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Abstract

Automation is the key to the design of future embedded systems as it permits application-

specific customization while keeping design costs low. Automated design systems must evaluate a

vast number of alternative designs in a timely manner. For this report, we focus on an embedded

system consisting of the following components: a VLIW processor, instruction cache, data cache,

and second-level unified cache. The performance of each processor is evaluated independent of

its memory hierarchy, and each of the caches is simulated using the traces from a single

reference processor. Since the changes in the processor architecture do indeed affect the address

traces and thus the performance of the memory hierarchy, the overall performance is inaccurate.

To overcome this error, the changes in the processor architecture are modeled as a dilation of

the reference processor’s address trace, where each instruction block in the trace is conceptually

stretched out by the dilation coefficient. This approach provides a projected cache performance

that more accurately accounts for changes in the processor architecture. In order to understand

the accuracy of the dilation model, we separate the possible errors that the model introduces and

quantify these errors on a set of benchmarks. The results show the dilation model is effective for

most of the design space and facilitates efficient automatic design.

Keywords: hierarchical evaluation, automatic design, embedded system, cache simulation,

cache modeling
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1 Introduction

A wide range of devices and appliances ranging from mobile phones, printers, and cars has

embedded computer systems. The number of embedded computers in these appliances far

exceeds the number of general-purpose computer systems such as PCs or servers. In the future,

the revenue stream from these embedded computers is expected to exceed those from general-

purpose systems.

The design process for embedded computers is different from that of general-purpose systems.

There is greater freedom in designing embedded computer systems because there is often little

need to adhere to standards in order to run a large body of existing software. Since embedded

computers are used in specific settings, they may be tuned to a much greater degree for certain

applications. On the other hand, the revenue stream from a particular embedded system design is

typically not sufficient to support a custom design. Though there is greater freedom to customize

and the benefits of customization are large, the design budget available for customization is

limited. Therefore, automated design tools are essential to capture the benefits of customization

while keeping design costs down.

In this work, our design space consists of a VLIW processor and its associated memory

hierarchy, consisting of Level-1 instruction, Level-1 data and Level-2 unified caches. The

number and type of functional units in the VLIW processor may be varied to suit the application.

The size of each of the register files may also be varied. Many other aspects of the VLIW

processor, such as whether it supports speculation or predication, may also be changed. For each

of the caches, the cache size, associativity, line size, and number of ports may be varied. Given

this design space, an application, and its associated data sets, the objective is to determine a set of

cost-performance optimal processors and systems. A given design is cost-performance optimal if

there is no other design with higher performance and lower cost.

We focus on the performance evaluation of the memory hierarchy. The major problem is that it

is not feasible to simulate all possible combinations of processor and cache from the specified

space. Because of the multi-dimensional design space, the total number of possible designs can

be exceedingly large. Even allowing a few of the VLIW processor parameters to vary easily leads
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to a set of 40 or more VLIW processor designs. Similarly, there may be 20 or more possible

cache designs for each of the three cache types.

Evaluating a particular cache design for a particular VLIW design requires generating the

address trace for that VLIW design and running this trace through a cache simulator. For a test

program, such as the Postscript preview tool ghostscript, the sizes of the data, instruction, unified

traces are 450M, 1200M, and 1650M respectively and the combined address trace generation and

simulation process takes 2, 5, or 7 hours respectively. In a design space with 40 VLIW

processors and 20 caches of each type, each cache has to be evaluated with the address trace

produced by each of the 40 VLIW processors. Thus, evaluating all possible combinations of

VLIW processors and caches takes (40x20x(2+5+7) hours which comes out to 466 days of

computation. Such an evaluation strategy is clearly unacceptable.

We employ two complementary approaches to reduce the computation effort required to

evaluate all the points in the design space. Firstly, we use the capabilities of a single-pass cache

simulator to simulate multiple cache configurations in a single simulation run provided all the

cache configurations have the same line size. Using this approach, the number of simulations is

reduced from the total number of caches in the design space to the number of distinct cache line

sizes in the design space. Thus, if all 20 caches in the design space have only one of two distinct

line sizes, the overall computation effort is reduced by an order of magnitude.

Secondly, we use a hierarchical evaluation strategy; a common approach for evaluating

complex systems with large design spaces. The complete system is divided into subsystems so

that there is little coupling between subsystems. Each subsystem is individually evaluated in its

own design space. The complete system is evaluated by combining the results of the evaluation

of the individual subsystems and accounting for the effects of the (minimal) coupling between

subsystems.

In our context, the overall system naturally separates into the VLIW processor, instruction

cache, data cache, and unified cache subsystems. The overall execution time consists of the

processor cycles and the stall cycles from each of the caches. We independently determine the

processor cycles for a VLIW processor and the stall cycles for each cache configuration.
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Combined simulation of a VLIW processor and its cache configuration can take into account

coupling between them, and produce more accurate results. For instance, sometimes processor

execution may be overlapped with cache miss latencies, and the total cycles are less than the sum

of the processor cycles and stall cycles. Accounting for such overlaps leads to more accurate

evaluation. But, the simulation time required for doing cycle-accurate simulation is so large that

we will not be able to examine a large design space using such accurate simulation techniques.

We are more concerned with exploring a large design space than with the accuracy of the

evaluation at each design point. Once we have narrowed down our choices to a few designs, the

accurate evaluations can be done on each of the designs in this smaller set.

Using the hierarchical evaluation approach, we define a single reference VLIW processor and

evaluate the cache subsystems only using the traces produced by a reference processor. Since the

address trace generation and cache simulation are only performed using the reference processor,

the total evaluation time is reduced by a factor equal to the number of VLIW processors in the

design space (40 in our example). But, the VLIW processor design does indeed affect the address

trace and hence influences the cache behavior. Therefore, using the cache stalls produced with

the reference trace in the evaluation of a system with a non-reference VLIW processor will often

lead to significant inaccuracies in evaluation. To overcome this problem, we measure certain

characteristics of the object code produced for the non-reference processor with respect to that

for the reference processor. In particular, the ratio of the text sizes, referred to as the dilation, is

measured. We use the dilation to adjust the cache misses and stalls for the non-reference

processor to more accurately model the performance of the memory system.

Though we are primarily motivated by the design of embedded systems, this approach is useful

even for evaluating general-purpose systems. Quite often, architectural or compiler techniques

are evaluated solely at the processor level without quantifying their impact on memory hierarchy

performance. For instance, code specialization techniques, such as inlining or loop unrolling may

improve processor performance, but at the expense of instruction cache performance. The

evaluation approach described in this report can also be used in these situations to quantify the

impact on memory hierarchy performance in a simulation-efficient manner.
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2 Related Work

One important area of previous research is work on automatic design of embedded systems.

The automatic synthesis of transport-triggered architectures within the MOVE framework has

been investigated [1]. A template-based processor design space is automatically searched to

identify a set of best solutions. In the SCARCE project, a framework for the design of

retargetable, application-specific VLIW processors is developed [2]. This framework provides

the tools to tradeoff architecture organization and compiler complexity. A hierarchical approach

is proposed for the design of systems consisting of processor cores and instruction/data caches

[3]. A minimal area system that satisfies the performance characteristics of a set of applications

is synthesized. In contrast to previous work, our framework permits us to explore a large

parameterized processor design space in conjunction with a parameterized memory hierarchy

design space.

A second area of previous research focuses on the development of memory hierarchy

performance models. Cache models generally assume a fixed trace and predict the performance

of this trace on a range of possible cache configurations. In a typical application of the model, we

derive a few trace parameters from the trace and use them to estimate misses on a range of cache

configurations. For instance, models for fully-associative caches employ an exponential or power

function model for the change in working set over time. The parameters of the exponential or

power function are determined using a single simulation-like run through the address trace.

Subsequently, the cache misses of an arbitrary fully-associative cache are estimated from the

model and the derived parameters. These models have been extended to account for a range of

line sizes[4, 5]. Since we are primarily interested in direct-mapped and set-associative caches,

these fully-associative cache models are not appropriate. Other models have been developed for

direct-mapped caches [6], instruction caches [7] [8], multi-level memory hierarchies [9], and

multiprocessor caches [10].

The analytic cache model by Agarwal et al., referred to subsequently as the AHH model, is

motivated by the need to obtain quick estimates on cache performance for a wide range of set-

associative caches configurations, without resorting to time-consuming and/or expensive trace-

driven simulation or hardware measurement. The AHH model estimates the miss rate of set-
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associative caches using a small set of trace parameters derived from the address trace [11]. The

AHH model has been validated by determining the effectiveness of the model in predicting the

cache miss rates of a range of caches over a range of benchmarks. The mean percentage error in

miss rate for direct-mapped caches with a block size of 4 bytes is 4% but the mean error

increases to 22% for set-associative caches with a line size of 16 bytes. In general, the accuracy

decreases as the line size increases. Analytic models such as the AHH model provide insight and

intuition that could be incorporated into optimizing compilers to evaluate tradeoffs in decisions,

such as inlining.

