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Improving Proxy Cache Performance -
Analyzing Three Cache Replacement Policies

John Dilley, Martin Arlitt - HP Laboratories, Palo Alto, CA, USA

ABSTRACT

Caching in the World Wide Web has been used to enhance the scalability and performance of user access to popular web con-
tent. Caches reduce bandwidth demand, improve response times for popular objects, and help reduce the effects of so called
“flash crowds”. There are several cache implementations available from software and appliance vendors as well as the Squid
open source cache software.

The cache replacement policy determines which objects remain in cache and which are evicted to make room for new objects.
The choice of this policy has an effect on the network bandwidth demand and object hit rate of the cache (which is related to
page load time). This paper reports on the implementation and characterization of two newly proposed cache replacement pol-
icies in the Squid cache.
1.0 INTRODUCTION

In the World Wide Web, caches store copies of previously
retrieved web objects to avoid transferring those objects
upon subsequent request. By preventing future transfer, the
cache reduces the network bandwidth demand on the exter-
nal network, and usually reduces the average time it takes for
a web page to load. Web caches are located throughout the
Internet, from the user’s browser cache through local proxy
caches and backbone caches, to the so called reverse proxy
cache located near the origin of web content. These caches
different sets of users and have slightly different goals.

Proxy caches can be implemented either as explicit or trans-
parent proxies. Explicit proxies require the user to configure
their browser to send HTTP GET requests to the proxy.
Transparent proxies do not require the browser to be explic-
itly configured; instead, a network element (switch or router)
in the connection path intercepts requests to TCP port 80
(the standard HTTP port) and redirects that traffic to the
cache. The cache then determines if it can serve the object at
all, and if so whether the object is already in cache. Since
cached objects can change on the origin server without the
cache being informed, a proxy cache must determine
whether each object it serves isfreshor not; if not, the cache
validates the object with its origin server, otherwise it serves
it directly. This freshness decision is typically based upon
the object’s last modification time and the time of last
retrieval or validation. The validation returns a fresh copy of
the object or a status code indicating the object has not
changed.

1.1 The Role of a Cache Replacement Policy

A cache server has a fixed amount of storage for holdi
objects. When this storage space fills up the cache m
choose a set of objects to evict in order to make room f
newly requested objects. Thecache replacement policy
determines which objects should be removed from the cac
The goal of the replacement policy is to make the best use
available resources, including disk and memory space, a
network bandwidth. Since web use is the dominant cause
network backbone traffic today the choice of cache replac
ment policies can have a significant impact in global netwo
traffic, as well as local resource utilization.

1.1.1 Web Proxy Workload Characterization

A cache replacement policy must be evaluated with resp
to an offered workload. The workload describes the chara
teristics of the requests being made of the cache. Of parti
lar interest is the pattern of references: how many objects
referenced, and what is the relationship among acces
Typically workloads are sufficiently complicated that the
cannot be described with a simple formula. Instead, trace
actual live execution are often the best way to describe
realistic workload. This has the advantage of being real (
compared with a synthetic workload), but has the drawba
of not capturing changing behavior, or the behavior of a d
ferent set of users. Once a workload is available, either a
lytical or empirical, the efficiency of various cache
implementations can be compared.
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Recent studies of web workloads have shown tremendous
breadth and turnover in the popular object set [AFJ99]
[DFK97]. In [AFJ99] we describe in detail the characteriza-
tion of a large data set obtained by tracing every request
made by a population of thousands of home users connected
to the web via cable modem technology over a five month
period. With this trace it is possible to observe long-term
dynamics in request traces of real users. We developed a
simulator that could explore the behavior of various cache
replacement policies under this empirical workload. This
workload characterization led to the development of new
cache replacement policies, which we implemented and vali-
dated. The remainder of this article summarizes the imple-
mentation and validation of these policies in the Squid open
source proxy cache.

1.1.2 Measures of Efficiency

The most popular measure of cache efficiency is hit rate.
This is the number of times that objects in the cache are re-
referenced. A hit rate of 70% indicates that seven of every 10
requests to the cache found the object being requested.

