 /B/E O g S g8 f
mally required through use of directory symbolic links. This g U ew "

n

O
setup was suitable for examining the hit rate of a Squid e
reverse proxy cache under various replacement policies. 5

To test the implementations we ran the SPECweb client 60
driver on a test system and pointed it at the Squid HTTP 10 20 30 40 50 60 70 &
accelerator port on the system under test. We assessed the Total requests (thousand)

correctness of the cache implementation as well as its effi-)

ciency in terms of hit rate and byte hit rate. We examined the-1.1 Hit Rates

resulting Squid cache logs to ensure that it was repIaCIm%igure 1 presents the object hit rate of the replacement poli-

documents according to the intent of the replacement policy,_ :
as well as to determine the hit rate and byte hit rate of theCles running under the SPECweb workload. The GDSF pol

entire SPECweb run. We did not use a cache warm-up perio'&y shqws' |mprovement over LRU, as predicted by our
in our tests Simulation: by keeping more smaller, more popular docu-

ments in cache the hit rate is improved.

3.1 Squid 2 Validation With LFUDA, keeping more popular documents also
o)) o improves in hit rate over LRU_H, however note that LRU_L
Some of our initial observations from Squid 2 were difficult 55 5 glightly better hit rate than LFUDA. In our simulation,
to explain. This led us to implement a heap-based LRUY gyypa achieved a higher hit rate than LRU, and in fact it
replacement policy in addition to the list-based LRU 10 bet-ychieves a noticeable higher hit rate than the LRU_H policy.
ter understand the effects of the changes we had made to tig by utilizing what amounts to a larger memGry area
cache maintenance routine when replacing the list-basegdryy | is aple to outperform LFUDA in this test.
LRU policy with our new heap-based policies. Some of the -
important differences between the list-based (LRU) andrigure 2 presents the byte hit rate of the four policies. From
heap-based replacement policies (GDSF, LFUDA, andhis graph the only conclusion we could draw was that all of
LRU_HEAP) are: the policies achieved roughly equal byte hit rate. Given the
« The new policies do not touch object metadata as ofterr]]igh yariance in_ byte hit rate iF Is diffi_cul'_c 0 dr_aw more sub-
Stantial conclusions about which policy is optimal. From our

as the standard policy. They let memory usage grow to a. . . :

; . . Simulation with document sizes drawn from an actual web
high water mark before making any replacement dE’C"workload the LFUDA policy achieves better byte hit rate
sions. As aresult they tend to use less CPU time than the policy y

standard LRU policy, which examines many more

objects per object released. Figure 2 - Squid 2 Byte hit rate (percent)
54
« The new policies are more aggressive when evicting GDSF —5—
. . 2o [LFUDA ¢ 3
objects from the cache. When the memory usage is high g_-
- cact : _ LRUH a g B8
enough they will evict objects regularly until the low s50|LRU L 0o - R B g E
water mark is reached. As a result these policies tend to O B/H/ _\iﬂ A
run with fewer objects in cache as compared to the stan-48 ~ g " // -
dard LRU policy, which keeps cache storage space 46 DEL,E,,,./-/'/
closer to the high water mark. 44 &H/
/i
In the following graphs, LRU_L indicates the original LRU 42 E,,ﬁl
linked-list policy; LRU_H indicates the heap-based LRU ref- o

erence implementation; and GDSF and LFUDA are the new 40

.. . 10 20 30 40 50 60 70 80
policies described above. Total requests (thousand)

Page 4 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

Figure 4: Squid 2 Average response time (msec)

Figure 3 - Squid 2 User CPU time (seconds) 300
300 —=5=F GDSF &
LFUDA = LFUDA o
- , 250 |LRU_H =
250fLRU_H —=— o A LRUL o
LRU_L 1o - ;25}/ —H
200 2 oo
200 O H
o & 150) | ! i E
150 | ;///E?/ o g O S
e ol | 0
MY 1 \\ e . Ng———H
100 o | = SR
ﬁ?& nBEE—E .

