

Send Message into a Definite Future

Wenbo Mao
Trusted E-Services
HP Laboratories Bristol
HPL-1999-135
27th October, 1999*

time-lock puzzle,
timed-release
cryptography, zero-
knowledge proof

Rivest et al proposed a time-lock puzzle scheme for
encrypting messages which can only be decrypted in
the future. Such a puzzle specifies an algorithm for
decrypting the message locked in and the specified
algorithm has a well understood time complexity.
However, that time-lock puzzle scheme does not
provide a means for one to examine whether a puzzle
has been formed in good order. Consequently, one may
foolishly waste a lengthy time on trying to solve an
intractable problem. This weakness prohibits that
scheme from applications that involve mutually
untrusted parties. We propose a new time-lock puzzle
scheme which includes an efficient protocol that allows
examination of the time needed for decrypting the
message locked in.

*Internal Accession Date Only
 Copyright Hewlett-Packard Company 1999

Send Message into a De�nite Future

Wenbo Mao

Hewlett-Packard Laboratories,

Filton Road, Stoke Gi�ord, Bristol BS34 8QZ, United Kingdom

wm@hplb.hpl.hp.com

Abstract. Rivest et al proposed a time-lock puzzle scheme for encrypt-

ing messages which can only be decrypted in the future. Such a puzzle

speci�es an algorithm for decrypting the message locked in and the spec-

i�ed algorithm has a well understood time complexity. However, that

time-lock puzzle scheme does not provide a means for one to examine

whether a puzzle has been formed in good order. Consequently, one may

foolishly waste a lengthy time on trying to solve an intractable prob-

lem. This weakness prohibits that scheme from applications that involve

mutually untrusted parties. We propose a new time-lock puzzle scheme

which includes an e�cient protocol that allows examination of the time

needed for decrypting the message locked in.

1 Introduction

Rivest et al [5] proposed a timed-release crypto puzzle scheme (time-lock puzzle).

The goal is to encrypt a message so that it cannot be decrypted until a pre-

determined period of time has passed.

Several applications have been observed in [5]:

{ A bidder in an auction wants to seal his bid so that it can only be opened

after the bidding period is closed.

{ A homeowner wants to give his mortgage holder a series of encrypted mort-

gage payments. These might be encrypted digital cash with di�erent decryp-

tion dates, so that one payment becomes decryptable (and thus usable by

the bank) at the beginning of each successive month.

{ A key-escrow scheme can be based on timed-release crypto, so that the gov-

ernment can get the message keys, but only after a �xed, pre-determined

period.

{ An individual wants to encrypt his diaries so that they are only decryptable

after �fty years (when the individual may have forgot the decryption key).

The time-lock puzzle scheme proposed in [5] has its security based on the

computational problem of �nding an element in a multiplicative group modulo

a composite integer. The scheme provides a prescribed instruction leading to

the target element for solving the puzzle (the element will reveal a key for de-

crypting the locked message). If a puzzle solver follows the instruction provided,

the problem has a well-understood time complexity. Otherwise, the problem is

believed to be intractable if the composite modulus used is su�ciently large.

In this paper we shall point out a major weakness of that time-lock puzzle

scheme: the time required to solve a puzzle is not pre-determinable from a solver's

point of view. In fact, apart from the puzzle maker, no one can be sure if a

puzzle is indeed solvable until it has actually been solved. A time-lock puzzle in

usual applications typically requires a lengthy time to solve. So to start solving

a puzzle without knowing if it has been created in good order can mean to

foolishly risk wasting a lengthy period of time, unless the puzzle maker is trusted

to have created the puzzle as bona-�de. However, in most applications where

a timed-release crypto puzzle �nds a role to play, a puzzle maker should not

be trusted by a solver (this is the case in the �rst three applications listed

above). Therefore, a time-lock puzzle scheme which does not allow a solver to pre-

determine solveability within the time length declared has a serious limitation

in applications.

We will propose a new time-lock puzzle scheme which can allows a solver to

examine with con�dence the time length that is needed to solve a puzzle.

2 The previous time-lock puzzle

We �rst introduce the time-lock puzzle scheme proposed in [5], and then analyse

a weakness with it.

Suppose Alice has a message M that she wants to encrypt with a time-lock

puzzle for T seconds. She generates a composite modulus n = pq with p and q

being two large primes. She sets t such that t = TS with S being the number

of squarings modulo n per second that can be performed by the solver. Alice

then generates a random key K for a conventional cryptosystem. She encrypts

M with the key K to form ciphertext CM . She now picks a random element a

modulo n, and encrypts K as

CK = K + ae(mod n);

where

e = 2t(mod �(n)):

She �nally outputs the time-lock puzzle (n; a; t; CK ; CM) and erases any other

variables created during this computation. With the knowledge of �(n), Alice

can construct the puzzle e�ciently.