Another important measure of web cache efficiency is byte
hit rate. This is the number of bytes returned directly from
the cache as a fraction of the total bytes accessed. This mea-
sure is not often used in cache studies in computer system
architecture because the objects (cache lines) are of constant
size. However, web objects vary greatly in size, from a few
bytes to millions. Byte hit rate is of particular interest
because the external network bandwidth is a limited resource
(sometimes scarce, often expensive). A byte hit rate of 30%
indicates that 3 of 10 bytes requested by clients were
returned from the cache; conversely 70% of all bytes
returned to users were retrieved across the external network.

Other measures of cache efficiency include the cache server
CPU or IO system utilization, which are driven by the cache
server’s implementation. Average object retrieval latency (or
page load time) is a measure of interest to end users and oth-
ers. Latency is inversely proportional to object hit rate -- a
cache hit served without remote communication is quicker to
complete than a request that must pass through the cache to
an origin server and back. However, it is not possible to guar-
antee that latency is minimized by increasing hit rate. It may
be that caching a few documents with high download latency
would reduce average latency more than caching many low
latency documents. End user latency is difficult to measure at
the cache, and can be significantly affected by factors outside
the cache. Our study focused primarily on (object) hit rate
and byte hit rate. We also examine CPU utilization to assess
whether the new replacement policies are viable for use in a
large, busy cache.

Note that object hit rate and byte hit rate trade off again
each other. In order to maximize object hit rate it is better
keep many small popular objects. A single large object, s
10 MB, will displace many smaller objects (1024 10 KB
objects). However, to optimize the byte hit rate it is better
keep large popular objects. It is clearly preferable to ke
objects that will be popular in the future and evict unpopul
ones; the trade-off is whether to bias against large objects
not. To summarize, an ideal cache replacement policy sho
be able to accurately determine future popularity of doc
ments and choose how to use its limited space in the m
advantageous way. In the real world, we must develop he
ristics to approximate this ideal behavior.

1.2 Related Work

Cache replacement has been described and analyzed s
processor memory caching was invented. In each case,
combination of replacement policy and offered workloa
determine the efficiency of the cache in optimizing the util
zation of system resources. One of the most popular repla
ment policies is theLeast Recently Used(LRU) policy,
which evicts the object that has not been accessed for
longest time. This policy works well when there is a hig
temporal locality of reference in the workload (that is, whe
most recently referenced objects are most likely to be ref
enced again in the near future). The LRU policy is ofte
implemented using a linked list ordered by last access tim
Addition and removal of objects from the list is done in O(1
(constant) time by accessing only the tail of the list. Updat
when an object is referenced also can be accomplished
constant time by moving the object to the head of a doub
linked list.

Another common policy isLeast Frequently Used(LFU).
With each reference to an object, a reference count is inc
mented by one. The LFU policy evicts the objects with th
lowest reference count when it makes replacement decisio
Unlike LRU, the LFU policy cannot be implemented with a
linked list (either removal or insertion in the list upon upda
would take O(N) (linear) time). Sometimes a priority queu
(heap) is used to implement the LFU policy. With a hea
insertion and update are done on O(log N) time. Unfort
nately, the LFU policy can suffer from cache pollution: if a
formerly popular object becomes unpopular, it will remain i
the cache a long time, preventing other newly (or slight
less) popular objects from replacing it. A variant of the LFU
policy, theLFU-Aging policy considers both the access fre
quency of an object and the age of the object in cache (
recency of last access). The aging policy addresses the ca
pollution that occurs due to turnover in the popular obje
set.
Page 2 of 7
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Other research has defined additional replacement policies
optimized for the web. TheGreedyDual-Size(GDS) policy
takes into account size and a cost function for retrieving
objects. The GDS policy is proposed in [CI97], which also
provides a good survey of existing replacement policies.
GDS is explored as well in [AFJ99], where the alternative
replacement policies we explore are proposed. In
[ACDFJ99] the GDS policy is refined to account for fre-
quency, leading to the definition of two new policies which
are examined in the next section.

2.0 NEW REPLACEMENT POLICIES

The most widely deployed proxy cache server today seems
to be theSquidopen source software package [Squid]. Squid
is highly portable, freely available in source code form, and
has an active, experienced developer community that pro-
vides free support. The availability of source code and tech-
nical assistance led to our choice of Squid to experiment
with our new cache replacement policies.

The replacement policy that has been used by Squid is the
LRU policy. We designed and implemented in Squid two
new variants of the LFU and GDS policies, based upon anal-
ysis and trace-based simulation of the web workload men-
tioned earlier [ACDFJ99].