10 20 30 40 50 60 70 80

10 20 30 4 50 60 70 80 Total requests (thousand)

Total requests (thousand)

than the other two policies, followed by LRU and finally policy has higher and more variable response times. This is
GDSF. due to the extra time spent computing the LRU reference age

and examining the same object multiple times without
The reason the variance is so large is that there are few largeplacing or moving it.

popular objects in the SPECweb workload, and the workload

for each run makes different requests of the cache. If a cacHdOte that this extra time apparently seems to translate into a
hit happens to occur on one of the large objects it has Qigher hit rate for LRU_L. However, as noted earlier the list-
noticeable effect on the byte hit rate for that run. In order toP@S€d policy allows the cache to operate closer to the high

better understand the behavior of the replacement policie¥@t€r mark, so LRU_L has a larger effective cache space to

under a consistent workload we have run a separate charaf©"k with than LRU_H does. This can be altered by setting

terization using a tool that is able to replay a request trace. the 10w water mark higher for the heap implementation, but
we did not do that because we wanted the cache parameters

3.1.2 CPU Utilization to be identical for all of our tests.

Figure 3 presents the user CPU utilization of the replacemerd,) = REVALIDATION USING LOG
policies. The results indicate that the heap-based implemen- REPLAY

tation of the GDSF and LFUDA policies consume less user

an? systesm %PZU It|me thgn Itheh orrllgmalbLRUd rlt_agljc_em?anﬁn our SPECweb validation we observed significant variation
policy In Squid 2. Interestingly the heap-base IMP'€~i the byte hit rate among the policies. There was also signif-

mentation also consumes less CPU time than the ongiNgeant variation between successive runs of the same policy.

list-based LRU implementation. This is due to the optimiza-\ye \yanted to eliminate this variability by using a repeatable

tions made in running the replacement algorithm, which P€hut still SPECweb-like workload. This section presents the
forms fewer computations per released object and releas?ésults of that experiment

more objects on average per active invocation. (An “active
invocation” is one in which work is done. Most invocations The offered workload in each of the SPECweb runs was sta-
of this function check the storage utilization and return with-tistically equivalent in terms of the request size and popular-
out examining any objects.) ity distribution since we used the same workload

Svstem CPU time | v th tor all impl configuration for all the tests. However, the requests made to
ystem Ime 1S very hearly the same for all Implemens, o proxy varied pseudo-randomly from run to run, which

tations a_nd less than half the gser_CPU time. We COnCIUdEan have a significant effect on the byte hit rate. When large,
t_hat Squid spend_s _most .Of Its time In user code,_and of th"’\,tmpopular objects are requested they can replace a relatively
tlme_ not much of it is attnbutaple to the computational COm'large number of smaller objects. If such an object is re-refer-
plexity of the replacement policy. enced it will have a significant positive impact on the byte hit
rate for that cache run since there are relatively few large
objects but they consume a significant portion of the disk
When we examine response time we see further evidence gpPace and transfer bandwidth. The table below summarizes
inefﬁciency in the 0rigina| Squ|d 2 rep|acement p0||Cy By the SPECweb file size and popularity distributions by class.
comparing the two LRU policies we see that the list-based

3.1.3 Response Time

Page 5 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

From the table it is apparent why large objects have a proa high hit rate difficult, and especially a high byte hit rate.
nounced impact on the byte hit rate. With this revalidationHowever there is room for improvement. We implemented
we wanted to eliminate the variance in the workload in ordeitwo frequency-based cache replacement policies in the Squid

to create an apples-to-apples comparison of the policies.

open source proxy cache and observed their effects under a
synthetic workload generated by SPECweb. The empirical
results corroborate our earlier simulation results. We then
observed their effects under a fixed workload and were able
to better discern performance characteristics among the poli-

Tablel SPECweb Request Distribution cies. In hindsight, SPECweb was not the best workload
driver, other than to generate a working set.
Class % Regs % Bytes Avg Bytep
These results are encouraging in that a more sophisticated
0, 0
0 35 % 1.8% 87 (for example heap-based) replacement policy can be imple-
1 50 % 17.5 % 5,314 mented in a real cache implementation without degrading the
cache’s performance. This follows intuition, since the domi-
0,)
2 14 % 46.5% 50,29(nant component of the proxy cache workload is I/O (network
3 1% 34.1 % 516,40(and disk). Since the CPU is not the bottleneck resource, it is

worthwhile to invest a few extra cycles in the replacement
policy to eliminate disk or network 1/0. The Squid experi-
ence reported here is likely true as well for other cache
In order to examine the behavior of the policies under a conimplementations; we have anecdotal evidence that other
sistent workload we used an internal tool called http tocache servers have successfully implemented more sophisti-
replay a log file (request trace) against each Squid 2 cacHedted cache replacement algorithms.

implementation. The request log file we used was generattcaé

4.1 New Approach

by an earlier SPECweb test on a Squid cache that ma s bandwidth becomes cheaper and more available caching

. o ill play a greater role in reducing access latency and origin
approximately 100,000 requests. We partitioned the trac%erv%r)éen?and than simply bandg\]/vidth. To achie\)//e the grtgaat-

e o, dlests a1 1eP0YL Lty recucton and orign seier demand a cache
Y P PRfould strive to optimize cache hit rate; but while (or where)

icy implementations. bandwidth is dear the cache must focus on improving byte
hit rate. For this reason a configurable cache replacement
policy is advantageous to cache administrators. Our imple-