Instead of using cache models to estimate the performance of various caches on a fixed trace,

we use cache models to estimate the performance of caches on dilated versions of a reference

trace. We do not use the AHH model to completely eliminate simulation runs because the

accuracy of the AHH model by itself is not adequate. Instead, we use the AHH model to

interpolate/extrapolate the results from actual simulation runs on the reference trace to the

performance of caches on dilated traces. Steenkiste [12] examined the effect of code density on

the instruction cache performance of RISC processors. We also model the effect of dilation on

instruction cache performance as a decrease in the effective line size. The effective line size is

usually not simulatable because it is not a power-of-two and therefore interpolation is usually

required. As opposed to a curve-fitting approach for interpolation [12], we use the AHH model to

accurately estimate the misses of an unrealizable cache by interpolating between the misses of

the closest two power-of-two line size caches. Prior work was limited to instruction cache

performance. We develop models for estimating unified cache performance for dilated traces and

examine the effect of dilation on unified cache performance.

3 Design and Evaluation System

This section describes our tool chain to design and evaluate a wide range of VLIW processors.

In conventional systems, each of the separate modules of the chain is designed and developed for

a particular processor architecture. The functions of some other modules, such as instruction

format design, are done manually. The unique aspect of our tools is that they work automatically

for any member of the parameterized design space. We first present the overall design space

including that of the memory hierarchy. A brief overview of the design system is then given.
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Last, the particular aspect of the system focused on in this report, the memory hierarchy

evaluation system, is described.

3.1 Design space

The overall design space targeted by our system is shown in Figure 1. The design space

consists of a single-cluster VLIW processor and an optional hardware accelerator in the form of a

non-programmable systolic array. The VLIW processor is parameterized by each of its

components, including number and type of function units, size of the register files, whether the

processor supports predication or speculation. Design parameters are carefully chosen to deliver

a desired level of performance or cost.

The memory system of the design is composed of a Level-1 data cache, Level-1 instruction

cache, and a Level-2 unified cache. Each of the caches comprising the memory system is also

parameterized with respect to cache size, associativity, line size, and number of ports. We require

that the parameters chosen for the memory system are such that inclusion is satisfied between the

data/instruction caches and the unified cache. The inclusion property states that the unified cache

contains all items contained in the data/instruction caches and is enforced in the majority of

systems. This property decouples the behavior of the unified cache from the data/instruction

caches in the sense that the unified cache misses will not be affected by the presence of the

Non-
Programmable
Systolic Array

L1 instruction
cache

L2 unified
cache

Main memory

L1 data
cache

Single-cluster, heterogenous
VLIW Processor

INT FLPMEM
I-fetch,
decode

Integer
register file

Predicate register file

FP  
register file

Figure 1: Overall design space
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data/instruction caches. Therefore, the unified cache misses may be obtained independently,

regardless of the configuration of the Level-1 caches, by simulating the entire address trace.

3.2 Automatic design system

The overall design system is an iterative system that determines cost-performance optimal

designs within a user-specified range. An abstract view of the system is presented in Figure 2.

The driver of the system is a module referred to as the spacewalker. The spacewalker is

responsible for defining high-level specifications for candidate designs to be investigated. The

spacewalker derives the cost and performance for each candidate design using three subsystems:

synthesizer, compiler, and evaluator. The synthesis system creates the design for the processor,

instruction format, memory hierarchy, and optional hardware accelerator from a high-level input

specification [13]. From the design, the system cost can be readily determined. In addition, the

synthesis system creates a machine-description file (mdes) to describe the relevant parts of the

system to the compiler.

The compiler is responsible for mapping the application to assembly code for the synthesized

processor. The compiler is an extended version of the Trimaran compiler infrastructure [14]. The
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Trimaran infrastructure is a flexible compiler system capable of generating highly optimized

code for a family of VLIW processors. The compiler is retargetable to all processors in the

design space and utilizes the machine description to generate the proper code for the synthesized

processor. The last component of the overall design system is a set of performance evaluators.

Performance of the processor, hardware accelerator, and memory hierarchy are separately

evaluated; then, they are combined to derive the overall system performance. Performance of the

processor and accelerator are estimated using schedule lengths and profile statistics. The memory

system performance is derived using a combination of trace-driven simulation and performance

estimation described in the next section.

Each design is plotted on a cost/performance graph as shown in Figure 2. The sets of points

that are minimum cost at a particular performance level identify the set of best designs or the

pareto curve. After the process is completed for one design, the spacewalker creates a new

design and everything is repeated. The spacewalker uses cost and performance statistics of the

previous design as well as characteristics of the application to identify a new design that is likely

to be profitable. The spacewalking process terminates when there are no more likely profitable

designs to investigate.

3.3 Memory system evaluation

The number of designs that need to be explored by spacewalker is large even when

sophisticated search heuristics are used. Hence, it is necessary to develop highly efficient

performance evaluation tools to make this approach feasible. For this work, we focus on

producing cache performance metrics for any design point in a simulation-efficient manner. Two

techniques are used to accomplish this objective. First, a retargetable memory simulation system

is needed to simulate arbitrary design points in the space. These points are referred to as

reference processors. Second, a performance modeling system is used to estimate the

performance of other design points or non-reference processors. The remainder of this section

focuses on a description of the retargetable memory simulation system. The next section

describes the performance modeling technique.
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The organization of the retargetable memory simulation system is presented in Figure 3. The

central components are the assembler, linker, emulator, execution engine, trace generator, and

cache simulator. The input to the system is the scheduled and register allocated assembly code

produced by the compiler for the target processor. The input is used in two parallel paths. The

assembler and linker create a binary representation of the application for the target processor.

The emulator and execution engine converts the input code to an instrumented executable

program for an existing platform. This instrumented executable is also referred to as a probed

executable subsequently. Execution of the instrumented program produces a trace, referred to as

an event trace. The trace generator combines the event trace and the binary for the target

processor to produce an address trace to drive a cache simulator. The output of the system is the

number of misses for the particular cache configuration that is evaluated.

Assembler. The assembler maps the scheduled code into a machine-dependent binary

representation specified by the instruction format. A customized instruction format is co-

synthesized with each VLIW processor. The instruction format specifies all of the available

binary instruction encodings for the processor. Our instruction format system generates variable-

length, multi-template formats to facilitate reducing overall code size [15]. The assembler

examines each set of operations that are concurrently scheduled and selects the best template to

encode the operations in a single instruction. The assembler uses a greedy template selection

heuristic based on two criteria to minimize code size. First, the template that requires the fewest

bits is preferred. Second, the template should have sufficient multi-no-op bits to encode any no-

op instructions that follow the current instruction.

After a template is selected, the assembler fills in the template bits with the appropriate values

for the current instruction. The final output of the assembler is a binary representation for each

procedure in the original application known as a relocatable object file.

Linker. The linker combines all the object files for the individual functions of the application

into a single executable file.  In this process, the linker is responsible for code layout, instruction

alignment, and assigning the final addresses to all of the instructions. In the current system, the

compiler handles intra-procedural code layout, while the linker is responsible for inter-procedural
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layout. Branch profile information is used in both phases to place blocks of instructions or entire

functions that frequently execute in sequence near each other. The goal is to increase spatial

locality and instruction cache performance. Instruction alignment rules are derived from the

instruction format and fetch configuration of the synthesized processor. Instructions that are

branch targets are aligned on packet boundaries (a packet consists of the set of bits fetched from

the instruction cache in a single cycle) to avoid instruction cache fetch stalls for branch targets at

the expense of slightly larger code size. The last step is to assign addresses to all instructions in

the executable file.

Emulator and execution engine. The dynamic behavior of the application is captured using a

combination of an emulator and an execution engine. The emulator converts the assembly code

for the synthesized processor into an equivalent assembly code for an existing platform, such as

an HP workstation. Essentially, the emulator is an assembly code translation tool. In addition, the

emulator instruments the output assembly code to record important dynamic events for memory

system evaluation. These include procedures entered/exited, basic blocks entered, branch

directions, and load/store data addresses. For our system, the IMPACT emulation tools for the

HP PA-RISC architecture are utilized [16]. The instrumented assembly code is compiled using

s cheduled/allocated assembly code

. . .

. . .

. . .

. . .
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the host system assembler and linker to produce an instrumented-executable version of the

application. The execution engine then runs the program on the host system to produce an event

trace that records the dynamic program behavior as a high level sequence of tokens. Note that the

event trace is dependent on the scheduled/allocated assembly code produced for the synthesized

processor, but it is independent of the instruction format and organization of the executable file

for the synthesized processor.

