

Multi-Agent Cooperation, Dynamic
Workflow and XML for E-Commerce
Automation

Qiming Chen, Meichun Hsu, Umeshwar Dayal, Martin Griss
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-136
October, 1999

E-mail:{qchen,mhsu,dayal,griss}@hpl.hp.com

Dynamic agents,
workflow, XML

E-Commerce is a distributed computing environment with dynamic
relationships among a large number of autonomous service requesters,
brokers and providers. Agents with predefined functions but without the
ability to modify behavior dynamically may be too limited for mediating E-
Commerce applications properly, since they cannot switch roles or adjust
their behavior to participate in dynamically formed partnerships.

We have developed a Java based dynamic agent infrastructure for E-
Commerce automation, which supports dynamic behavior modification of
agents, a significant difference from other agent platforms. Supported by
dynamic agents, mechanisms have been developed for plugging in workflow
and multi-agent cooperation, and for supporting dynamic workflow service
provisioning that allows workflow services to be constructed on the fly.

XML is chosen as our agent communication message format. Since different
problem domains have different ontology, we allow agents to communicate
with domain specific performatives and act using corresponding
interpreters. Dynamic agents can carry, switch and exchange interpreters.
Our approach enables document-driven agent cooperation and DTD based
program generation, and further, allows agents to exchange and share
ontology for multiple or even dynamic domains. In this way, the cooperation
of dynamic agents supports plug-and-play commerce, mediating businesses
that are built on one another's services. A prototype has been developed at
HP Labs.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Multi-Agent Cooperation, Dynamic Workflow and XML for
E-Commerce Automation

Qiming Chen, Meichun Hsu, Umeshwar Dayal, Martin Griss
HP Labs

1501 Page Mill Road, MS 1U4
Palo Alto, California, CA 94303, USA

+1-650-857-3060

{qchen,mhsu,dayal,griss}@hpl.hp.com

ABSTRACT
E-Commerce is a distributed computing environment with
dynamic relationships among a large number of autonomous
service requesters, brokers and providers. Agents with
predefined functions but without the ability to modify behavior
dynamically may be too limited for mediating E-Commerce
applications properly, since they cannot switch roles or adjust
their behavior to participate in dynamically formed
partnerships.

We have developed a Java based dynamic agent infrastructure
for E-Commerce automation, which supports dynamic behavior
modification of agents, a significant difference from other agent
platforms. Supported by dynamic agents, mechanisms have
been developed for plugging in workflow and multi-agent
cooperation, and for supporting dynamic workflow service
provisioning that allows workflow services to be constructed on
the fly.

XML is chosen as our agent communication message format.
Since different problem domains have different ontology, we
allow agents to communicate with domain specific
performatives and act using corresponding interpreters.
Dynamic agents can carry, switch and exchange interpreters.
Our approach enables document-driven agent cooperation and
DTD based program generation, and further, allows agents to
exchange and share ontology for multiple or even dynamic
domains. In this way, the cooperation of dynamic agents
supports plug-and-play commerce, mediating businesses that
are built on one another’s services. A prototype has been
developed at HP Labs.

Keywords
Dynamic agents, workflow, XML

1. INTRODUCTION
This work focuses on providing a multi-agent cooperation
infrastructure to support E-Commerce automation. Before
discussing our solutions, we first present a typical E-Commerce
scenario and the requirements for E-Commerce automation.

1.1 E-Commerce Automation
E-Commerce applications operate in a dynamic and
distributed environment, dealing with a large number of
heterogeneous information sources with evolving contents and

dynamic availability [24]. They typically rely on distributed
and autonomous tasks for information search, fusion, extraction
and processing, without centralized control.

An E-Commerce scenario (Figure 1) typically involves the
following activities: identifying requirements; brokering
products; brokering vendors; negotiating deals; or making
purchase and payment transactions. Today, these activities are
initiated and executed by humans. In the future, we see them
being conducted by software agents.

Software agents are personalized, continuously running and
semi-autonomous, driven by a set of beliefs, desires and
intentions (BDI). They can be used to mediate users and servers
to automate a number of the most time-consuming tasks in E-
Commerce, with enhanced parallelism [3,16,18,19,20,22].
Agents can also be used for business intelligence, such as
discovering patterns (e.g. shopping behavior patterns or service
providing patterns) and react to pattern changes. For example,
suppose the sales of VCRs had been strongly associated with
the sales of TVs, but this association has recently weakened as
TV buyers turn to buying DVDs instead of VCRs. Such a
change in the association helps to explain or predict the slow
down of VCR sales. Moreover, agents can selectively preserve

data and themselves become dynamic information sources.

