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Abstract. An iterated block cipher can be regarded as a means of pro-

ducing a set of permutations of a message space. Some properties of the

group generated by the round functions of such a cipher are known to

be of cryptanalytic interest. It is shown here that if this group acts im-

primitively on the message space then there is an exploitable weakness

in the cipher. It is demonstrated that a weakness of this type can be used

to construct a trapdoor that may be di�cult to detect. An example of

a DES-like cipher, resistant to both linear and di�erential cryptanalysis

that generates an imprimitive group and is easily broken, is given. Some

implications for block cipher design are noted.

1 Introduction

An iterated block cipher can be regarded as a means of producing a set

of permutations of a message space by the repetition of simpler round

functions. Properties of the groups generated by the round functions and

by the actual encryptions of such a cipher have long been recognised as

having cryptographic importance. For example, if either of these groups

is \small" in size then the cipher may be regarded as having a weakness,

since not every possible permutation of the message space can be realised

by the cipher, [5, 7]. Moreover, multiple encryption may o�er little or no

additional security if these groups are small. Attacks on ciphers whose

encryptions generate small groups were given in [12].

Naturally, much attention has been devoted to groups associated with

the DES algorithm. Early studies in [5] and [7] concentrated on the groups

generated by a set of \DES-like functions", of which the actual round

functions of DES form a subset. It was shown that these functions can

generate the alternating group, a desirable property. Further work on this
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theme can be found in [23]. In [27] it was shown that the actual round

functions of DES generate the alternating group. The question of whether

the 256 encryptions of the full DES algorithm themselves form a group,

or generate a small group (see [12, 20]), was answered in the negative in

[4] and a lower bound of 102499 was obtained in [3] for the size of this

generated group. Thus the attacks of [12] are not applicable to DES.

However the ability of a cipher (or its round functions) to generate

a large group does not alone guarantee security: an example of a weak

cipher generating the symmetric group on the message space was given

in [22]. The most that can be said is that a small group may lead to an

insecurity.

Here we examine properties of the groups related to a block cipher

more re�ned than simply their size. Consider the following statement of

Wernsdorf [27] regarding the group generated by the round functions of

DES:

\Since the generated alternating group A264 is a large simple group

and primitive on V64 [the message space] we can exclude several

imaginable cryptanalytic `shortcuts' of the DES algorithm."

In the next section we will formalise our discussion of the groups as-

sociated with iterated block ciphers and sketch the theory of primitive

and imprimitive groups. Next, motivated by Wernsdorf's statement, we

examine attacks on iterated block ciphers whose round functions gener-

ate imprimitive groups. Then we argue that these imprimitivity-based

attacks enable a designer to build trapdoors into iterated block ciphers.

We give an example of a 64-bit DES-like cipher having 32 rounds and an

80-bit key which is resistant to linear and di�erential cryptanalysis but

whose security is severely compromised by such an attack using 232 chosen

plaintexts. With a careful (and deliberately weak) choice of key-schedule

and knowledge of the trapdoor, the cipher can be completely broken using

only a few known plaintexts and 241 trial encryptions. While the trapdoor

in our example is not so well disguised, it can easily be made undetectable

if the cipher design is not made public. We conclude by giving some im-

plications of our work and ideas for future research.

We mention here the recent work of [25] in which block ciphers con-

taining partial trapdoors are constructed: these give only partial informa-

tion about keys and require rather large S-box components to be present

in the cipher. Knowledge of the trapdoor allows an e�cient attack based

on linear cryptanalysis [18]. Unfortunately, the work of [29] shows that

these trapdoors are either easily detected or yield only attacks requiring
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infeasible numbers of plaintext/ciphertext pairs. In contrast, our trapdoor

can be inserted into a block cipher with very small S-boxes, reveals the

entire key and is also detectable. In the language of [25], it is a full, but

detectable, trapdoor. It is a moot point whether trapdoors that are both

full and undetectable can be inserted in truly practical block ciphers.

2 Iterated Block Ciphers and their Groups

We begin by describing a model for iterated block ciphers. We will regard

such a cipher as a set of invertible encryption functions mapping a set M ,

the message space, to itself, or equivalently as a subset of the symmetric

group on M , denoted SM . We can then use notions from the theory

of permutation groups to study such ciphers. The necessary algebraic

background can be found in [26] or [28].