Assume that �nding M from CM without the correct key is computationally

infeasible, so is computing �(n) from n. Then computing a2
t

(mod n) as recom-

mended by the scheme will be the only known way to solve the puzzle. Once

a2
t

(mod n) is reached, K will be revealed which will further lead to decryption

of CM . This computation requires t steps of squaring modulo n. Obviously, t

must be a tractable quantity.1

1 The idea of repeated squaring an element in a group modulo a composite integer has

also been used in a key escrow scheme with a time control feature [1], which utilises

An advantage of this puzzle scheme is that the process of repeated squaring

is \intrinsically sequential". There seems no obvious way to parallelise it to any

large degree. So the time needed to solve a puzzle can be well controlled by Alice.

We should note that in this scheme there is no control whatsoever over Alice

in terms of enforcing her to form a puzzle to be bona �de. She can introduce

errors into a puzzle which is undetectable to a solver (let Bob be the solver)

before he realises that he has been spending a lengthy period of time with fruitless

result. For instance, Alice can set t in the puzzle to be infeasibly large. Note that

it is trivially easy for Alice to set the order of a modulo n and that of 2 modulo

�(n) to be su�ciently large; this will guarantee that t can also be su�ciently

large without making e and ae to show a sign of cycle. Thus to reach ae(mod n)

by following Alice's instruction will take infeasibly many steps.

In usual applications of timed-release cryptography (e.g., key escrow with

time-delayed key recovery feature), the puzzle maker's successful cheating means

a total defeat of the system security. The problem here is not that Alice is

untrustworthy; it is the absence of a means for Alice to show her honesty. Thus,

in applications where the puzzle maker and solver do not trust each other (this

is likely, for instance, these two parties should not trust each other in the �rst

three applications listed in Section 1), [5] suggests that a commonly trusted

third party be used to check that Alice has formed a puzzle correctly. The use

of a commonly trusted third party greatly limits the usefulness of the time-lock

puzzle scheme.

3 A new time-lock puzzle scheme

The new time-lock puzzle scheme proposed here is equipped with a protocol

that allows Alice to e�ciently prove her correctness in creation of a puzzle.

Solution of a puzzle now means successful factoring of a large composite integer

that she has generated for the puzzle. So the new scheme is in fact a timed-

release factorisation of a large integer. We relate the factorisation problem to

that of computing a \small" discrete logarithm which has a well understood and

controllable time complexity.

To create a puzzle, Alice shall setup n = pq with p and q being large primes

such that �1 has the positive Jacobi symbol modulo n. (The Jacobi symbol of

an element modulo n can be e�ciently evaluated.) Let
�
x
n

�
denote the Jacobi

symbol of x modulo n. Then we require�
�1
n

�
= 1: (1)

Alice shall disclose an element of a hidden order modulo n. (Almost all ele-

ments in the multiplicative group modulo n have hidden orders.) Let e be this

element and t be the hidden order. This means we require

et � 1 (mod n): (2)

the di�culty of computing a square-root of a groups element as a means to prevent

unauthorised wire-tapping of communications taken place prior to a warranted date.

In addition, we require that the element e be chosen to satisfy� e
n

�
= �1: (3)

Since Jacobi symbol is multiplicative, we have

1 =

�
1

n

�
=

�
et(mod n)

n

�
=
� e
n

�t
= (�1)t:

Therefore the secret order t must be even.

The following method can be used to setup n, e, and t to satisfy the require-

ments in (1-3).

First, Alice chooses two primes u and v. She should then test the primality

of the following two quantities

p = 2p0u+ 1; q = 2q0v + 1; (4)

for some odd numbers p0 and q0. The procedure completes once both p and q are

found to be primes. Let n = pq and t = 2uv. Notice that u, v, p0 and q0 are odd;

we have�
�1
n

�
=

�
�1
p

��
�1
q

�
= (�1)(p�1)=2(�1)(q�1)=2 = (�1)p

0u(�1)q
0v = 1:

So requirement (1) is met.

Alice then �nds an element a modulo p of order p�1 = 2p0u, and an element

b modulo q of order (q � 1)=2 = q0v. It is easy for her to �nd such a and b. Let

c = ap
0

mod p;

d = b2q
0

mod q:

We know

c2u � 1 (mod p);

dv � 1 (mod q):

Applying the Chinese remainder theorem, Alice can compute e < n satisfying

e � c (mod p) and e � d (mod q):

Obviously,

et � e2uv � 1 (mod n):

This meets the requirement (2).