E-Commerce is also a plug and play environment. Business
processes and agent cooperation are embedded in each other.
Services need to be created dynamically on demand. Business

supplier

order

company

reseller

invoice
supplier

supplier

reseller

broker

query

quote

 agent

Figure 1: E-C Automation through Multi-agent
Cooperation

partnerships (e.g. between suppliers, resellers, brokers, and
customers) need to be created dynamically and maintained only
for the required duration such as a single transaction. Agents
need to flexibly switch roles and adjust their capabilities to
participate in dynamic business partnerships. Furthermore,
agents may cooperate in different application domains.

The dynamic nature of E-Commerce requires multi-agent
cooperation to be based on dynamic ontology. By dynamic
ontology we mean that the concepts, rules and facts underlying
agent interaction, are different from domain to domain, and
vary from time to time. In order to automate agent cooperation,
it is necessary to provide a standard format for encoding
messages with meaningful structure and semantics, as well as
domain ontology that agents can readily exchange and interpret.
This format should be common for agent communication as
well as for E-Commerce data exchange in general. The
extensible markup language, XML [2], is becoming the
standard for data interchange on the Web. We use XML for the
above purpose.

Business processes, or workflows [7,9], may be considered as a
kind of multi-agent cooperation, in the sense that software
agents may be used to perform tasks of business processes, and
workflow may be used to orchestrate or control the interactions
between agents[15,17,19]. We envisage the need for
dynamically plugging them into each other.

At HP labs, we have developed a Java based dynamic agent
infrastructure for E-Commerce which supports dynamic
behavior modification of agents, a significant difference from
other agent platforms [4,5]. A dynamic agent does not have a
fixed set of predefined functions, but instead, it carries
application-specific actions, which can be loaded and
modified on the fly. This allows a dynamic agent to adjust its
capabilities and play different roles to accommodate changes in
the environment and requirements. Through messaging,
dynamic agents can expose their knowledge, abilities and
intentions, present requests and exchange objects. They can
move to the appropriate location for high-bandwidth
conversation. They can also manage their own resources across
actions. Such an infrastructure supports dynamic service
construction, modification and movement, and allows a
dynamic agent to participate in multiple applications and
dynamically formed partnerships. With these features, dynamic
agents fit well into the dynamic E-Commerce environment.

A multi-agent cooperation infrastructure is developed for E-
Commerce automation, where dynamic agents perform various
market activities, cooperating through exchanging data as well
as programs, switching roles and forming dynamic partnership
that exists only when needed. For example, the agents reselling
products, the agents supplying products and the agents
providing brokering services for negotiating service terms, etc,
may form dynamic partnership for a specific business
application. In this way, dynamic agents cooperatively support
plug-and-play commerce, allowing businesses to be built on
one another’s services.

Dynamic agents communicate using XML, and can
dynamically load and exchange different ontologies and
XML interpreters for tasks in different domains.

Finally, the mechanisms for plugging workflow in agent
cooperation, and plugging agent cooperation in tasks of
business processes, are introduced. In particular, dynamic
workflow service provisioning is supported, allowing
workflow servers to be built on the fly.

These approaches allow us to provide a unified application
carrier architecture, a unified agent communication mechanism,
a unified way of data flow, control flow and even program flow,
but flexible application switching capability, for supporting E-
Commerce.

1.2 Related Work
E-Commerce applications operate in a distributed computing
environment, where the use of interface-based infrastructures
such as CORBA [8] is rather popular. However, interface-based
distributed computing is static, in the sense that a service is
configured at a "well-known" but fixed location; has pre-
defined function (as an implementation of its interface
definition such as IDL specification); and such an
implementation may not necessarily be portable or movable.
The remote function invocation mechanisms are generally
based on data-flow, namely, sending requests to and getting
results from servers at fixed locations. The flow of
programming objects is not supported.

Many existing agent platforms such as Odyssey, Voyager, etc
[1,23,25], also lack dynamic-modifiability of behavior, in the
sense that an agent must be statically coded and launched for
doing only a fixed set of things. For example, an Odyssey agent
or a Voyager agent, such as "buyer" or "seller", is pre-coded for
that functionality and cannot be changed after launching.
Although it can move, meet, or receive messages, it cannot
dynamically load new functions to alter its pre-defined
behavior. Alternative functionality can only be introduced by
launching additional agents. Since it lacks data, knowledge and
program management facilities, it lacks the potential to be used
across applications.

Some multi-agent systems such as described in [24], use agents
with predefined functions, such as query agents, resource
agents, etc. Although these systems provide several promising
features, they have limited flexibility in highly dynamic E-
Commerce oriented cooperative problem solving. This is
because they do not provide self-installable and self-
configurable system components to act at the appropriate time
and location, to adjust their behaviors on the fly for
accommodating environment changes, and to exchange
program modules for cooperation.