Trace generator. The trace generator creates an instruction and/or data address trace that

models the application executing on the synthesized processor. This is accomplished by

symbolically executing the synthesized processor executable file. Symbolic execution is driven

by the event trace produced by the execution engine. The event trace identifies the dynamic

instructions that must be executed by providing control flow events (e.g., enter a basic block,

direction of a branch, or predicate value). The trace generator just maps control flow events to

the appropriate the sequence of instruction addresses obtained from the executable file that are

visited to create the instruction trace. The event trace also provides data addresses accessed by

load and store operations. The trace generator simply passes these addresses through at the time

when the load/store is executed to create the data trace. The trace generator is configurable to

create instruction, data, or joint instruction/data traces as needed.

Cache simulator. The cache simulator used in our system is the Cheetah simulator [17].

Cheetah is capable of simulating a large range of caches of different sizes and associativities in a

single pass. The line size is the only parameter that is fixed. Cheetah also uses sophisticated

inclusion properties between caches to reduce the amount of state that must be updated, thereby

reducing the overall simulation time. In our usage, all caches in the design space for each

synthesized processor is simulated and the number of misses for each cache is tabulated. Separate

runs are needed for each line size that is considered. Also, separate runs are required for each of

the caches (Level-1 instruction, Level-1 data, and Level-2 unified) as each requires a different

address stream.
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4 Dilation Model

In this section, we describe the processes and models associated with estimating the cache

misses on the trace produced by an arbitrary VLIW processor. The misses produced by an

arbitrary VLIW processor are estimated using (1) the cache misses obtained through simulation

on the reference VLIW processor trace and (2) models relating the cache behavior of two traces.

As we described earlier, we can only afford to perform complete simulations on the reference

trace.

4.1 Process

In the following, we assume a fixed application running on a fixed data set. Let Pref be the

reference VLIW processor and Pi  be an arbitrary VLIW processor from the design space. In our

experiments, we use a narrow-issue processor for Pref and a comparatively wide-issue processor

for Pi . Let Tref be the trace produced by Pref and Ti the trace produced by Pi . Trace modeling

parameters, TP, are a small number of parameters derived from the trace, Tref . Let ICj , DCj , and

UCj represent instruction, data and unified cache configurations. Let C(S,A,L) represent a cache

with S sets, associativity A, and a line size of L. When the specific cache parameters are not

relevant, we abbreviate C(S,A,L) to C. Let M(ICj ,Pi ) be the true misses produced by the trace, Ti ,

on the instruction cache, ICj. Since we do not simulate using Ti , we estimate M(ICj ,Pi ) using the

trace modeling parameters, TP, and misses, M(ICk ,Pref ) on some arbitrary set of feasible ICk . In

our context, a cache is feasible if its line size and number of sets are powers of two, and its

associativity is an integer. The notation introduced in this section is summarized in Table 1.

The process is best understood as a series of three steps each associated with an approximation

and hence an attendant inaccuracy. In the experiment section, we determine the extent of these

inaccuracies on particular benchmarks and machine configurations. We first state the assumption

associated with each step (in italics) and then discuss the implications of the assumption and the

rationale for making the assumption.
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1. The data trace component of Ti is identical to the data trace component of Tref . The

instruction trace component of Ti contains the same sequence of basic blocks as that of Tref ,

except that the sizes of the individual basic blocks are typically larger in Ti .

We require that Pref and Pi have the same data speculation and predication features, because

these features have a large impact on address traces. When the design space covers machines

with differing predication/speculation features, we use several Pref processors, one for each

Symbol Description

Pref
Reference processor

Pi
Arbitrary processor

Tref
Reference processor trace

Ti
Arbitrary processor trace

C Cache

C(S,A,L) Cache with S sets, associativity A, line size L

S Number of sets in cache

A Cache associativity

L Cache line size

ICj Instruction cache j

jDC Data cache j

jUC Unified cache j

d Dilation with respect to refT

( )dPICM ij ,, Cache misses on jIC

Number of references per granule

N Number of granules in trace

u(L) Average unique cache lines in granule

u(1) Average unique words in granule

P(L,a) Probability of a blocks in set

p1
Average isolated references per granule

lav
Average run length

Coll(S,A,L) Collisions in C(S,A,L)

Table 1: Description of symbols
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unique combination of predication and speculation. Given that the data trace components are

identical in Ti and Tref  ,

( ) ( )refjij ,PDCM,PDCM ≈ (4.1)

Processor Pi may have a different data trace on account of two factors. Firstly, more of the

operations in Pi may be speculated and therefore, the data trace may contain more of these

speculated load addresses. However, the compiler does use heuristics to speculate the most

profitable operations. Therefore, the number of spurious load addresses is not expected to be

large. Secondly, Pi may have larger (or smaller) amount of spills due to register pressure,

depending on the relative size of the register files, the relative issue-width of the processor, and

the amount of instruction-level parallelism. Even if register spill code introduces additional

loads/stores, these are likely to have high locality and not increase the number of data cache

misses significantly.

We assume that the basic block traces of the two processors are identical, i.e., the sequence of

basic blocks in each of the two traces is identical. The compiler may perform different

optimizations depending on the machine widths and associated features. But, in our compiler,

these optimizations are limited to optimizations within superblocks/hyperblocks. The generation

of superblocks/hyperblocks is not machine-dependent currently. Since the optimizations that can

affect the basic block trace are machine-independent, e.g. the degree of loop unrolling, the basic

block trace is identical for Pref and Pi .

Though the basic block traces for Pref and Pi are identical, the size of each basic block in Pi

differs from that in Pref . This occurs because the wider-issue processor has a wider instruction

format. The wider instruction format of Pi is generally more inefficient and will require more bits

to represent the same set of operations. The operand formats of the wider processor are also

typically larger due to larger register files. Additionally, the wider-issue processor tends to

speculate more often, thereby increasing both the dynamic size of the address trace as well as the

static code size. Let the dilation of a basic block be the ratio of the size of a basic block in to Pi
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that in Pref and text dilation d be the ratio of the overall text size of the benchmark in Pi to that in

Pref .

2. The dilation of all basic blocks is uniform and equal to the text dilation d.

A trace, dilated by d, is derived from Tref as follows. The length of each basic block in Tref is

increased by a multiplicative factor d. Additionally, the starting address of each basic block is

adjusted to ensure that the dilated basic blocks do not overlap in the dilated trace. Let M(ICj ,Pi ,d)

represent the instruction cache misses on this dilated trace and let M(UCj ,Pi ,d) represent the

unified cache misses on a trace where the instruction component is dilated as described. Under

the uniform dilation assumption, except for minor differences in the positioning of basic blocks

in the address space, this dilated trace is identical to Ti . Therefore,

( ) ( ),d,PICM,PICM refjij ≈ (4.2)

and

( ) ( ),d,PUCM,PUCM refjij ≈ (4.3)

The assumption of uniform dilation implies that all basic blocks are increased in size by the

same amount on the wider-issue processor. In general, the basic block contents do indeed vary on

wider processors due to different scheduling decisions. However, the dominant factor in the code

size increase is the wider instruction format. With relatively fixed basic block contents, each

basic block will increase in size proportional to the width that the average instruction increases,

which is equivalent to the overall text dilation. In the experiment section, we examine the

variability of dilation across blocks and the degree to which the text dilation represents the true

dilation.

3. M(ICj ,Pref ,d) can be estimated accurately from M(ICk ,Pref  ), for some set of ICk and the trace

parameters, TP.  Similarly, M(UCj ,Pref ,d) can be estimated accurately from M(UCk ,Pref ) for some

set of UCk and trace parameters, TP.
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This step is again associated with some inaccuracies that may result in the estimated misses

differing from the actual misses on the dilated trace of Pref . The trace model we use may not

capture the behavior of the reference trace in sufficient detail. Also, the manner in which we use

the trace model to obtain the miss behavior of the dilated reference trace may not be sufficiently

accurate. However, the baseline AHH model has been shown to be effective in predicting cache

miss rates for a large range of caches. Further, the differences in the dilated and reference traces

can be intuitively characterized allowing the application of the AHH model to be extended in a

straight-forward manner. The derivation of the formulas to approximate M(ICj ,Pref ,d) and M(UCj

,Pref ,d) are presented in the remainder of this section.

4.2 Trace model

In this subsection, we review the AHH cache model [11]. In the next subsection, we use the

trace parameters of the AHH model to estimate misses of the dilated trace. The AHH model is

motivated by the need to obtain quick estimates on cache performance for a wide range of set-

associative cache configurations, without resorting to time-consuming and/or expensive trace-

driven simulation or hardware measurement. A few parameters are derived from a single-pass

through the address trace. Analytic models relate these parameters to miss rates of arbitrary cache

configurations.

The AHH model divides the trace into N time granules, each containing a certain number of

references, τ . Within each granule, we sort the references in each granule based on the address

values, so that addresses that belong to a run will appear consecutively. For our work, all

addresses are word addresses. An address is either part of a run, i.e. there are other references in

the granule that neighbor this address, or the address is an isolated (singular) address. Let u(1),

be the average number of unique references in a granule. Let p1 be the average fraction of

isolated references in a granule, i.e. the average of the ratios of isolated references to unique

references over all granules. Let lav be the average run length, the number of consecutive

addresses composing each run averaged over all the runs in a granule and over all the granules.