The encryption functions of a particular iterated block cipher are ob-

tained by the composition of round functions, that is, a set of keyed

invertible functions on M , which we denote by fRk : M !M; k 2 Kg :

Here K is called the round keyspace and k a round key. In a t-round

iterated block cipher, the encryption functions take the form

Ek1;:::;kt
= Rk1

Rk2
� � �Rkt

where the ki may be derived from a key from a (larger) session keyspace

according to some key-scheduling algorithm, or may be independently

chosen. Thus, the encryption of plaintextm under round keys k1; k2; : : : ; kt
is

mEk1;:::;kt
= mRk1

Rk2
� � �Rkt

(for the moment we denote all functions as acting on the right of their

arguments, so that in a composition, functions are evaluated from left to

right).

We write G =< Rk : k 2 K > for the group generated by the round

functions, that is, the smallest subgroup of SM containing each Rk. Sim-

ilarly we write Gt =< Rk1
: : : Rkt

: ki 2 K > for the subgroup of SM
generated by the t-round encryptions with independent round keys. We

say that G and the Gt act on the message space M . The groups Gt are

hard to compute in practice, but we have the following result relating

them to the group G generated by the round functions:

Theorem 1 ([11]). With notation as above, Gt is a normal subgroup of

G. Moreover the group generated by the t-round encryptions with round

keys from a particular key-schedule is a subgroup of Gt.
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Example 1. DES (described in full in [6]) is essentially an iterated block

cipher with t = 16 rounds, message space M = V64, the vector-space of

dimension 64 over Z2, and round keyspace K = V48. The form taken by

the round functions Rk of DES is:

mRk = (l; r)Rk = (r; l � f(r; k))

where l; r 2 V32 denote the left and right halves of message m and f :

V32 � V48 ! V32: The group G generated by the round functions of DES

is known to be the alternating group on V64, denoted A264 , [27]. Since

G is simple and G16 is normal in G, the group generated by DES with

independent round keys is also A264 . The group generated by DES itself

(with key-schedule as de�ned in [6]) is not known.

We will follow the exposition of [28], Sections 6 and 7 on imprimitive

groups. Our presentation is necessarily compressed.

Let G be a group of permutations acting on a set M (the reader can

imagine G and M to be as above). A subset Y of M is said to be a block

of G if for every g 2 G,

either Y g = Y or Y g \ Y = ;:

Here Y g denotes the set fyg : y 2 Y g. The sets M , ; and the singletons

fyg are blocks of every G acting onM . These are called the trivial blocks.

The intersection of two blocks of G is also a block.

If Y is a block of G, then so is Y g for every g 2 G. The set of

distinct blocks obtained from a block Y in this way is called a complete

block system. All blocks of such a system have the same size and if G is

transitive on M , then every element of M lies in a block of the system.

Thus, in this case, the blocks form a partition of M into disjoint sets of

equal size.

Suppose now that G is transitive. Then G is said to be imprimitive

(or act imprimitively) if there is at least one non-trivial block Y . We will

then refer to a complete non-trivial block system. Otherwise, G is said to

be primitive.

Let G act imprimitively on a �nite set M and let Y be a block of G,

with jY j = s. SinceG is transitive, there exist elements 1 = �1; �2; : : : ; �r 2

G such that the sets

Y1 = Y �1 = Y; Y2 = Y �2; : : : ; Yr = Y �r

form a complete non-trivial block system. Here, jM j = rs. Thus, for every

g 2 G, there exists a permutation g of f1; 2; : : : ; rg such that

Yig = Yig:
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The set of g form a permutation group G on f1; 2; : : : ; rg and the map

g ! g is a group homomorphism from G onto G.

3 Attacks Based on Imprimitivity

Suppose the group G generated by the round functions Rk : M !M of a

t-round cipher acts imprimitively on M , and let Y1; : : : ; Yr be a complete

non-trivial block system for G. Suppose further that, given m 2M , there

is a description of the blocks such that it is easy to compute the i with

m 2 Yi and that round keys k1; : : : ; kt are in use.

Our basic attack is a chosen-plaintext attack whose success is inde-

pendent of the number t of rounds in use.

3.1 Basic Attack

Suppose that we choose one plaintext mi in each set Yi and obtain the

corresponding ciphertext ci. Then the e�ect of g = Rk1
Rk2

: : : Rkt
on the

blocks Yi is determined. For by the imprimitivity of G,

ci = mig 2 Yj ) Yig = Yj:

Now given any further ciphertext c, we compute l such that c 2 Yl. Then

the plaintext m corresponding to c satis�es m 2 Y
lg
�1 . Thus r chosen

plaintexts determine that the message corresponding to any ciphertext

must lie in a set of size
jM j
r
. Hence the security of the system is severely

compromised. The plaintext m itself can be found by examining the set

of meaningful messages in Y
kg
�1 .