The relationships between multi-agent cooperation and
workflow have been studied by us and others [15,17,19].
However, our approach to provide workflow services on the fly
during multi-agent cooperation, is unique.

We share the same view as [14] on the importance of XML for
E-Commerce. In fact, several agent communication languages
such as FIPA[13], KQML[12,21], etc, have been converted to
simple XML form. However, ontology varies from domain to
domain, and if a problem domain is dynamically formed based
on a specific application, its ontology is also dynamic. In
KQML and FIPA, domain specific ontology is explicitly
supported by using “:ontology” parameter, but no interpreter

switching mechanism provided. Thus we emphasize the need
for exchanging domain specific ontology, particularly XML
interpreters to allow dynamic agents to participate in multiple
applications, to switch domains and to form dynamic
partnerships.

The rest of this paper is organized as follows. Section 2
outlines the dynamic agent infrastructure. Section 3 describes
the use of XML messaging with dynamic ontology to support
multi-agent cooperation. Section 4 shows the way to plug-in
workflow to multi-agent cooperation, and vice versa. Finally in
section 5, some concluding remarks are given.

2. DYNAMIC AGENTS
To approach E-Commerce automation, agents need to have
dynamic behavior while maintaining its identity and consistent
communication channels, as well as retaining data, knowledge
and other system resources to be used across applications.

It is neither sufficient for an agent to be equipped with a fixed
set of application-specific functions, nor practical for the above
capabilities to be developed from scratch for each agent. This
has motivated us to develop a dynamic-agent infrastructure
[4,5]. The infrastructure is Java-coded, platform-neutral, light-
weight, and extensible. Its unique feature is the support of
dynamic behavior modification of agents; and this capability
differentiates it from other agent platforms and client/server-
based infrastructures.

A dynamic-agent has a fixed part and a changeable
part.(Figure 2) As its fixed part, a dynamic-agent is provided
with light-weight, built-in management facilities for distributed
communication, object storage and resource management. A
dynamic agent is capable of carrying data, knowledge and
programs as objects, and executing the programs. The data and
programs carried by a dynamic agent form its changeable part.
All newly created agents are the same; their application-
specific behaviors are gained and modified by dynamically
loading Java classes representing data, knowledge and
application programs. Thus dynamic-agents are general-purpose
carriers of programs, rather than individual and application-
specific programs.

The architecture of dynamic-agent can be explained in more
detail by the following.

Built-in Facilities. Each dynamic-agent is provided with
several light-weight built-in facilities for managing messaging,
data and program object storage, action activation, GUI, etc. A
carried application, when started, is offered a reference to the
underlying built-in management facilities, and can use this
reference to access the APIs of the facilities.

A message-handler is used to handle message queues, sending,
receiving and interpreting inter-agent messages. The interaction
styles include one-way, request/reply, and
publish/subscribe(selective broadcast). Message forwarding is
also supported. An action-handler is used to handle the
message-enabled instantiation and execution of application
programs (Java classes). One dynamic-agent can carry multiple
action programs. An open-server-handler is used to provide a
variety of continuous services, which can be started and
stopped flexibly at dynamic-agent run-time. A resource-handler
is used to maintain an object-store for the dynamic-agent, that
contains application-specific data, Java classes and instances
including language interpreters, addresses and any-objects
(namely, instances of any class).

Applications executed within a dynamic-agent use the built-in
dynamic-agent management facilities to access and update
application-specific data in the object-store, and to perform
inter-agent communication through messaging.

Dynamic Behavior. Enabled by corresponding messages, a
dynamic-agent can load and store programs as Java classes or
object instances, and can instantiate and execute the carried
programs. Within these programs, built-in functions can be
invoked to access the dynamic-agent's resources, activate and
communicate with other actions run on the same dynamic-
agent, as well as communicate with other dynamic-agents or
even stand-alone programs.

Mobility. Two levels of mobility are supported. A dynamic-
agent may be moved to or cloned at a remote site. Programs
carried by one dynamic-agent may be sent to another, to be run
at the receiving site.

Coordination. Every dynamic-agent is uniquely identified by
its symbolic name. Similar to FIPA [13], a coordinator agent is
used to provide naming service, mapping the name of each
agent to its current socket address. The coordinator is a
dynamic-agent with the added distinction that it maintains the
agent name registry and, optionally, resource lists. When a
dynamic-agent, say A, is created, it will first attempt to register
its symbolic name and address with the coordinator by sending
a message to the coordinator. Thereafter, A can communicate
with other dynamic-agents by name. When A sends a message
to another whose address is unknown to A, it consults the
coordinator to obtain the address. If A is instructed to load a
program but the address is not given, it consults the coordinator
or the request sender to obtain the address. Each dynamic-
agent also keeps an address-book, recording the addresses of
those dynamic agents that have become known to it, and are
known to be alive.