The fact that a generates a group of p� 1 elements with half of them being

quadratic non-residues renders itself to be a quadratic non-residue (modulo p).

Therefore �
a

p

�
= �1:

Further, since p0 is odd, we know�
c

p

�
=

(ap

0

mod p)

p

!
=

�
a

p

�p0

= (�1)p
0

= �1:

But d is a square number (modulo p), therefore�
d

q

�
= 1:

These yield� e
n

�
=

�
e mod p

p

��
e mod q

q

�
=

�
c

p

��
d

q

�
= (�1)(1) = �1:

This meets the requirement (3).

Using e, n and t, Alice can prove her knowledge of t and at the same time

showing the size of t without disclosing t to a veri�er (Bob). This is via an

interactive knowledge proof protocol (which is speci�ed in A, and the protocol

is due to Damg�ard [2]). The protocol is very e�cient. There are also e�cient

protocols for Alice to show that n is the product of two primes (e.g., [6]).

Proof of the size of t and the two-prime-product structure of n are all what

Alice has to do in order to show her honesty in construction of her time-lock

puzzle. When t is relatively \small" (� 2130), such a proof indicates the time

needed for �nding this secret order of e. The time complexity can be measured

by
p
t based on using the best known algorithms: Shank's baby-step-giant-step

algorithm (e.g., page 105 [3]), Pollard's catching-kangaroo algorithm [4]. These

algorithms make use of the fact that the discrete logarithms to be extracted are

much smaller than the size of the (main) group in question.

After Bob has veri�ed and accepted Alice's proofs, the time-lock puzzle will

be accepted as the pair (e; n). Below we show that any message encrypted using

n (e.g., using the RSA cryptosystem) can be decrypted after the puzzle is solved.

The instruction to solve the puzzle is to extract t as the discrete logarithm of 1

to the base e modulo n.

Suppose that t has been revealed with
p
t steps of computation. Then Bob

can compute

f = et=2 mod n:

Here t=2 = uv is odd. We know from (2)

f2 � et � 1 (mod n):

We also know from (3)�
f

n

�
=

�
euv(mod n)

n

�
=
� e
n

�uv
= (�1)uv = �1;

while from (1) �
1

n

�
=

�
�1
n

�
= 1:

Therefore

f 6� �1 (mod n):

From this we can conclude that f must be a non-trivial square-root of 1. Since

f2 � 1 (mod n), we can write

(f + 1)(f � 1) = kn; (5)

for some k. With f 6= �1 and 0 < f < n, we know

0 < f � 1 < f + 1 < n:

Thus (5) indicates that either f � 1 or f + 1 must contains a non-trivial factor

of n.

So n is factored and the time-lock puzzle solved! The solving time is set under

the control of an evidence which is thoroughly examinable by the solver before

setting out to solve the puzzle.

4 Discussion

We discuss a number of issues which are related to the proposed scheme.

i) The time complexity measurement for extracting discrete logarithm (i.e.,

extracting t needs T =
p
t steps of multiplications modulo n) reaches the

lowest known to date on exploitation of extracting \small" discrete loga-

rithms. Any algorithm using fewer operations will provide a breakthrough

improvement on solving the \small" discrete logarithm problem.
ii) Since squaring modulo n takes exactly the same time measurement as mul-

tiplication modulo n, the time control T in our scheme (which is the number

of multiplication) will be exactly equal to that in [5] which is the number of

squaring modulo n.
iii) Space complexity (measured in number of bits need to be stored): Pollard's

catching-kangaroo algorithm [4] is O(log t logn) while Shank's baby-step-

giant-step algorithm (e.g., page 105 [3]) is O(t1=2 logn). So for a large t

(e.g., t � 2100) the space requirement of the catching-kangaroo algorithm is

trivial while that of the baby-step-giant-step algorithm becomes prohibitive

for practical use of the algorithm. For a small t, the baby-step-giant-step

algorithm is preferred because it is deterministic.
iv) Neither of the two algorithms that we suggest to use can be parallelised very

well. Running m processes independently gives a speedup of only
p
m. So

for instance, in order to achieve a speedup of one thousand folds by paral-

lelisation, one million processes are needed. Van Oorschot and Wiener [7]

suggested a parallelised catching-kangaroo algorithm which uses m kanga-

roos, each digs a hole after many jumps (rather than after each jump as

in Pollard's original algorithm). That algorithm achieves a linear speedup;

however, its space complexity becomes O(t1=2 logn) (number of bits to be

stored in a central storage shared by all processors). When t is large (i.e.,

when parallelisation is most e�ective), this space requirement is prohibitive

for a practical use of the parallelised algorithm.