● GDS-Frequency(GDSF): This variant of the Greedy
Dual-Size policy takes into account frequency of refer-
ence in addition to size. This policy is optimized to keep
more popular, smaller objects in cache to maximize
object hit rate. The GDSF policy assigns a key to each
object computed as the object’s reference count divided
by its size, plus the cache age factor. By adding the
cache age factor we limit the influence of previously
popular documents, as described below for LFUDA.

● LFU with Dynamic Aging(LFUDA): This variant of
LFU uses dynamic aging to accommodate shifts in the
set of popular objects. In the dynamic aging policy, a
cache age factor is added to the reference count when an
object is added to the cache or an existing object is re-
referenced. This prevents previously popular documents
from polluting the cache. Instead of adjusting all key
values in the cache, as some aging mechanisms require,
the dynamic aging policy simply increments the cache
age when evicting objects from the cache [AFJ99], set-
ting it to the key value of the evicted object. This has the
property that the cache age is always less than or equal
to the minimum key value in the cache. This also pre-
vents the need for parameterization of the policy, which
LFU-Aging requires.

We also implemented and tested a variant of GDSF that
not include the aging factor. Since the SPECweb worklo
does not exhibit turnover in the set of popular objects, the
replacement policies behaved identically in our benchma
However in real usage frequency based policies can su
significant cache pollution. This underscores the need
caution when interpreting benchmark results.

2.1 Implementation Experiences - Squid 2

We implemented our cache replacement policies in two se
arate versions of Squid, first version 1.1.20, the
2.2.STABLE3. These versions had significantly differen
implementations of the replacement algorithm. The earl
version was much easier to implement our policies, howev
the later version is what is now being used in the field. W
implemented and validated our policies in Squid 2 and ha
since released the source modifications back to the Sq
community. Our code modifications will be available in th
2.3 version of Squid. Details of our implementation exper
ences can be found in [DAP99].

3.0 REPLACEMENT POLICY

VALIDATION

When developing the replacement policies we studied w
workloads to identify the characteristics that best identify th
valuable objects to keep in the cache. Based upon this
proposed the two parameterless replacement polic
described earlier. We implemented the policies in a cac
simulator and ran the five-month trace on each replacem
policy to measure its effectiveness in terms of hit rate a
byte hit rate. We then wanted to validate our simulatio
results through empirical measurement to assess how t
performed in practice and to assess factors we could
observe in the simulator, such as CPU resource consump
and access latency.

In order to validate the cache replacement policies we bu
both an unmodified Squid cache server and versions t
used each of our proposed policies. We configured the Sq
server as an HTTP accelerator for an Apache web server
the same node. In accelerator mode, the Squid server act
a reverse proxy cache: it accepts client requests, serves t
out of cache if possible, or requests them from the orig
server for which it is the reverse proxy. This setup allowed
to use the SPECweb benchmark package as a workload g
erator.

SPECweb was designed to web servers performance, an
not an ideal tool for characterization of proxy performanc
We had to modify the SPECweb client driver to cause it
use a working set of sufficient breadth at lower demand le
Page 3 of 7
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[SPECweb] is proportional to the target load (ops/sec), but
for a proxy benchmark we wanted the broadest possible
workload to exercise the replacement policies. We modified
the manager script so that client processes always used the
maximum working set size regardless of the target through-
put. We were also able to create a fileset on disk with 36,000
unique objects in only a fraction of the 2 GB disk space nor-
mally required through use of directory symbolic links. This
setup was suitable for examining the hit rate of a Squid
reverse proxy cache under various replacement policies.

To test the implementations we ran the SPECweb client
driver on a test system and pointed it at the Squid HTTP
accelerator port on the system under test. We assessed the
correctness of the cache implementation as well as its effi-
ciency in terms of hit rate and byte hit rate. We examined the
resulting Squid cache logs to ensure that it was replacing
documents according to the intent of the replacement policy,
as well as to determine the hit rate and byte hit rate of the
entire SPECweb run. We did not use a cache warm-up period
in our tests.