In a multi-agent system, besides naming service, other
coordination may be required, and provided either by the
coordinator or by other designated dynamic-agents that provide
brokering services. A resource-broker maintains a
hierarchically structured agent capability registry. The leaf-
level nodes referring to the dynamic agents carry corresponding
programming objects (action modules). Agents contact the
resource-broker when acquiring or dropping new programming
objects, and when they need a program such as a domain
specific XML interpreter. A request-broker is used to isolate

Application-specific Actions

Agent Service

Agent Services

Fixed part

Changeable part

Figure 2: Dynamic Agent

the service requesters from the service providers (i.e. dynamic-
agents that carry the services) allowing an application to
transparently make requests for a service. An event-broker
delivers events, treated as asynchronous agent messages, to
event subscribers from event generators. Event notification may
be point-to-point, where the event subscribers know the event
generators and make the subscriptions accordingly; or
multicast, where one or more event-brokers are used to handle
events generated and subscribed anywhere in the given
application domain. These event distribution mechanisms allow
agents to subscribe to events without prior knowledge of their
generators.

Dynamic-agents may form hierarchical groups, with a
coordinator for each group. Based on the group hierarchy a
multilevel name service can be built.

Dynamic Role Assignment and Switching. A role is the
abstraction of one or more agents, providing a dynamic
interface between agents and cooperative processes. Agents
playing a specific role follow the normative rules given by the
cooperative process. The action carrying capability, together
with other capabilities of dynamic agents, make the mapping
from a role to a specific agent extremely simple, and allows one
agent to play different roles, even simultaneously. In fact, a
dynamic agent obtains the capability for playing a role simply
by downloading the corresponding programs, passes a role to
another agent by uploading the programs, or switches roles by
executing different programs it carries.

In order for an agent to switch its roles back and forth, the
agent must be equipped with memory capability across multiple
activities, and possess a consistent communication channel. For
example, an agent responsible for ordering a product may well
be the one responsible for order cancellation. Such history
sensitivity and identity consistency are exactly the strength of
our dynamic agents.

For example, adjusting load balance by task reallocation is a
kind of agent cooperation. Reallocation is beneficial when tasks
are not initially allocated to the agents that handle them least
expensively. Each agent can contract out tasks it had previously
contracted in. give out if the task is more suitable for another
agent to perform, or accept a task if the task is more suitable to
be done by itself than by another. The action carrying and
exchanging capability of dynamic agents naturally support task
reallocation.

Dynamic agents form a dynamic distributed computing
environment for E-Commerce. In the following sections we
shall show our solutions to E-Commerce automation that take
advantage of this.

3. MULTI-AGENT COOPERATION WITH
XML MESSAGING
Autonomous agents cooperate by sending messages and using
concepts from a domain ontology. A standard message format
with meaningful structure and semantics, and a mechanism for
agents to exchange ontologies and message interpreters, have
become key issues. Furthermore, the message format should be
accepted not only by the agent research community, but also by
all information providers.

3.1 Document-driven Agent Cooperation
The Internet and Web represent an increasingly important
channel for B2B (business to business), B2C (business to
consumer) and C2C (consumer to consumer) E-Commerce. As
the extensive markup language, XML, is fast becoming the
standard for data interchange on the Web [13,14], we chose
XML as the primary message format for dynamic agent
communication (Figure 3).

Dynamic agents send and receive information through XML
encoded messages. We use a KQML/FIPA ACL-like format,
encoded in XML, e.g.
 <MESSAGE type=”REQUEST” from=“XYZ” to=“HPSV”
 interpreter=“xml_shopping”>
 <CONTENT>
 <ORDER> a xml document </ORDER>
 </CONTENT>
 </MESSAGE>
XML tags markup the information and break up the data into
parts, In XML based messages, agents encode information with
meaningful structure and commonly agreed semantics. On the
receiving side, different parts of the information can be
identified and used in different applications.

In fact, an XML document is an information container for
reusable and customizable components, which can be used by
any receiving agent This is the foundation for document-driven
agent cooperation. By making Web accessible to agents with
XML, the need for customer interfaces for each consumer and
supplier will be eliminated. Agents may use XML format to
explain their BDI, explaining new performatives by existing,
mutually understood ones. Based on the commonly agreed tags,
agents may use different style DTDs to fit the taste of the
business units they mediate. Further, a dynamic agent can carry
an XML front-end to a database for data exchange, where both
queries and answers are XML encoded.