Alternatively, the basic attack determines the permutation g of G cor-

responding to g: we can think of f1; : : : ; rg as being the message space of

a new cipher (where the encryption of i is ig for round keys k1; : : : ; kt) and

regard our basic attack as simply obtaining all the plaintext/ciphertext

pairs for a �xed set of round keys.

3.2 Key-Schedule Dependent Attack

Every choice of round keys k1; : : : ; kt determines a corresponding permu-

tation g of f1; 2; : : : ; rg. It is conceivable that there is an attack on the

new cipher more e�cient than exhaustively obtaining all the ciphertexts.

Ideally such an attack would also obtain key information. As an important

example, the round keys may be derived from a session key in such a way

that g is wholely determined by only a part of the session key information.
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In practice, this information might take the form of the values of certain

bits of the session key, or the value of linear expressions involving session

key bits. We can think of g as being determined by keys from a reduced

keyspace. Then it may be feasible to carry out an exhaustive search of

the reduced keyspace using only a few known plaintext/ciphertext pairs

to determine a unique reduced key. Given such session key information,

it may then be possible to deduce the complete session key by another

exhaustive search. We have a divide-and-conquer attack on the session

key.

This latter attack is then closely related to the attacks of [24] and

[8] on ciphers whose round functions possess linear factors and linear

structures respectively. For example, when M = Vn and the Yi consist of

a linear subspace U of Vn and its cosets, we have a special type of linear

factor (as described in [24]) where the plaintext and ciphertext maps are

equal and map coset Yi = U + ai to ai.

3.3 Multiple Block System Attack

In an extension of the basic attack, we make use of two or more complete

non-trivial block systems.

Example 2. Using the notation of Example 1, we de�ne an f function as

follows: we divide the input r to the f function into two halves r1; r2 2 V16
and de�ne

f(r; k) = (f1(r1; k); f2(r2; k))

where fi : V16�K ! V16 are arbitrary. It was shown in [16] that the fi can

be chosen so that the iterated block cipher with round function (l; r)Rk =

(r; l � f(r; k)) is secure against linear and di�erential cryptanalysis. We

model an attack based on two complete systems of imprimitivity: we write

elements of V64 as (x1; x2; x3; x4) where xi 2 V16 and de�ne 233 sets of

size 232:

Y(x1;x3) = (x1; V16; x3; V16); x1; x3 2 V16

Z(x2;x4) = (V16; x2; V16; x4); x2; x4 2 V16:

Notice that

Y(x1;x3)Rk = (x3; V16; x1 � f1(x3; k); V16) = Y(x3;x1�f1(x3;k))

Z(x2;x4)Rk = (V16; x4; V16; x2 � f2(x4; k)) = Z(x4;x2�f2(x4;k))
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so that the sets
�
Y(x1;x3) : x1; x3 2 V16

	
and

�
Z(x2;x4) : x2; x4 2 V16

	
form

complete block systems for G, the group generated by the Rk. Moreover,

for any x1; x2; x3; x4,

Y(x1;x3) \ Z(x2;x4) = f(x1; x2; x3; x4)g :

Suppose we choose the 232 plaintexts of the form (x1; x1; x3; x3) and ob-

tain their encryptions. From this information we can recover permutations

g1 and g2 of V16 � V16 such that for all x1; x2; x3; x4

Y(x1;x3)g = Y(x1;x3)g1 ; Z(x2;x4)g = Z(x2;x4)g2
:

Given any further ciphertext (c1; c2; c3; c4) with corresponding message

m we have

m 2 Y(c1;c3)g�11

\ Z(c2;c4)g
�1

2

;

a set of size one. Thus m can be found uniquely.

This attack is applicable to any cipher where the intersections of blocks

from di�erent systems can be computed and are \small".

4 A DES-like Cipher with a Trapdoor

Given the description of a set of round functions, it appears to be a

di�cult computational problem either to �nd a non-trivial complete block

system for the corresponding group G or to disprove the existence of such

a system. However the attacks above show that an iterated block cipher

with an imprimitive groupG is inherently weak if a complete block system

is known.

It appears then that using a set of round functions which generate

an imprimitive group (whose block system is not revealed) may lead to

a block cipher containing a trapdoor that is di�cult to detect. To give a

convincing demonstration of this, we should build a set of round functions

according to recognised principles. The individual components should sat-

isfy relevant design criteria and we should also demonstrate the security

of our cipher against known attacks. This is our objective in this section.