These three basic parameters, viz. u(1), p1 , and lav , are used to derive a set of secondary

parameters, viz. p2 , u(L), and P(L,a). The parameter p2 corresponds to the state-transition
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probability of transferring from the current run of sequential addresses to a new run; u(L) is the

average number of unique cache lines accessed in a time granule; and P(L,a) is the probability

that a cache lines of size L are mapped into a set.
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The AHH model characterizes cache misses into start-up, non-stationary and intrinsic

interference misses. We assume that steady-state interference misses dominate and ignore the

start-up and nonstationary misses. We are primarily interested in using an available miss rate of a

cache, C1(S1 ,A1 ,L1 ) to estimate the miss rates of another cache, C2(S2 ,A2 ,L2 ). The steady state

miss rate, m(C2  ), is related to m(C1  ) by

( ) ( )
( ) ( )1

111

222
2 Cm

,L,ASColl

,L,ASColl
Cm = (4.7)
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( ) ( ) ( )L,aPaSLuS,A,LColl
Aa

a
∑
=

=
⋅⋅−=

0

(4.8)

Thus, given the three basic parameters, u(1), p1 , lav , and the miss rate for any cache, we can

estimate the miss rate of any other cache.

4.3 Estimating performance of dilated traces

In this section, we describe the utilization of the AHH model to estimate the instruction and

unified cache performance of dilated traces. In each case, we first determine the appropriate
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values for the basic parameters of the AHH model, u(1), p1 , lav . Subsequently, we use these

parameters and the misses on the reference traces to determine the instruction and unified cache

misses on dilated traces.

In the case of the instruction cache, we are only interested in the instruction component of the

trace. Therefore, in determining the basic parameters, u(1), p1 , lav , we filter out the data

component and divide the instruction component into granules. We process each granule as

described earlier and obtain values for the three basic parameters, u(1), p1 , lav , for the entire trace.

In the case of the unified cache, we have to separate out the instruction and data components of

the trace because only the instruction component is dilated. Therefore, we derive a separate set of

parameters for the instruction component and the data component. We divide the unified trace

into fixed-size granules and then separately sort the instruction and data addresses. For each of

the two components, we obtain values for the three basic parameters. Thus, we obtain uI (1), p1I ,

and lavI for the instruction component and uD (1), p1D , and lavD for the data component. For a

specific cache configuration,

( ) ( ) ( )LuLuLu DI += (4.9)

where uI (L) is a function of the three parameters obtained for the instruction component of the

trace and uD (L) is a function of the parameters for the data component. Once we obtain u(L), we

use equations (4.6) and (4.8) to determine collisions for a particular cache configuration as in the

instruction cache case.

4.3.1 Instruction cache performance

First, consider estimating the instruction cache misses, M(ICj ,Pref ,d). We show that dilating the

trace by d is equivalent to contracting the line size of ICj by d and leaving the other parameters of

the cache, viz. number of sets and associativity, unaltered. Thus, a trace dilation of two is

equivalent to reducing the line size from, say, 16 bytes to 8 bytes.

We assume a trace, dilated by d , is derived from refT  as follows. The length of each basic

block in refT  is increased by a multiplicative factor d . Additionally, the starting address of each
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basic block is adjusted to ensure that the dilated basic blocks do not overlap in the dilated trace.

Let the start of a basic block be located at an offset O  from a common base address B . We

assume that B is chosen so that 0mod =LB  for any choice of line size, L, in the design space.

The start address of the basic block in the dilated trace is changed from OB +  to OdB ⋅+ . The

lengths and offsets of basic blocks are rounded to the nearest word so that contiguous basic

blocks in the original trace remain contiguous but do not overlap.

Lemma 1. Provided dL is a feasible (power of two) line size,

( )( ) ( )( )refref PdLASICdPLASICM ,,,M,,,, =  (4.10)

Proof: Consider ( )LASIC ,,  and ( )dLASIC ,,  that are accessed with the references from the

dilated trace, drefT ,  and the reference trace, refT  respectively. The proof is by induction on the

k th basic block in the traces, refT  and drefT , . Both traces have the same sequence of basic

blocks, though the size and location of the basic blocks are scaled by d  in drefT , . We show that

the following invariant continues to be maintained after the two caches are accessed with the

references associated with the k th basic block. The contents of ( )LASIC ,,  and ( )dLASIC ,,

are identical, in the sense that each cache set contains the same set of (possibly partial) basic

blocks and each cache incurs the same number of misses up to the k th basic block from their

respective traces.

At the beginning, before the arrival of the first basic block of the trace, both caches are empty

and therefore, their states are identical. Also, the misses from both these caches are zero.

In order to simplify the presentation of the induction step, we assume that

0mod =⋅ LSB temporarily. Consider the arrival of the k th basic block, starting at address

OB +  and of size W  bytes in the reference trace refT . In ( )dLASIC ,,  this block maps into the

range of sets, 
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simplifies to 
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modmod � . In ( )LASIC ,,  the same basic block maps

to the range of sets, 
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0mod =⋅ LSB , this expression simplifies to the same range of sets,
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modmod � . Since the states of the caches are identical, the same sets

contain (portions of) the block or not and hence, both caches incur the same misses. Since the

order of arrival of the basic blocks is the same, both caches replace (portions of) the same blocks

and therefore, the states of the two caches are the same after the arrival of the k th basic block.

Thus, the number of misses and the states of the caches are identical, completing the proof by

induction.

Now, consider 0mod ≠⋅ LSB  but 0mod =LB . In cache ( )dLASIC ,, , address B maps to

the set =S
dL

B
mod  S

L

Bd
mod . In cache ( )LASIC ,, , address B  maps to the set S

L

B
mod . It

follows that an arbitrary address that maps to a set index X  in ( )dLASIC ,,  maps to a set index

( ) S
L

B
dX mod1−+  in ( )LASIC ,,  . Therefore, under an appropriate renumbering of the sets in

( )LASIC ,, , the states of both cache are identical. Thus, they both incur the same number of

misses on each basic block reference. �

In general, a cache with line size L / d may not be feasible in general. In this case, we choose

two line sizes, Ll = 2l and Lu = 2l+1 for integer l, such that Ll < L / d < Lu. We estimate M(IC(S,A,L

/ d),Pref ) by interpolating between M(IC(S,A,Lu ),Pref ) and M(IC(S,A,Ll ),Pref ). A linear

interpolation is not suitable because the misses are a very nonlinear function of line size. We use

the AHH trace parameters and model to generate the more sophisticated interpolation as

described below.
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Lemma 2.

Given a function ( )xf  that is a linear function of ( )xg , and given the values of ( )xf  and ( )xg

for any two 1x  and 2x ,

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )21

2112

21

21

xgxg

xgxfxgxf
xg

xgxg

xfxf
xf

−
⋅−⋅+

−
−= (4.11)

Proof: Let ( ) ( ) bxgaxf +⋅= . Substituting 1x  and 2x  into this equation, taking the difference

and solving for a gives:

( ) ( )
( ) ( )21

21

xgxg

xfxf
a

−
−=

Substituting a  back into the equation involving 1x  and solving for b  gives:

( ) ( ) ( ) ( )
( ) ( )21

2112

xgxg

xgxfxgxf
b

−
⋅−⋅=

Substituting for a  and b  in ( ) ( ) bxgaxf +⋅= , we get (4.11). �

 From (4.7), it is clear that the dominant steady-state component of ( )ICM  is a linear function

of ( )ICColl  Therefore, we assume that ( )ICM  is a linear function of ( )ICColl . Making the

following substitutions in (4.11): ( )( )LASICM ,,  for ( )xf , ( )( )LASIC ,,Coll  for ( )xg ,

( )lLASIC ,,  for 1x , ( )uLASIC ,,  for 2x ,

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( ) ( )( )ul

ullu

ul

ul

S,A,LICCollS,A,LICColl

S,A,LICCollS,A,LICMS,A,LICCollS,A,LICM

S,A,LICColl
S,A,LICCollS,A,LICColl

S,A,LICMS,A,LICM
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−
⋅−⋅+

−
−=

(4.12)

Note that at the two end points IC(S,A,Ll ) and IC(S,A,Lu ), the right hand side of (4.12)

evaluates to M(IC(S,A,Ll )) and M(IC(S,A,Lu  )) respectively.
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Thus to determine M(IC(S,A,L),Pref ,d), we first transform this problem into determining the

misses on IC(S,A,L / d) using the reference trace, M(IC(S,A,L / d),Pref ). In the general case, L / d

is not a power of two and therefore not a feasible line size. We use Equation (4.12) above to

estimate M(IC(S,A,L / d),Pref ) from M(IC(S,A,Ll  ),Pref ) and M(IC(S,A,Lu ),Pref ), where Ll and Lu are

the immediately lower and higher line sizes that are powers of two.