The power of XML, the role of XML in E-Commerce, and even
the use of XML for agent communication, have been
recognized. Although XML is well structured for encoding
semantically meaningful information, it must be based on an
ontology. As ontology varies from domain to domain, and

supplier

order

a
g

a
g

a
g

a
g

a
g

a
g

a
g

a
g

compan
y

reseller

XML doc

invoice

supplier

supplier

reseller

on-line store

broker

query

quote

Figure 3: Multi-Agent Cooperation with XML Messaging

dynamic for dynamically formed domains, The more significant
issue is to exchange the semantics of domain models, and
interpret messages differently in different problem domains.

Generally speaking, domain ontology provides a set of
concepts, or meta-data, that can be queried, advertised and used
to control the behavior of agent cooperation. These concepts
can be marked using XML tags, and then a set of commonly
agreed tags, underlie message interpretation. The structures
and the semantics of the documents used in a particular
problem domain are represented by the corresponding DTDs
and interpreters.

We use different languages, all in XML format, for different
problem domains, such as product ordering, market analysis,
etc. Accordingly, we use an individual interpreter for each
language. Dynamic agents can exchange those DTDs together
with documents, and exchange those interpreters as
programming objects, in order to understand each other in
communication.

3.2 DTD based Program Generation
Since information sources are evolving, it is unlikely that we
can use fixed programs for information accessing and
processing. Our solution is to let a dynamic agent carry
program tools that generate XML oriented data access and
processing programs based on DTDs. A DTD (like a schema)
provides a grammar that tells which data structures can occur,
and in what sequences. Such schematic information is used to
automatically generate programs for basic data access and
processing, i.e. creating classes that recognize and process
different data elements according to the specification of those
elements. For example, from an XML document including tag
UNIT_PRICE, it is easy to generate a Java method
“getUnitPrice”, provided that the meanings of tags are
understood, and a XML parser is appended to the JDK
classpath. The XML parser we use is the one developed by Sun
Microsystems that supports SAX (Simple API for XML) and
conforms to W3C DOM (Document Object Model [11]).

The advantage of automatic program generation from DTDs, is
allowing tasks to be created on the fly, in order to handle the
possible change of document structures. Thus for example,
when a vendor publishes a new DTD for its product data sheet,
based on that DTD, an agent can generate the appropriate
programs for handling the corresponding XML documents.
Agents use different programs to handle data provided by
different vendors.

3.3 Ontology Model Switching
Different application domains have different ontology models,
with different agent communication languages and language
interpreters, although they are in XML format. In a particular
application domain, agents communicate using domain specific
XML language constructs and interpreters.

In our implementation, a dynamic agent can participate in
multiple applications. It communicates with other agents for the
business of one domain, say Da, using Da’s language and
language interpreter; for the business of another domain, say
Db, using Db’s language and language interpreter. A dynamic
agent can carry multiple interpreters. It switches application

domains and ontologies by switching the DTD’s and
interpreters it uses.

We load an interpreter, say, xml_shopping, to an agent by
sending it a message :
 <MESSAGE type=”LOAD” from=“A” to=“B”
 interpreter=“xml.default”>
 <CONTENT>
 <LOAD_INTERPRETER
 class=”da.XMLshoppingInterpreter”
 url=”file:host.hp.com/Dmclasses”>
 xml_shopping
 </LOAD_INTERPRETER>
 </CONTENT>
 </MESSAGE>
Let us assume that agent A receives from agent S a message,
say e, that indicates the interpreter as a message attribute. If A
does not have that interpreter, A will reply by a query message
for that interpreter. If the sender has the interpreter, it will then
send it to A, in order for A to understand message e; otherwise
the sender will contact the coordinator (or resource manager),
for A to have the interpreter loaded.

This process can be shown by the messages shown in Figure 4.

We provide two kinds of basic support for dynamic partnership.

• Agents can form groups dynamically. This is very different
from statically formed distributed computing domains such
as DCE domains. Since agents in different groups can get
each other’s address through hierarchical naming service,
they can reach each other even if in different “physical”
groups.

• The capabilities of carrying and exchanging interpreters
provide a flexible way for a dynamic agent to be involved
in multiple problem domains, even simultaneously.

Supporting the switch of problem domains and handling
dynamic ontology, are the key mechanisms we use to approach
the dynamic requirements of E-Commerce.

4. MULTI-AGENT COOPERATION WITH
PLUG-IN WORKFLOW SUPPORT
Workflow systems provide flow control for business process
automation. Business processes often involve multilevel
collaborative and transactional tasks. Each task represents a
logical piece of work that contributes to a process. A task at
leaf-level is performed by a role. A role is filled at run-time
with a user or a program. A process and its tasks are handled at
separate layers. At the process layer, centralized coordination is
supported; and at the task layer, location distribution, platform
heterogeneity and control autonomy, are allowed [7,9,10].