These results from this further investigation broadly corrobo-mentation as released in Squid 2.3 allows this choice through

rated our SPECweb experiments and further refined them b€ Standard cache configuration mechanism.

requesting the same set of URLs in the same order from eaghy;rthermore, the impact of consistency validation of cached
of the replacement policy implementations. With the Consisypjects become more significant as local bandwidth and
tent workload we saw that the GDSF policy is a consistently,ccess [atency improves. Wide area bandwidth is improving
significant improvement over LRU in Squid, as was pre-a5 well, but wide area latency is bounded by the speed of
dicted through our earlier trace-driven simulation. light and the number of network round trips that must be

We ran this validation using several of the traces from ouffade 1o satisfy a user request. A consistency check for a
initial SPECweb benchmark tests, all with similar results.STall (LKB) object usually takes as long as retrieving the

There are variations between the runs, but with a single daf@/€Ct in the first place. We intend to further analyze this,
set the curves are substantially the same as the ones pfd2d aré exploring techniques for improving object consis-
sented here: they have similar shape (but smoother) and tfig"CY In large scale wide area distributed systems.

policies have the same relative order.
6.0 ACKNOWLEDGMENTS

4.2 Summary of Findings

5.0 CONCLUSIONS AND FUTURE WORK Godfrey Tan contributed to the implementation of these poli-

The choice of a cache replacement policy can have a marke,(aes in Squid 1. His efforts were also iqstrgmental in mo_dify-
effect on the network bandwidth demand and object hit ratd"9 theé SPECweb98 tool ‘and validating the Squid 1
of a proxy cache. From our earlier work we observed that thdTPlementation of these policies. Stéphane Perret also con-
tremendous breadth of a real web workload makes achievinjiPuted to the development and documentation of this work.

Page 6 of 7

Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies

We also appreciate the comments we received from Terence
Kelley and Yee Man Chan, and the dedication of the Squid
community to making the Squid proxy cache implementa-
tion widely available and well supported.

7.0 REFERENCES

ACDFJ99. M. Arlitt, L. Cherkasova, J. Dilley, R.
Friedrich, and T. Jin, “Evaluating Content Management
Techniques for Web Proxy Caches”, in Proceedings of the
2nd Workshop on Internet Server Performance (WISP ‘99),
Atlanta GA, May 1999.

AFJ99. M. Arlitt, R. Friedrich, and T. Jin, “Workload
Characterization of a Web Proxy in a Cable Modem Environ-
ment”, in Performance Evaluation Review, August 1999.

Cl97. P. Cao and S. Irani, “Cost-Aware WWW Proxy
Caching Algorithms”, USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, pp. 193-206,
December 1997.

DAP99. J. Dilley, M. Arlitt, S. Perret, “Enhancement
and Validation of Squid’s Cache Replacement Policy”, Tech-
nical Report HPL-1999-69, Hewlett-Packard Laboratories,
May 1999.

DFK97. F. Douglis, A. Feldmann, and B. Krishnamur-
thy, “Rate of Change and Other Metrics: A Live Study of the
World-Wide Web”, USENIX Symposium on Internet Tech-
nologies and Systems, Monterey, CA, pp 147-158, Decem-
ber 1997.

SPECweb. The Workload of SPECweb Benchmark, http:/
www.spec.org/osg/web96/workload.html

Squid. Squid Internet Object Cache, http://
squid.nlanr.net/

Page 7 of 7

	Improving Proxy Cache Performance - Analyzing Three Cache Replacement Policies
	John Dilley, Martin Arlitt - HP Laboratories, Palo Alto, CA, USA
	1.0 Introduction
	1.1 The Role of a Cache Replacement Policy
	1.1.1 Web Proxy Workload Characterization
	1.1.2 Measures of Efficiency

	1.2 Related Work

	2.0 New Replacement Policies
	2.1 Implementation Experiences - Squid 2

	3.0 Replacement Policy Validation
	3.1 Squid 2 Validation
	3.1.1 Hit Rates
	3.1.2 CPU Utilization
	3.1.3 Response Time

	4.0 Revalidation Using Log Replay
	Table 1 SPECweb Request Distribution
	4.1 New Approach
	4.2 Summary of Findings
	5.0 Conclusions and Future Work
	6.0 Acknowledgments
	7.0 References
	ACDFJ99
	AFJ99
	CI97
	DAP99
	DFK97
	SPECweb
	Squid