4.3.2 Unified cache performance

Consider estimating the unified cache misses, M(UC(S,A,L),Pref  ,d) on a reference trace dilated

by d. In the case of the instruction cache, we were able to transform the problem into one of

determining the misses on a related cache configuration using the undilated trace. This approach

is not feasible for the unified cache because of the mix of an undilated data component with a

dilated instruction component.

As described in Section 4.2, we derive the following basic parameters from a simulation-like

run through the unified address trace: uD (1) and uI (1), the average number of unique data and

instruction references in a granule, p1D and p1I , the average probability of a singular reference in

the data and instruction components, and lavD and lavI , the average run length on the data and

instruction components. From these basic parameters and equations (4.4), (4.5), (4.9), we derive

u(L), for a specific line size, L.

Let Coll(TPref  ,UC(S,A,L)) and Coll(TPref,d ,UC(S,A,L)) represent the collisions in a unified cache,

with and without dilation. We derive Coll(TPref ,UC(S,A,L)) from (4.6) and (4.8). The procedure

for determining Coll(TPref,d ,UC(S,A,L)) takes into account that the instruction stream is dilated but

not the data stream. In estimating the instruction cache misses, we transformed the dilation of the

instruction stream to an equivalent reduction in line size. In a similar manner, we approximate

u(L,d) ≈ uD (L) + uI (L / d) We then substitute u(L,d) in the following, which are modified versions

of (4.6) and (4.8) respectively, that account for dilation of just the instruction component of the

trace.

( ) ( ) ( ) aL,dua
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( )( ) ( ) ( )L,a,dPaSL,duS,A,L,CTColl
Aa

a
ref,d ∑
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=
⋅⋅−=

0

(4.14)

Now that we have the two collision terms and the misses on the reference trace using

simulation, we can then estimate misses of the dilated trace using a modified version of (4.7).

( )( ) ( )( )
( )( ) ( )( )S,A,LUCM
S,A,L,UCTColl

S,A,L,UCTColl
,d,PS,A,LUCM

ef

ef,d
ref

Pr

Pr= (4.15)

where we obtain M(UC(S,A,L)) through simulation.

5 Dilation model implementation in design space exploration software

Figure 4 shows a layered view of the relevant modules of the overall design space exploration

software. The software is distributed across several executables and implemented using different

languages. The FrontEndGUI is in Tcl/Tk, the range of modules from Walkers through

Evaluators is a single spacewalker executable in C++, the Scripts are in Perl and the

lowest level of Executables are either in C or in C++. In general, each level contains classes,

functions and/or executables that invoke other classes, functions and/or executables at a lower

level.

5.1 Overview

The FrontEndGUI is used to input a design space specification as well as to examine the

final output of the design space exploration. A design space specification consists of a set of

parameters and a range of values that each parameter can take. For instance, an instruction cache

design space is specified by the parameters, cache size, cache line size, associativity and number

of ports. The Walkers module accepts an input file consisting of the design space specification.

In a non-interactive design space exploration, this input file may be specified manually or

generated by other scripts. The Walkers module generates component level designs (e.g.

instruction cache design) as well as system-level designs that are within the specified design

space. The Walkers module supports many heuristics for exploring the design space. An

exhaustive design space exploration evaluates all designs that meet the design space

specification. The user may choose from a range of heuristics that are available for many
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components such as VLIW processors. A heuristic only evaluates designs that are likely to be

superior than the ones that have already been explored. The Pareto layer encodes the

mechanics of accumulating a Pareto set for a particular component. A Pareto set consists of

designs that are superior in performance to all other designs with the same or lower cost. A

Walker for a particular component first creates a null Pareto set and then repeatedly inserts

designs from the design space into the Pareto. The Pareto module inserts a design point into

the cumulative Pareto set only if its performance is superior to all other existing Pareto sets with

same or lower cost. The Pareto module also removes designs that are inferior to the current

design.

The Pareto module invokes the EvaluationCache layer to obtain cost and performance

metrics for designs. The EvaluationCache first looks in a persistent disk-based database if a

particular metric for a design is available. Otherwise, it invokes the Evaluators layer of

software to evaluate the cost or performance of a design. In some cases, this evaluation may be

completed internally within the Evaluators module. For instance, the area cost of a particular

cache configuration may be readily computed from the cache parameters. Similarly, the number

of misses generated by an instruction cache configuration on a trace with a non-unit dilation is

also evaluated internally within the Evaluators module. We discuss this in more detail later.

But, in general, the evaluation of a metric may involve compiling an application or running a

simulation. The Scripts layer performs the necessary setup for such compiles and simulations,

such as making directories, copying over input files, setting parameters, etc. The Executables

layer contains the executables for the compilers, simulators and trace generators, such as the

Impact front-end compiler, the Elcor back-end compiler, the Cheetah cache simulator, the

TraceModeler simulator for generating trace parameters. Once a compile or simulation is

completed, the results are sent back through the Scripts and Evaluators layer to the

EvaluationCache. The EvaluationCache enters the results into its persistent database

and also sends it back to the Pareto layer. As described earlier, the Pareto layer uses these

results to either discard a design or enter it into the Pareto set. Once the Walker has walked

over the design space, the spacewalker prints out the Pareto set. In an interactive environment,

the FrontEndGUI displays the Pareto sets additionally.
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Front End GUI

Walkers

Pareto

Evaluation Cache

Evaluators
TraceParms::deriveTraceParms

(app, vliwSynthDir,
traceParmsSimDir, ...)

Scripts

Executables

getTraceParms (app, ...)

trace_modeler.pl

trace_modeler

DesignSpaceSpec

IcacheWalker::step(...)

Pareto::insertPoint(experiment, ...)

getMisses(expHandle)

IcachePerf::computeMisses
(app,  design, vliwSynthDir,

icacheSimDir, dilation)

run_cheetah.pl

cheetah

Figure 4: Dilation model implementation in overall design exploration software
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Figure 4 shows two examples related to the dilation model demonstrating how the various

layers in the software are exercised. We describe these two chains of method calls in more detail

in the next two subsections.

5.2 Evaluating trace parameters

As part of the initialization steps associated with a new application, the system invokes

getTraceParms in the EvaluationCache layer. The getTraceParms method of the

EvaluationCache delivers the basic parameters of the AHH model, viz. u(1), p1 , and lav  for the

instruction trace and for the instruction and data components of the unified trace from the

persistent disk-based database. If these nine parameters are not available from the database,

getTraceParms sets up the necessary directories for performing address trace generation and

invokes TraceParms::deriveTraceParms.

The arguments required by deriveTraceParms include the various directories required for

performing the simulation, such as the directory containing the machine description files of the

VLIW processor, the directory containing the application’s code that have been prepared by the

high-level Impact compiler for input into the Elcor compiler. Additionally, the sizes of granules,

τ , used for processing the instruction and unified trace are also required. The granules must be

large enough that the incremental change in working set is small with further increases in granule

size. The other consideration is that granule size must be large enough so that the computation of

collisions is numerically stable. Increasing the granule size, increases the number of unique cache

lines referenced and hence the number of collisions. Because the collisions depend on the cache

size, we need a larger granule size for Level-2 unified cache then for Level-1 instruction cache.

Currently, these instruction and unified trace granule sizes are set to 10,000 and 200,000

respectively. The deriveTraceParms method invokes the trace_modeler.pl Perl script

inside a child process.

The trace_modeler.pl script invokes the trace_modeler_driver method in the

Cheetah perl package. The trace_modeler_driver first copies over the probed version

of the executable and associated files from the directory that Impact uses to generate its output to
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the working directory used by the trace_modeler_driver, if they exist from a previous

run. Otherwise it calls gen_probed_exec to generate the probed executable.

gen_probed_exec copies over all the input files required and then runs an Elcor compile of

the application. Then, gen_eas assembles the resulting files, which in turn invokes the Eas

assembler on each of the files generated by the Elcor compile. The Eld loader collects all the

object files into a single file. gen_probed_hppa generates a probed version of the executable

which contains probes that generate a trace when the application is executed. Finally, the probed

executable and associated files are copied back to the directory used by Impact for storing its

output, so that it can be reused on subsequent simulations. Since generating the probed

executable is time-consuming, and dependent only on the application and the VLIW processor,

the probed executable may be reused on many cache simulation runs.

The trace_modeler_driver then sets up a simulation pipe consisting of the probed

executable, Etrans and TraceModeler, in that order. The probed executable generates a

compact trace of the application executing on its input data set. Etrans expands and translates

this trace into the form required by the simulation modules. The TraceModeler uses the

unified trace of the application to generate the trace parameters. At the end of the simulation,

TraceModeler deposits the result into the TraceStats file.