Fr To Interpreter Message Content
S A Xml.shopping <ORDER>

 an xml document
</ORDER>

A S Xml.default <QUERY type=”interpreter”>
 xml_shopping
</QUERY>

S A Xml.default <LOAD type=”interpreter”>
 xml_shopping
</LOAD>

Figure 4: Messages Sent to Load an Interpreter

Business processes may be considered as a kind of multi-agent
cooperation, in the sense that a software agent can be used to
fill a role for performing a task in a workflow, and workflow
can be used to orchestrate or control the interactions between
agents. However, many related activities in E-Commerce
automation do not form synchronized, traditional workflow, but
requires more dynamic agent cooperation. In order to combine
the strength of workflow and agent cooperation for supporting
E-Commerce, it is necessary to understand their relationship
and difference.

First, workflow supports task integration with pre-defined flow
control. Although a process could be modified through
executing event-driven rules (e.g. ECA rules [9]), through
enforcing inter-activity dependencies (e.g. do not book hotel if
flight reservation is not made [7,10]), or through failure
recovery [6], those alterations are also pre-defined. In contrast,
agent cooperation is more dynamic and flexible. Focusing on a
general goal, the task performed by agents may be dynamically
selected, depending on run-time situation such as the results of
the previous tasks. For example, choosing a purchase task
depends on the results of negotiation with multiple seller
agents, and the negotiation itself is a multi-agent cooperative,
asynchronous process.

Next, the role of a software agent played in E-Commerce
automation should be closer to that played by a human user
(rather than a program) in the workflow context. In
conventional workflow, a program task has a designated
execution life span, it exists only during the execution time,
and cannot receive messages before and after that task. On the
contrary, a human user has memory and knowledge, and can
work across multiple tasks and multiple business processes,
even simultaneously. These properties are required for
cooperative software agents. As a simple example, a buyer
agent may simultaneously participate in several business
partnerships with different vendors and brokers.

Our conclusion is that agent cooperation and workflow cannot
replace each other, but may plug-into each other.

4.1 Workflow Tasks Executed by Multi-
agent Cooperation

By plugging multi-agent cooperation in a workflow (Figure 5),
we mean that a particular part of the workflow, such as a single
task, may be accomplished by multiple agents working

cooperatively. As an example, a purchase task may include
bargain search and negotiation involving multiple agents. Such
activities are handled by autonomous agents rather than under
centralized workflow control. As another example, task
reallocation among self-interested agents aimed at balancing
work load, is also not centrally controlled. These tasks are
performed through multi-agent cooperation.

Our dynamic agent infrastructure is suitable for plugging agent
cooperation in workflow. This is because a dynamic agent is
not simply a task, but a carrier of tasks that represents steps of
a business process. Compared with a normal task, a dynamic
agent is a continuous running object with persistent
communication channel and knowledge across tasks and
processes. In these aspects a dynamic agent can behave in a
way more similar to a human user than to a normal program
task. This allows, for example, an auction agent to use the
above capabilities to combine requests from multiple buyers,
and to make intelligent decisions by cooperating with other
agents. Considering “selling items by auction” as a single task,
it actually involves multi-agent cooperation.

4.2 Multi-agent Cooperation using
Workflow Services
Multi-agent cooperation is more general than workflow.
However, in some case there exists a need for workflow
support, in order to synchronize agent cooperation[15].
Particularly the following transactional workflow features may
be required:

• transaction properties known as ACID (atomicity,
concurrency, isolation and durability) over a series of
tasks;

• failure recovery [6,7,9,10] for multiple agents to roll back,

totally or partially, a business process; and

• separation of process definitions and tasks.

Figure 6 shows how a business process may be plugged in
agent cooperation, as shown. By plugged-in we mean two
things. First, a workflow process is launched on the fly at a
certain phase of agent cooperation to provide transaction
properties, recovery, etc; second, a workflow service,
comprising necessary engines, is constructed on the fly.

The use of dynamic agents makes it flexible to have workflow
plugged-in agent cooperation. A process definition (as an
object) can be loaded to a dynamic agent at run-time, and a
process instance can be dynamically created and executed.

Multi-agent
cooperation

workflow process

Figure 6: Plug Workflow in Multi-Agent Cooperation

workflow process

Multi-agent cooperation

Figure 5: Plug Multi-Agent Cooperation in Workflow

Workflow engines (also as objects) may be downloaded,
configured and setup on the fly. As described next

4.3 Dynamic Workflow Service Provisioning
The most promising feature of plugging workflow in agent
cooperation is not launching a process to be executed by a
stand-by workflow server, but establishing workflow service on
the fly.