v) Pollard's rho algorithm for extracting discrete logarithms (e.g., page 106

[3]) is not usable here since it requires to know the order of the group (the

discrete logarithm of 1 to the base e) in �rst place.

vi) For t � 2130, T � 265 which allows the scheme to be usable in applications

which fall in a wide range of time frame. However, for a very long term time

control, one should consider the e�ect of Moore's Law. This consideration

should be universally observed for any time-lock puzzle which is based on a

computational complexity problem, as long as Moore's Law remains to be

true.

vii) Alice can set the size of n to be arbitrarily large by setting large p0 and q0

in (4). They can also be selected as primes, which makes p � 1 and q � 1

to be non-smooth, a standard means for countering a number of known

factorisation algorithms based on exploiting the smoothness of �(n). Under

such a setting, to factor n without using the prescribed instruction is well

understood to be more costly.

5 Conclusion

We have constructed an integer factorisation-based time-lock puzzle scheme. The

construction allows the puzzle maker to prove to a solver the time needed for

solving a puzzle.

Acknowledgments

I would like to thank my colleague Nigel Smart for discussions which led to the

study of the parallelised catching-kangaroo algorithm.

References

1. Burmester, M., Desmedt, Y. and Seberry, J. Equitable key escrow with limited time

span (or, how to enforce time expiration cryptographically). Extended abstract.

Advances in Cryptology | Proceedings of ASIACRYPT 98 (K. Ohta and D. Pei

eds.), Lecture Notes in Computer Science, Springer-Verlag 1514 (1998) pages 380{

391.

2. Damg�ard, I.B. Practical and provably secure release of a secret and exchange of

signatures. Advances in Cryptology: Proceedings of EUROCRYPT 93 (T. Helle-

seth, ed.), Lecture Notes in Computer Science, Springer-Verlag, 765 (1994) pages

201{217.

3. Menezes, A.J., van Oorschot, P.C. and Vanstone, S.A. Handbook of Applied Cryp-

tography. CRC Press. 1997.

4. Pollard, J.M. Monte Carlo method for index computation (mod p), Mth. Comp.,

Vol.32, No.143 (1978), pages 918{924.

5. Rivest, R.L., Shamir, A. and Wagner, D.A. Time-lock puz-

zles and timed-release crypto. Manuscript. Available at

(http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps).

6. van de Graaf, J. and Peralta, R. A simple and secure way to show the validity

of your public key. Advances in Cryptology | Proceedings of CRYPTO 87 (E.

Pomerance, ed.), Lecture Notes in Computer Science, Springer-Verlag 293 (1988)

pages 128{134.

7. van Oorschot, P.C. and M.J.Wiener M.J. Parallel collision search with crypt-

analytic applications. J. of Cryptology, Vol.12, No.1 (1999), pages 1{28.

(http://theory.lcs.mit.edu/ rivest/RivestShamirWagner-timelock.ps).

A Proof of the size of a secret order

The basic technique is due to Damg�ard [2]. We specify a simpli�ed variation to

suit our case of showing the order of an element. In our variation, the number

in question is protected in computational (statistical) zero-knowledge.

Let t be in the interval [a; b] = fxja � x � bg where c = b � a and c � a.

In protocol Size speci�ed below, Alice can convince Bob that t, the discrete

logarithm of 1 modulo n to the base e, is in the interval [a� c; b+ c].

Protocol Size(e; n)

Execute the following k times:

1. Alice picks 0 < s1 < c at uniformly random, and sets s2 = s1 � c;

she sends to Bob the pair

E1 = es1 mod n; E2 = es2 mod n;

2. Bob selects d = 0 or d = 1 at uniformly random, and sends d to Alice;

3. Alice sets
u1 = s1; u2 = s2 for d = 0;

u1 = s1 + t; u2 = s2 + t for d = 1;

and sends u1, u2 to Bob;

4. Bob veri�es

E1 � eu1(mod n); E2 � eu2(mod n);

and
0 < u1 < c; �c < u2 < 0 for d = 0;

c � u1 � b+ c; 0 � u2 � b+ c for d = 1;

In Bob's evaluation of ex mod n, the case of x < 0 should be evaluated by

performing (1=e)jxj mod n.

Set, for instance, [a; b] = [2`�1; 2`]. Then c = 2`�1. Size will prove that the

order of the element e has a size not exceeding `+1 binary bits. The probability

for this to hold is at least 1� 1=2k.