In order to permit faster evaluation, we also allow sampling an initial segment of the trace to

evaluate memory hierarchy performance. If trace sampling is off, the probed application should,

on completion, generate the same results as the original application. Therefore, we check these

results against the expected results to ensure that the application ran correctly. If sampling is on,

the application is not simulated to completion and the check for the final results is, of course, not

done.

TraceModeler has a UtraceModeler class to model the unified trace and an

ItraceModeler class to model the instruction trace. The main program constructs these two

classes using the prescribed granule sizes. The main loop reads in a segment of the trace,

typically 1000 addresses and delivers them to the processTrace methods of the
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ItraceModeler and UtraceModeler, until either the entire trace is processed or the trace

length processed reaches the sampling limit.

The ItraceModeler processes a trace segment by accumulating the unique instruction

addresses into a set, uniqueRefSet, until the number of addresses processed reaches a

multiple of the granule length. At this point, processGranule, a private method in

ItraceModeler, sorts the addresses in the uniqueRefSet and determines the number of

unique references, the singular references and the average run length in this granule.

Corresponding cumulative variables that accumulate these values for all the granules are updated.

The uniqueRefSet set is cleared in preparation for the next granule. The UtraceModeler

processes a trace segment by accumulating the unique instruction and data addresses into

iUniqueRefSet and dUniqueRefSet respectively. As in the ItraceModeler, these

sets are processed when the number of addresses (both instruction and data) reaches a multiple of

uGranuleSize.

After the address trace is processed, TraceModeler converts the cumulative values to

averages over all granules and writes these averages into a file. This completes a top-down

description of the software related to trace parameter generation. We now trace back to see how

the results of the TraceModeler are processed and deposited into the EvaluationCache.

The trace_modeler_driver completes and exits successfully. The TraceParms method

deriveTraceParms in the parent process resumes and reads in the average unique

references, average isolated references and average run lengths for the instruction trace and the

data and the instruction components of the unified trace. From these nine values,

derive_trace_parms computes ( )1u , 1p , 2p  for the three trace components. The method

EvaluationCache::getTraceParms deposits these values into the persistent database.

5.3 Evaluating cache misses

Based on the design space specification, the overall system walker initiates a

MemoryWalker. The MemoryWalker is responsible for producing a set of Pareto sets of

memory hierarchy designs. Each Pareto set consists of memory hierarchy designs that satisfy

certain constraints with respect to data cache ports, unified cache ports and dilation. For each
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memory hierarchy Pareto design, there is no other memory hierarchy design that is part of the

design space, satisfies the same constraints and is better in both cost and performance. The

MemoryWalker delegates the evaluation of the instruction cache, data cache and unified cache

design spaces to the IcacheWalker, DcacheWalker and UcacheWalker respectively.

Currently, the method IcacheWalker::step() evaluates all design points in the instruction

cache design space and builds a set of Pareto sets, each Pareto set parameterized by dilation

intervals. For each design point, the IcacheWalker::step() method binds the instruction

cache design, the application being evaluated and the dilation to build an experiment. The

Pareto::insertPoint(experiment, …) method evaluates the design and either

inserts or discards the design from the accumulated Pareto set based on the evaluation. The

EvaluationCache::getmisses(expHandle) method returns the instruction cache

misses, if already present in the persistent database; otherwise it invokes

IcachePerf::computerMisses().

If the dilation is non-unity, computeMisses estimates the cache misses by interpolating

from dilation unity simulations of related cache configurations. Using the statement of Lemma

1, computeMisses contracts the line size of the instruction cache design by the dilation. If the

contracted line size is not a power of two, we determine the closest power-of-two line sizes, both

above and below the contracted line size and then use Equation (4.12) to compute the estimated

instruction cache misses under the prescribed dilation. The method, computeMisses, invokes

the TraceParms class to compute the number of collisions for a given instruction cache,

( )( )LASIC ,,Coll . A straightforward computation of ( )( )LASIC ,,Coll  using Equations (4.8) and

(4.6) is not numericaly stable when the number of collisions is small. If the primary method is

not numerically stable, we use an alternate procedure that sums an adequate initial segment of an

infinite montonically decreasing series.

If the dilation is unity, computeMisses starts up the script run_cheetah.pl in a child

process and blocks itself till run_cheetah.pl completes. run_cheetah.pl invokes

cheetah_driver in the Cheetah perl package. The cheetah_driver is similar to the

trace_modeler_driver in many ways. It generates a probed executable, if one already does

not exist in a cached location from previous runs. Also, it permits trace sampling through
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simulation of an initial segment of the address trace. The cheetah_driver sets up a

simulation pipe consisiting of the probed exectuable, Etrans and cheetah in that order. The

cache simulator, cheetah, is a separate C application that supports simulation of a range of

caches with the same line size in a single pass through the address trace. The simulation time for

a range of such caches is not significantly higher than for the simulation of a single cache

configuration. Therefore, we simulate all cache configurations with the same line size that lie

within specified minimum and maximum limits for associativity and number of sets. The

method, runCheetah, returns a list of these cache configurations and their misses. Then,

computeMisses returns these cache misses as a vector where each element consists of a tuple

of cache configuration and misses. Finally, getMisses enters these tuples into the persistent

data base and responds as well to the specific request from Pareto::insertPoint().

6 Validation and Evaluation

In this section, we validate and evaluate the dilation model and its implementation. We

quantify the inaccuracies introduced by each of the major assumptions in our approach that are

discussed in Section 4, viz. (1) the data trace is not changed significantly across different

processors; (2) all basic blocks are uniformly dilated by the text dilation; (3) the

instruction/unified cache misses of the dilated trace can be estimated using the cache simulation

results on the reference trace and the AHH trace parameters.

Our choice of benchmark applications is influenced by two major factors. Firstly, the overall

focus of our system is in automatically generating embedded systems on a chip tuned for specific

applications. We are therefore interested in multimedia-intensive benchmarks that are likely to be

targeted by embedded systems. We use a subset of MediaBench, a set of benchmarks developed

by Mangione-Smith and his group for facilitating work on embedded systems [18]. Secondly,

since a major focus of this work is in correctly estimating instruction and unified cache behavior,

we choose benchmarks where instruction and unified cache behavior have a significant effect on

overall performance. In benchmarks where instruction cache miss ratios are small, it is not that

important to account for variations in instruction traces due to changes in machine architecture.

We chose the following benchmarks from MediaBench with the highest instruction cache miss

rates: epic, ghostscript, mipmap, pgpdecode, pgpencode, rasta, unepic. We also chose three
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benchmarks from the SPEC suite because it is well understood by the microarchitecture research

community. Again, benchmarks with higher relative instruction cache miss rates were chosen:

085.gcc from the SPECINT-92 suite; 099.go and 147.vortex from the SPECINT-95 suite. We

present results for all benchmarks in tabular form and show in depth analysis for one

representative application, 085.gcc.

In our experiments, we use a narrow 1111 VLIW processor with one each of integer, float,

load/store and branch units as the reference processor. We also use the following processors as

the target (arbitrary) processors: 2111, 3221, 4221, and 6332, where the digits denote the number

of integer, float, memory, and branch units, respectively. Note that the reference processor can

issue up to 4 operations per cycle and the 2111, 3221, 4221, and 6332 target processor can issue

up to 5, 8, 9, and 14 operations per cycle, respectively. With the narrow VLIW processor as the

reference processor, the experiments measure the effectiveness in estimating the cache miss

behavior of the wider processors from that of the narrow processor.

Two cache configurations for the data, instruction and unified caches are used for the

experiments. First, a small configuration consisting of a 1KB direct-mapped data cache with a

line size of 32 bytes, a 1KB direct-mapped instruction cache with a line size of 32 bytes and a

16KB 2-way set associative unified cache with a line size of 64 bytes. Second, a large

configuration consisting of a 16KB 2-way set associative data cache with a line size of 32 bytes,

a 16KB 2-way set associative instruction cache with a line size of 32 bytes and a 128KB 4-way

set associative unified cache with a line size of 64 bytes.

6.1 Validation with Impact

The first step in the evaluation was to verify accuracy of our memory simulation system. The

Impact compiler from the University of Illinois provided us with an alternative set of simulation

tools [16]. Impact’s cache simulator uses detailed modeling and accurate stall cycles for a

superscalar processor. In order to test the correctness of our memory hierarchy evaluation

modules, we determined the instruction and data cache miss rates for several benchmarks and a

range of cache configurations using both sets of tools. There were some small differences in the

number of misses produced by the two systems. These differences could largely be attributed to
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the more detailed simulation in Impact involving slightly different handling of writes and write-

buffer issues. After accounting for these differences, the final miss rates generated by the two

simulation systems were virtually identical.