In statically structured distributed systems, service is provided
by stationary servers. The introduction of dynamic-agents can
liberate service provisioning from such a static configuration.
Given the underlying support for communication, program-
flow, action-initiation, and persistent object storage, dynamic-
agents can be used as the "nuts and bolts" to integrate system
components on the fly, and thus to provide services
dynamically. Consider the following scenario.

• Some agents watch inventory and sales trend.

• Other agents watch supply chain changes.

• When an agent, say A, that correlates information from
multiple sources, discovers an inventory shortage, it
configures a purchase process, order_proc to order new
products. This job includes two general steps: A first
downloads and sets-up a workflow engine on the fly, and
then sends it order_proc for execution. This process
involves multiple tasks on remote sites, performed by
agents as well as human users.

The workflow engine is made of two servers, a Process
Manager for the flow-control of tasks, and a Work Manager for
task dispatching and undispatching. These services are created
on the fly in several message enabled steps described below.

As shown in Figure 7, A first launches dynamic-agents PM,
WM for loading the above workflow servers, as well as
dynamic-agents A1 and A2 for carrying program tasks later.
Then A sends messages to PM, requesting it to download
server Process Manager; and to WM, requesting it to download
server Work Manager. In this way, the workflow service is
created on the fly. Next, A sends messages to PM, WM, A1 and
A2, requesting each of them to download a workflow-message
interpreter, for them to understand the work-items that will be
assigned to them by WM.

After that, A starts process order_proc by sending a message to
itself, or by an API call. A process instance instantiated at A is
then sent to the Process Manager executing on PM. This is
illustrated in Figure 8.

The contents of the above messages are listed in Figure 9.

Tasks are then sent to the Work Manager executing on WM in
order. Work items are generated by the Work Manager where
manual tasks are sent to users (via a Web-browser), program
tasks are sent to dynamic-agents A1 and A2, requesting them to
download task-oriented programs first and then execute them;
execution results will be sent back to Process Manager for flow
control.

A message containing a work item has the form:
 <MESSAGE type=”ASSIGN” from=“WM” to=“A1”
 interpreter=“wf”>
 <CONTENT>

<TASK><ITEM> task_string </ITEM></TASK>
 </CONTENT>

manual tasks

program tasks

software agents

Exec process instance

A1

A2

WMPM

A

Figure 8: Send Process to Workflow Servers to Execute

 load PM server
 load WLM server

Request to load wf-interpreter

Process Manager Worklist Manager

A2

A1

WMPM

A

Figure 7: Launch Agents, Load Servers and Domain-
specific Message Interpreters

Fr To Message Content
A A <LAUNCH>

 <AGENT name="PM" host="host1.hp.com"/>
 <AGENT name="WM" host="host1.hp.com"/>
 <AGENT name="A1" host="host1.hp.com"/>
 <AGENT name="A2" host="host1.hp.com"/>
</LAUNCH>

A PM <ACTION class=”da.ProcMgr”
 url=”file:host.hp.com/Wfclasses”>
 ProcMgr
</ACTION>

A WM <ACTION class=“da.WorkMgr”
 url=”file:host.hp.com/Wfclasses”>
 WorkMgr
</ACTION>

A PM
WM
A1
A2

<LOAD_INTERPRETER
 class=”da.WfInterpreter”
 url=”file:host.hp.com/Dmclasses”>
 wf
</LOAD_INTERPRETER>

A A <ACTION class=”orde_proc”
 url=”file:host.hp.com/Wfclasses”>
 order1
</ACTION>

Figure 9: Message Contents

 </MESSAGE>

After the process is completed, the dynamic workflow servers
may be shutdown, or even removed from the carrying dynamic
agents. This example illustrates the power of dynamic-agents
for plugging workflow in agent cooperation.

5. CONCLUSIONS
E-Commerce is a dynamic, distributed and a plug and play
environment for which we expect software agent based
technologies to become increasingly important. However, since
agents with static capability cannot dynamically load new
functions, cannot change their predefined behavior, and cannot
exchange programs with others, they are unable to switch roles,
to participate in multiple applications, or to be involved in
dynamically formed partnerships. Therefore, static agent
frameworks are not really suitable for the highly dynamic E-
Commerce applications.