3.1 Squid 2 Validation

Some of our initial observations from Squid 2 were difficult
to explain. This led us to implement a heap-based LRU
replacement policy in addition to the list-based LRU to bet-
ter understand the effects of the changes we had made to the
cache maintenance routine when replacing the list-based
LRU policy with our new heap-based policies. Some of the
important differences between the list-based (LRU) and
heap-based replacement policies (GDSF, LFUDA, and
LRU_HEAP) are:

● The new policies do not touch object metadata as often
as the standard policy. They let memory usage grow to a
high water mark before making any replacement deci-
sions. As a result they tend to use less CPU time than the
standard LRU policy, which examines many more
objects per object released.

● The new policies are more aggressive when evicting
objects from the cache. When the memory usage is high
enough they will evict objects regularly until the low
water mark is reached. As a result these policies tend to
run with fewer objects in cache as compared to the stan-
dard LRU policy, which keeps cache storage space
closer to the high water mark.

In the following graphs, LRU_L indicates the original LRU
linked-list policy; LRU_H indicates the heap-based LRU ref-
erence implementation; and GDSF and LFUDA are the new
policies described above.

3.1.1 Hit Rates

Figure 1 presents the object hit rate of the replacement p
cies running under the SPECweb workload. The GDSF p
icy shows improvement over LRU, as predicted by ou
simulation: by keeping more smaller, more popular doc
ments in cache the hit rate is improved.

With LFUDA, keeping more popular documents als
improves in hit rate over LRU_H, however note that LRU_
has a slightly better hit rate than LFUDA. In our simulation
LFUDA achieved a higher hit rate than LRU, and in fact
achieves a noticeable higher hit rate than the LRU_H polic
But by utilizing what amounts to a larger memory are
LRU_L is able to outperform LFUDA in this test.

Figure 2 presents the byte hit rate of the four policies. Fro
this graph the only conclusion we could draw was that all
the policies achieved roughly equal byte hit rate. Given t
high variance in byte hit rate it is difficult to draw more sub
stantial conclusions about which policy is optimal. From ou
simulation with document sizes drawn from an actual we
workload the LFUDA policy achieves better byte hit rat
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Figure 1 - Squid 2 Hit rate (percent)
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Figure 2 - Squid 2 Byte hit rate (percent)
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than the other two policies, followed by LRU and finally
GDSF.

The reason the variance is so large is that there are few large
popular objects in the SPECweb workload, and the workload
for each run makes different requests of the cache. If a cache
hit happens to occur on one of the large objects it has a
noticeable effect on the byte hit rate for that run. In order to
better understand the behavior of the replacement policies
under a consistent workload we have run a separate charac-
terization using a tool that is able to replay a request trace.

3.1.2 CPU Utilization

Figure 3 presents the user CPU utilization of the replacement
policies. The results indicate that the heap-based implemen-
tation of the GDSF and LFUDA policies consume less user
and system CPU time than the original LRU replacement
policy in Squid 2. Interestingly the heap-based LRU imple-
mentation also consumes less CPU time than the original
list-based LRU implementation. This is due to the optimiza-
tions made in running the replacement algorithm, which per-
forms fewer computations per released object and releases
more objects on average per active invocation. (An “active
invocation” is one in which work is done. Most invocations
of this function check the storage utilization and return with-
out examining any objects.)

System CPU time is very nearly the same for all implemen-
tations and less than half the user CPU time. We conclude
that Squid spends most of its time in user code, and of that
time not much of it is attributable to the computational com-
plexity of the replacement policy.

3.1.3 Response Time

When we examine response time we see further evidence of
inefficiency in the original Squid 2 replacement policy. By
comparing the two LRU policies we see that the list-based

policy has higher and more variable response times. This
due to the extra time spent computing the LRU reference a
and examining the same object multiple times witho
replacing or moving it.

Note that this extra time apparently seems to translate int
higher hit rate for LRU_L. However, as noted earlier the lis
based policy allows the cache to operate closer to the h
water mark, so LRU_L has a larger effective cache space
work with than LRU_H does. This can be altered by settin
the low water mark higher for the heap implementation, b
we did not do that because we wanted the cache parame
to be identical for all of our tests.

4.0 REVALIDATION USING LOG

REPLAY

In our SPECweb validation we observed significant variatio
in the byte hit rate among the policies. There was also sign
icant variation between successive runs of the same pol
We wanted to eliminate this variability by using a repeatab
but still SPECweb-like workload. This section presents th
results of that experiment.