6.2 Data cache dilation assumption

Our dilation model started with the assumption that the data cache trace is not significantly

changed for different processors. Hence, the number of data cache misses for any processor is

equal to the number of misses measured for the reference processor. The degree to which this

assumption is valid is explored in Table 2. The table reports the actual miss rates for each of the

processors normalized with respect to the actual misses for the reference 1111 processor. The

Relative Data Cache Miss rates (1 KB)Benchmarks
1111 2111 3221 4221 6332

085.gcc 1.00 1.03 1.05 1.09 1.08
099.go 1.00 1.04 1.08 1.09 1.09
147.vortex 1.00 1.01 1.01 1.01 1.01
epic 1.00 1.02 1.04 1.04 1.07
ghostscript 1.00 1.02 1.02 1.08 1.11
mipmap 1.00 0.82 0.83 1.01 0.86
pgpdecode 1.00 1.90 1.81 1.79 1.21
pgpencode 1.00 1.46 0.92 0.91 0.91
rasta 1.00 1.04 1.09 1.09 1.10
unepic 1.00 1.02 1.02 1.04 0.98

Relative Data Cache Miss rates (16 KB)Benchmarks
1111 2111 3221 4221 6332

085.gcc 1.00 1.00 1.04 1.02 1.03
099.go 1.00 1.07 1.12 1.13 1.16
147.vortex 1.00 1.03 1.03 1.03 1.03
epic 1.00 1.01 1.01 1.01 1.03
ghostscript 1.00 1.02 1.04 1.06 1.08
mipmap 1.00 1.06 1.08 1.01 0.99
pgpdecode 1.00 0.99 0.99 0.99 0.99
pgpencode 1.00 0.99 1.00 1.01 1.02
rasta 1.00 1.08 1.12 1.13 1.16
unepic 1.00 1.00 1.00 1.00 1.00

Table 2: Relative data cache miss rates for all benchmarks
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table contains results for both the small (1KB direct-mapped) and the large (16KB two-way set

associative) data caches. The assumption implies that all the relative miss rates should be equal

to 1.0, thus the degree to which this holds determines the merit of this assumption.

From the table, the results for the large data cache are very much in line with the assumption.

Six of the ten benchmarks show less than a 5% change in data cache misses across all of the

processors. The largest change in misses is a 16% increase that is observed for 099.go and rasta

on the 6332 processor. As could be anticipated, the number of data cache misses does increase

for wider processors due to increased speculation of load operations and increased spill code.

But, the increase is rather modest even in the worst case.

The results for the small data cache are not as well behaved. In particular, the number of misses

for pgpencode and pgpdecode increase by as much as 46% and 90%, respectively. However,

much of this behavior is because the cache is a small and direct-mapped. Small changes in the

reference stream or the order of the references may cause the number of cache conflicts to

increase or decrease dramatically. This is exactly the case for pgpencode where the number of

misses increases by 46% for the 2111 processor but then for the wider processors the number of

misses is less than the reference processor. On the positive side of the assumption, seven of the

ten benchmarks show less than an 11% change in data cache misses across the range of

processors. Thus, in the majority of the cases, the results are still relatively consistent.

Overall, we believe the assumption that the data trace is constant across different processors

has some inherent error associated with it. The error can potentially be large with the right

cache/benchmark combination. But for the purposes of design space exploration, the error is

generally modest and tolerable, thus validating our use of this assumption.

6.3 Distribution of dilation

The dilation of a block is the ratio of its sizes on the wide and narrow reference processors. An

important assumption in our model is that blocks are dilated by the same amount and this amount

is the ratio the text size of the wide processor to the narrow processor.
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Figure 5 plots the static and dynamic cumulative distributions of dilations of the arbitrary

processors with respect to the reference processor. In this figure, the left graph shows the results

for 085.gcc and the right graph for ghostscript. The static distribution plots the fraction of blocks

in the executable whose dilations are less than or equal to a threshold specified on the X-axis.

The dynamic distribution plots the weighted fraction of blocks, whose dilations are less than or

equal to a threshold, where the weighting of each block is equal to its dynamic execution

frequency. There are a set of three static curves one for each of three arbitrary processors, viz.

2111, 3221 and 6332. In order to reduce clutter, the results for the 4221 processor are omitted.

These two graphs also show a similar set of three dynamic curves.

These graphs help us examine the validity of our assumption that all blocks are dilated

uniformly by the text dilation. If that was indeed the case, the static and dynamic curves would

each be a step function, being at zero for dilation values less than the text dilation and at one for

dilations more than the text dilation. The steeper the curve is in rising from zero to one, the more

accurate the uniform dilation assumption. Note that the assumption is generally more accurate for

the 2111 processor than for the wider 6332 processor. Also, note that the dynamic distribution

tracks the static distribution quite closely, but less so for the wider processors. This behavior

indicates that the dilation of the more frequently executed blocks is similar to the dilation of

other blocks. When the dynamic distribution is significantly different from the static distribution,

choosing the static text dilation for dilating the reference trace may not be accurate.

Dilation distribution - gcc

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10

Dilation

F
ra

ct
io

n
 o

f 
b

lo
ck

s

Static 2111 Dynamic 2111 Static 3221
Dynamic 3221 Static 6332 Dynamic 6332

Dilation distribution - ghostscript

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10

Dilation

F
ra

ct
io

n
 o

f 
b

lo
ck

s

Static 2111 Dynamic 2111 Static 3221
Dynamic 3221 Static 6332 Dynamic 6332

Figure 5: Dilation distribution for 085.gcc and ghostscript
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Table 3 shows the text dilation for all the benchmarks and machine architectures we used in the

experiments. The text dilations typically fall in the middle of the range where the static and

dynamic dilation distributions rise from 0 to 1. The positioning of the text dilation relative to the

distribution curves justifies our use of the text dilation to approximate the dilations of individual

blocks. Recall that the processors issue up to four, five, eight, nine and 14 operations per cycle.

For all the benchmarks, the text dilation increases much more gradually than the issue width. For

the 2111, 3221 and 4221 processors, the text dilation is less than 2.5, indicating that models that

accurately estimate performance up to a dilation of 2.5 are sufficient for such machine

architectures. It is only for the 6332 processor that text dilations are in the range 2.5 through

3.25.

6.4 Dilated versus estimated miss rates

In this section, we evaluate the accuracy of the third approximation, viz., estimating the miss

rates of the dilated trace from the miss rates on the reference trace. Figure 6 plots the misses on

the dilated trace versus the dilation for the benchmark 085.gcc. The left graph shows the

instruction cache misses for a direct-mapped 1KB cache and a two-way set associative 16 KB

cache, each with a line size of 32 bytes. The right graph shows the unified cache misses for a

two-way set-associative 16 KB unified cache and a four-way set-associative 128 KB unified

cache, each with a line size of 64 bytes. These figures also plot the misses estimated by our

dilation model for a range of dilations.

TextDilationBenchmarks 1111 2111 3221 4221 6332
085.gcc 1.00 1.40 1.99 2.28 3.24
099.go 1.00 1.40 1.89 2.17 3.08
147.vortex 1.00 1.36 1.74 2.00 2.78
epic 1.00 1.26 1.76 1.92 2.65
ghostscript 1.00 1.40 1.99 2.15 3.01
mipmap 1.00 1.32 1.78 2.51 2.81
pgpdecode 1.00 1.40 2.00 2.28 3.25
pgpencode 1.00 1.36 1.97 2.24 3.18
rasta 1.00 1.26 1.69 1.91 2.70
unepic 1.00 1.29 1.66 1.80 2.47

Table 3: Text dilation for all benchmarks
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The extent to which the estimated misses track the dilated misses shows the accuracy of our

dilation model in estimating misses for dilated traces. For the instruction cache, the estimated

misses track the dilated misses very closely throughout the entire range of dilations. For the large

128 KB unified cache, the estimated misses track the dilated misses very well. For the small 16

KB unified cache, the estimated misses tracks the dilated misses only up to a dilation of two.

Recall the instruction cache miss modeling interpolates between the misses of two realizable

caches, whereas the unified cache miss modeling extrapolated from the miss behavior of the

cache on the reference trace. In general, the interpolation for the instruction cache is more

accurate than the extrapolation for the unified cache. Overall, these graphs indicate that the

dilation model is quite accurate.

6.5 Actual versus dilated miss rates

Figure 7 presents the bottom line comparison between the actual misses, the dilated misses and

the estimated misses. Each set of three bars corresponds to a particular processor as indicated on

the X-axis. The misses are normalized with respect to the actual misses on the 1111 reference

processor. The actual misses bar indicates the normalized misses obtained by simulating the

caches on the actual traces generated by a particular processor. The dilated misses bar indicates

the normalized misses obtained by simulating the caches on the reference trace, where each block

is dilated by the text dilation. The estimated misses bar indicates the normalized misses obtained

using our dilation model, assuming the text dilation factor.
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The difference between the first and last bars indicates the total error due to using our approach

as opposed to actual simulation of each trace. The difference between the first and second bars

indicated the error introduced by our assumption that all blocks are uniformly dilated by the text

dilation. The difference between the second and third bars is due to the error introduced by our

estimation of the misses on the dilated trace through our dilation model as opposed to simulation

of the dilated trace.