We give a full design for such a block cipher, except for a key-schedule. In

the next section we will describe how our round functions were designed

to generate an imprimitive group and how the cipher can be broken.

7



4.1 Description of Round Function

Perhaps the most commonly used template in the design of a block cipher

is the Feistel construction. In turn the most celebrated Feistel-type cipher

is DES itself. With reference to example 1 and [6], the f function of DES

consists of four components: we write f(r; k) = PS(E(r)� k) where

| the expansion phase, E, is a linear map from V32 to V48,

| k is the 48-bit round key, derived from a 56 bit session key,

| S denotes the operation of the S-boxes | eight carefully selected 6

bit to 4 bit functions, numbered 1; : : : ; 8 operating in parallel on V48,

| P is a carefully selected bit permutation of V32.

Our proposed block cipher consists of 32 repetitions of DES-like round

functions:

(l; r)Rk = (r; l � PS(E(r)� k)):

Here E and P are as in the original DES, but the S-boxes are replaced by

the boxes presented in the appendix. Our round keys k are also 48-bits

and are derived from an 80-bit session key according to a key-scheduling

algorithm which we leave unspeci�ed. Any suitably strong schedule could

be used (for example, we could expand the original DES schedule).

We note that the selection of S-boxes is critical to the security of DES.

Numerous attacks have been made on versions of DES with modi�ed S-

boxes: see for example the early critique of DES in [10], the di�erential

attacks on DES with modi�ed S-boxes in [2] and the attack of [15] on the

proposals of [13].

Each S-box in the appendix has the following properties, similar to

those given in [4] for the DES S-boxes:

S1 Each S-box has six bits of input, four bits of output.

S2 The best linear approximation of an S-box (in the sense of [18], equa-

tion (3)) holds with probability p over all inputs, where jp� 1
2
j � 1

4
.

S3 Fixing the bits input to an S-box on the extreme left and on the

extreme right at any two values, the resulting map from V4 to V4 is a

permutation.

S4 If two inputs i; i0 to an S-box di�er in the pattern 000100 or 001000

(i.e. i� i0 = 000100 or 001000), then the corresponding outputs di�er

in at least one position.

S5 If two inputs i; i0 to an S-box di�er in the pattern 001100, then the

corresponding outputs di�er in at least one position.

S6 If two inputs i; i0 satisfy i� i0 = 11xy00, where x and y are arbitrary

bits, then the corresponding outputs di�er in at least one position.
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S7 For any non-zero input di�erence i � i0 not equal to one of those

speci�ed in S4, S5, the number of ordered pairs i; i0 leading to a given

non-zero output di�erence is at most 16. For the input di�erences in

S4 and S5, the corresponding maximum is 24.

S8 For any non-zero input di�erence i� i0, the number of ordered pairs

i; i0 leading to an output di�erence of zero is at most 12.

S2 guarantees that the S-boxes are not too linear, while S3 ensures they

are balanced. S4{S6 can be regarded as weak avalanche criteria. Thus our

S-boxes automatically have some desirable features.

We also draw to the reader's attention the properties P1 to P3 of the

P permutation noted in [4]. From left to right, we label the input bits to

our S-boxes p1; p2; p3; p4; p5; p6 and the output bits q1; q2; q3; q4. We refer

to bits p3 and p4 as centre bits and bits p1; p2; p5; p6 as outer bits.

P1 The four bits output from each S-box are distributed so that two of

them a�ect centre bits, and the other two a�ect outer bits of S-boxes

in the next round.

P2 The four bits output from each S-box a�ect six di�erent S-boxes in

the next round, no two a�ect the same S-box.

P3 For two S-boxes j, k, if an output bit from S-box j a�ects a centre

bit of S-box k, then an output bit from S-box k cannot a�ect a centre

bit of S-box j.

4.2 Security Against Linear and Di�erential Attacks

Here we estimate the resistance of our example to linear [18] and di�er-

ential [21, 2] cryptanalysis.

We begin by estimating the complexity of a linear attack. By property

S2 and Lemma 3 of [18], the best linear expression that is built up round-

by-round and involves input bits to round 2, output bits from round

31, key bits and a linear approximation in every round will hold with

approximate probability pL where

jpL �
1

2
j � 229

�
1

4

�30

= 2�31:

While a more delicate analysis may �nd linear characteristics not involv-

ing linear approximations in every round, it seems unlikely that these will

have probability larger than the above bound on pL (since this bound is

calculated using the highest per-round probability). We make the rough
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assumption that a linear attack using Algorithm 2 of [18] would require

at least 262 known plaintexts.