The offered workload in each of the SPECweb runs was s
tistically equivalent in terms of the request size and popula
ity distribution since we used the same workloa
configuration for all the tests. However, the requests made
the proxy varied pseudo-randomly from run to run, whic
can have a significant effect on the byte hit rate. When larg
unpopular objects are requested they can replace a relativ
large number of smaller objects. If such an object is re-refe
enced it will have a significant positive impact on the byte h
rate for that cache run since there are relatively few lar
objects but they consume a significant portion of the di
space and transfer bandwidth. The table below summari
the SPECweb file size and popularity distributions by clas
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Figure 3 - Squid 2 User CPU time (seconds)
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Figure 4: Squid 2 Average response time (msec)
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From the table it is apparent why large objects have a pro-
nounced impact on the byte hit rate. With this revalidation
we wanted to eliminate the variance in the workload in order
to create an apples-to-apples comparison of the policies.

4.1 New Approach

In order to examine the behavior of the policies under a con-
sistent workload we used an internal tool called http to
replay a log file (request trace) against each Squid 2 cache
implementation. The request log file we used was generated
by an earlier SPECweb test on a Squid cache that made
approximately 100,000 requests. We partitioned the trace
into sections of 5,000 and 10,000 requests and replayed
those traces against each of the four cache replacement pol-
icy implementations.

4.2 Summary of Findings

These results from this further investigation broadly corrobo-
rated our SPECweb experiments and further refined them by
requesting the same set of URLs in the same order from each
of the replacement policy implementations. With the consis-
tent workload we saw that the GDSF policy is a consistently
significant improvement over LRU in Squid, as was pre-
dicted through our earlier trace-driven simulation.

We ran this validation using several of the traces from our
initial SPECweb benchmark tests, all with similar results.
There are variations between the runs, but with a single data
set the curves are substantially the same as the ones pre-
sented here: they have similar shape (but smoother) and the
policies have the same relative order.

5.0 CONCLUSIONS AND FUTURE WORK

The choice of a cache replacement policy can have a marked
effect on the network bandwidth demand and object hit rate
of a proxy cache. From our earlier work we observed that the
tremendous breadth of a real web workload makes achieving

a high hit rate difficult, and especially a high byte hit rate
However there is room for improvement. We implemente
two frequency-based cache replacement policies in the Sq
open source proxy cache and observed their effects und
synthetic workload generated by SPECweb. The empiric
results corroborate our earlier simulation results. We th
observed their effects under a fixed workload and were a
to better discern performance characteristics among the p
cies. In hindsight, SPECweb was not the best worklo
driver, other than to generate a working set.

These results are encouraging in that a more sophistica
(for example heap-based) replacement policy can be imp
mented in a real cache implementation without degrading
cache’s performance. This follows intuition, since the dom
nant component of the proxy cache workload is I/O (netwo
and disk). Since the CPU is not the bottleneck resource, i
worthwhile to invest a few extra cycles in the replaceme
policy to eliminate disk or network I/O. The Squid experi
ence reported here is likely true as well for other cac
implementations; we have anecdotal evidence that ot
cache servers have successfully implemented more soph
cated cache replacement algorithms.

As bandwidth becomes cheaper and more available cach
will play a greater role in reducing access latency and orig
server demand than simply bandwidth. To achieve the gre
est latency reduction and origin server demand a cac
should strive to optimize cache hit rate; but while (or wher
bandwidth is dear the cache must focus on improving by
hit rate. For this reason a configurable cache replacem
policy is advantageous to cache administrators. Our imp
mentation as released in Squid 2.3 allows this choice throu
the standard cache configuration mechanism.

Furthermore, the impact of consistency validation of cach
objects become more significant as local bandwidth a
access latency improves. Wide area bandwidth is improvi
as well, but wide area latency is bounded by the speed
light and the number of network round trips that must b
made to satisfy a user request. A consistency check fo
small (1KB) object usually takes as long as retrieving th
object in the first place. We intend to further analyze thi
and are exploring techniques for improving object cons
tency in large scale wide area distributed systems.
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Table 1 SPECweb Request Distribution

Class % Reqs % Bytes Avg Bytes

0 35 % 1.8 % 787

1 50 % 17.5 % 5,315

2 14 % 46.5 % 50,290

3 1 % 34.1 % 516,400
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community to making the Squid proxy cache implementa-
tion widely available and well supported.
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