In general, the instruction cache estimated misses track the actual misses very closely. Both the

dilated and estimated misses are slightly more than the actual instruction cache misses. On the

other hand, the unified cache misses do not track as well. The dilated misses are more than the

actual misses, whereas the estimated misses are less than the actual misses. As we observed

earlier, the model for the unified caches is less accurate, thus producing the larger estimation

errors.
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Given that it is infeasible to simulate all possible combinations of processors and caches for

interesting design spaces, the alternative to using our dilation model is to assume that the

memory hierarchy performance does not change as the issue width of the processor is increased.

This assumption is equivalent to assuming that the normalized misses remains at one regardless

of issue width. As the above figure shows, the actual normalized misses is much more than one,

reaching up to six in certain cases for 085.gcc. This figure illustrates that one must account for

the changes in memory hierarchy performance with issue width. This figure also illustrates how

our dilation model can to a large extent account for these changes.

Table 4 presents similar results for all the benchmarks we have evaluated. There are four

tables, one for each of the four instruction and unified cache configurations. Each row in the

table corresponds to a particular benchmark. The actual, dilated and estimated misses are

grouped into columns, where each group represents a particular processor design. The misses are

normalized to unity for the reference processor. There is a large variation in the accuracy of the

estimation across benchmarks and processor designs. The estimates track the actual misses better

for narrower processors than for wider processors and better for instruction caches than for

unified caches. There are some cases where the actual, dilated and estimated misses for the 6332

processor are far apart.

7 Conclusions

This work is motivated by the desire to automatically explore a large design space consisting of

a cross-product of the processor design space and the memory hierarchy design space. We cannot

exhaustively explore such a large design space in a timely manner. Therefore, we are forced to a

hierarchical approach of partitioning the system and evaluating each component individually.

Changes in processor architecture affect memory hierarchy performance but the constraints on

evaluation time do not allow simulation of the traces for each processor architecture with each

memory hierarchy design.

Instead, we adopt the approach of only simulating the caches on the traces from a reference

processor. But, we model the traces of other designs as a dilated version of the reference

processor’s trace, where each block of instruction addresses is stretched out by the dilation
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coefficient. We use the ratio of code sizes with respect to the reference processor as the dilation

coefficient. We use the analytic cache model by Agarwal et al. to estimate the effects on

instruction and unified cache behavior due to dilation of the reference trace. We evaluate the

effectiveness of the dilation model and quantify the error due to each of the steps. The results

show the model is highly effective for most of the processor design space.
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1 KB Icache 1111 2111 3221 4221 6332
Benchmark Act Act Dil Est Act Dil Est Act Dil Est Act Dil Est
085.gcc 1.00  1.22  1.46  1.45  1.75  2.12  2.08  2.02    2.43  2.40 2.89  3.50 3.45
099.go 1.00  1.53  1.46  1.41  2.13  1.96  1.92  2.55    2.30  2.23 3.66  3.31 3.23
147.vortex  1.00  1.30  1.46  1.42  1.84  1.88  1.85  2.14    2.15  2.12 3.01  2.95 8.45
epic  1.00  1.39  1.57  1.67  2.44  2.71  2.83  2.86    3.23  3.26 6.11  6.33 6.50
ghostscript  1.00  1.19  1.46  1.44  1.56  1.97  1.94  1.80    2.26  3.56 2.45  3.19 11.85
mipmap  1.00  1.20  1.47  1.37  1.55  2.03  1.97  1.79    2.87  2.88 2.35  3.20 3.22
pgpdecode  1.00  1.11  1.54  1.52  1.40  2.28  2.25  1.67    2.68  2.67 2.57  3.99 4.06
pgpencode  1.00  1.01  1.49  1.47  1.43  2.28  2.25  1.68    2.64  2.62 2.58  3.98 4.01
rasta  1.00  1.13  1.34  1.34  1.36  1.90  1.87  1.60    2.17  2.15 2.27  3.12 3.12
unepic  1.00  1.26  1.49  1.39  1.78  2.03  1.92  1.92    2.36  2.19 3.05  3.32 3.18

16 KB Icache 1111 2111 3221 4221 6332
Benchmark Act Act Dil Est Act Dil Est Act Dil Est Act Dil Est
085.gcc  1.00  1.36  1.70  1.53  2.22  2.71  2.66  2.69    3.24  3.04    4.12  4.97    4.67
099.go  1.00  1.64  1.52  1.45  2.37  2.25  2.17  2.90    2.70  2.58    4.45  4.17    3.96
147.vortex  1.00  1.57  1.79  1.71  2.47  2.71  2.74  3.07    3.58  3.56    6.16  6.52  14.00
epic  1.00  1.34  1.54  1.77  2.37  3.65  3.58  3.12    4.30  4.38    5.75  9.37  17.35
ghostscript  1.00  1.39  1.89  1.77  2.28  2.99  3.06  2.79    3.83  5.71    4.20  7.38  21.80
mipmap  1.00  1.10  1.38  1.39  1.30  1.84  2.34  1.56    3.94  5.12    4.92 10.55    6.73
pgpdecode  1.00  1.72  2.31  2.10  2.68  4.77  4.60  3.48    6.32  5.89    6.22 11.73  11.76
pgpencode  1.00  1.49  2.19  1.92  2.60  4.51  4.47  3.37    5.89  5.48    5.96 10.91  10.74
rasta  1.00  1.17  1.27  1.22  1.49  1.85  1.76  1.75    2.15  2.14    2.74  3.69    3.63
unepic  1.00  1.45  1.58  1.84  3.32  3.58  3.37  2.77    4.70  4.39    6.57  9.49  10.63

16 K Ucache 1111 2111 3221 4221 6332
Benchmark Act Act Dil Est Act Dil Est Act Dil Est Act Dil Est
085.gcc  1.00  1.26  1.49  1.10  1.85  2.14  1.25  2.15    2.52  1.32    3.12  3.65    1.55
099.go  1.00  1.47  1.38  1.10  1.95  1.86  1.23  2.31    2.16  1.31    3.32  3.09    1.55
147.vortex  1.00  1.28  1.42  1.03  1.76  2.03  1.10  2.15    2.34  1.14    3.58  3.78    1.26
epic  1.00  1.13  3.90  1.09  1.66  1.41  1.22  1.47    1.56  1.26    2.01  3.03    1.51
ghostscript  1.00  1.21  1.52  1.10  1.80  2.25  1.24  2.07    2.74  1.32    2.98  4.75    1.55
mipmap  1.00  1.02  1.42  1.16  1.27  1.63  1.46  2.31    4.02  2.01    4.91  7.05    2.25
pgpdecode  1.00  1.39  1.90  1.36  2.01  3.43  1.98  2.47    4.45  2.30    4.03 7.49    3.50
pgpencode  1.00  1.24  1.73  1.35  1.95  3.13  2.07  2.37    4.04  2.42    3.87  6.92    3.77
rasta  1.00  1.12  1.23  1.17  1.39  1.68  1.43  1.59    1.94  1.56    2.36  3.16    2.02
unepic  1.00  1.08  1.10  1.06  1.57  1.41  1.15  1.49    1.59  1.19    2.04  2.40    1.35

128 K Ucache 1111 2111 3221 4221 6332
Benchmark Act Act Dil Est Act Dil Est Act Dil Est Act Dil Est
085.gcc  1.00  1.30  1.67  1.39  2.39  3.30  2.14  3.16    3.96  2.60    6.06  7.22    4.61
099.go  1.00  1.98  1.90  1.38  3.28  3.35  1.96  4.28    4.07  2.34    7.29  7.07    3.76
147.vortex  1.00  1.38  1.66  1.23  2.11  2.53  1.51  2.76    3.12  1.72    4.81 5.94    2.48
epic  1.00  1.02  1.03  1.16  1.08  1.09  1.44  1.10    1.11  1.54    1.18 1.20    2.15
ghostscript  1.00  1.28  1.47  1.48  1.66  2.02  2.22  1.91    2.35  2.75    2.70 3.44    4.92
mipmap  1.00  1.01  1.23  1.52  1.20  1.29  2.53  1.19    2.21  5.35    1.15 2.51    7.00
pgpdecode  1.00  1.27  1.47  1.85  1.68  2.67  4.21  3.81  32.22  5.97  58.94 158.73  16.32
pgpencode  1.00  1.22  1.55  1.91  3.63  2.64  4.79  1.88    8.67  6.82  27.17 40.46  19.30
rasta  1.00  1.28  1.50  1.64  1.87  2.30  3.27  2.13    2.65  4.47    3.08  3.65  11.06
unepic  1.00  1.04  1.05  1.15  1.09  1.13  1.38  1.10    1.16  1.47    1.20 1.29    1.97

Table 4: Actual, dilated and estimated misses for all benchmarks
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