In this paper we presented our solutions for E-Commerce
automation using a dynamic agent infrastructure. Dynamic
agents are carriers of application programs, they can be loaded
with new functions, change behavior dynamically, and
exchange programming objects. As a result, dynamic agents can
switch roles, participate in multiple problem solving domains,
and form dynamic partnerships. With these features, we have
developed the mechanisms for plugging workflow and multi-
agent cooperation in each other. In particular, we support
dynamic workflow service provisioning, allowing workflow
servers to be built on the fly. XML is chosen as our agent
communication message format. Since different problem
domains have different underlying ontology, we allow agents to
communicate with domain specific languages (all in XML
format) and act using corresponding interpreters. The program
carrying capability of dynamic agents allows them to carry,
switch and exchange interpreters. This not only enables
dynamic agents to communicate using XML encoded messages
with meaningful structure and semantics, but also to exchange
domain ontology and message interpreters.

We plan to further explore a conceptual business model of plug
and play E-Commerce.

6. REFERENCES
[1] Aglets, "Programming Mobile Agents in Java", IBM,

http://www.trl.ibm.co.jp/aglets/, 1997.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, “Extensible
Markup Language (XML) 1.0 Specification”, February
1998, (http://www.w3.org/TR/REC-xml)

[3] A. Chavez and P. Maes, Kasbah: An Agent Marketplace
for Buying and Selling Goods, Proc. First International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, 1996.

[4] Q. Chen, P. Chundi, Umesh Dayal, M. Hsu, "Dynamic-
Agents", International Journal on Cooperative Information
Systems, 1999, USA.

[5] Q. Chen, P. Chundi, U. Dayal, M. Hsu, "Dynamic-Agents
for Dynamic Service Provision", Proc. of 3rd Int. Conf. on
Cooperative Information Systems (CoopIS'98), 1998, USA.

[6] Q. Chen and Umesh Dayal, "Failure Recovery across
Transaction Hierarchies", Proc. of 13th International
Conference on Data Engineering (ICDE-97), 1997, UK.

[7] Q. Chen and Umesh Dayal, "A Transactional Nested
Process Management System", Proc. of 12th International
Conference on Data Engineering (ICDE-96), 1996, USA.

[8] CORBA, "CORBA Facilities Architecture Specification",
OMG Doc 97-06-15, 1997.

[9] U. Dayal and M. Hsu and R. Ladin, “Organizing Long
Running Activities with Triggers and Transactions”, Proc.
ACM-SIGMOD'90, 1990.

[10] U. Dayal and M. Hsu and R. Ladin, “A Transactional
Model for long Running Activities”, Proc. VLDB'91, 1991.

[11] Document Object Model, http://www.w3.org/DOM/

[12] T. Finin, R. Fritzson, D. McKay, R. McEntire, “KQML as
an Agent-Communication Language”, Proc. CIKM'94,
1994.

[13] Foundation for Intelligent Physical Agents(FIPA)- FIPA97
Agent Specification, http://www.fipa.org/

[14] R. J. Glushko, J. M. Tenenbaum and B. Meltzer, “An
XML Framework for Agent-based E-Commerce”, CACM
42(8), March, 1999.

[15] M. Griss, G. Bolcer, L. Osterweil, Q. Chen, R. Kessler
"Agents and Workflow -- An Intimate Connection, or Just
Friends?", Panel, TOOLS99 USA, Aug 1999.

[16] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent
system. Dr. Dobbs Journal, 22(3):18-27, 1997.

[17] N.R. Jennings, P. Faratin, MJ. Johnson, P O'Brien & ME
Wiegan, "Using Intelligent Agents to Manage Business
Processes". Proc. of PAAM96, U.K., 1996, pp. 245-360.

[18] N. R. Jennings (1999) "Agent-based Computing: Promise
and Perils" Proc. IJCAI-99, Sweeden. 1429-1436.

[19] T. John, Intelligent Agent Library/Factory, release 4
(http://www.bitpix.com)

[20] P. Maes, R. H. Guttman and A. G. Moukas, “Agents that
Buy and Sell”, CACM 42(8), March, 1999.

[21] S.A. Moore, "KQML and FLBC: Contrasting Agent
Communication Languages," proceedings. 32nd Hawaii
international conference on system sciences, 1998,

[22] A.G. Moukas, R. H. Guttman and P. Maes, “Agent
Mediated Electronic Commerce: An MIT Media
Laboratory Perspective”, Proc. of International Conference
on Electronic Commerce, 1998.

[23] Odyssy, "Agent Technology: Odyssey", General Magic,
http://www.genmagic.com, 1997.

[24] B. Perry, M. Talor, A. Unruh, “Information Aggregation
and Agent Interaction Patterns in InfoSleuth”, Proc. of
CoopIS’99, UK, 1999.

[25] Voyager, "Voyager Core Package Technical Overview",
Object Space,

http://www.objectspace.com/voyager/technical_white_pap
ers.html, 1997.