The success of a di�erential attack depends on �nding a high prob-

ability characteristic: a t-round characteristic having probability p is a

sequence of di�erences

�m1;�m2; : : : ;�mt�1;�mt

such that if �m1 is the di�erence in plaintexts m�m0 input to the �rst

round, then the di�erences propagated to the inputs of subsequent rounds

are �m2; : : : �mt with probability p, assuming independent round keys.

In practice, at least a 29 round characteristic is needed to attack a 32

round iterated cipher. The number of plaintext input pairs required in a

successful attack based on such a characteristic having probability p is at

least 1
p
. Of particular importance are iterative characteristics where the

output di�erence at the last round is equal to the initial input di�erence |

such a characteristic can be concatenated with itself many times to form

a longer characteristic. To provide practical security against a di�erential

attack, we need to bound the probability of short iterative characteristics.

For further details, see [2].

We say that an S-box j is active in round i of a characteristic if �mi

involves a non-zero input di�erence to S-box j. We can use properties

S3 to S6, P2 and P3 and arguments similar to those of [4] to show the

following for our cipher:

Lemma 1. If round i of a characteristic consists of two adjacent active

S-boxes j; j + 1 then either round i � 1 or round i + 1 (or both) has at

least one active S-box. If round i of a characteristic has only one active

S-box j, then either round i� 1 or round i+ 1 (or both) has at least one

active S-box.

A 29 round characteristic having no rounds without active S-boxes must

involve a total of at least 29 active S-boxes. Using S7 and assuming in-

dependence, we can bound the probability of such a pattern by p ��
24
64

�29
= 2�41. We have found characteristics with probability close to

this, but omit the details. An attractive pattern of di�erences (used in

[2] to attack DES) involves active S-boxes on even numbered rounds and

no active S-boxes on odd numbered rounds. From the above lemma, the

active rounds must involve at least a pattern of 3 adjacent S-boxes. By

property S8, we can bound the probability of a 29 round pattern of this

type by
�
12
64

�42
= 2�101. One further pattern of di�erences that we con-

sider involves no active S-boxes on every third round. Using P3 and the
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lemma above, we can show that such a characteristic must involve 3 or

more active S-boxes on the two active rounds. The probability of such a

characteristic over 29 rounds is, using S7, at most 2�41. The analysis can

be carried further, but it su�ces to note here that our cipher possesses a

reasonable degree of resistance to di�erential cryptanalysis.

5 Trapdoor Design

Each S-box in the appendix has the following property:

By property P1, the combination of P followed by E moves two

of the four outputs of the S-box (say qi and qj) so as to a�ect

centre bits of S-boxes in the next round. These two outputs are

dependent on every input bit, while the other two outputs depend

only on the outer bits p1; p2; p5; p6 input to the S-box.

For example, P moves output bit q3 of S-box 1 to position 23 in the

output of the f function. After XORing with the left half and swopping,

this position a�ects a centre bit, p4, of S-box 6 in the next round. Thus

q3 depends on all six input bits to S-box 1.

From the property above, it follows that the output bits of the f

function in positions 1; 4; 5; 8; : : : ; 29; 32 depend only on round key bits

and the f function inputs in the same positions, 1; 4; 5; 8; : : : ; 29; 32 (these

being the f function input bits which after E and key XOR become outer

bits of S-boxes). We therefore have:

Lemma 2. Label the 216 distinct additive cosets of the 16 dimensional

subspace

U = f(0; x2; x3; 0; 0; x6; x7; 0; : : : ; 0; x30; x31; 0) : xi 2 Z2g

of V32 by U � a1; : : : ; U � a216 . Then for every j and every round key k,

there exists an l such that PS(E(U � aj)� k) � U � al:

Notice that for any subset W of subspace U , we have U �W = U , so

(U � ai)� PS(E(U � aj)� k)) = U � ai � al = U � am

for some m. Therefore (U � ai; U � aj)Rk = (U � aj ; U � am). It is easy

to see that the Rk act transitively on V64 and we have

Lemma 3. The 232 subsets (U �ai; U �aj) of V64 form a complete non-

trivial block system for G, the group generated by the round functions of

our cipher.

11



The round functions of our cipher generate an imprimitive group

where the blocks of a complete system are easily identi�ed. Thus our

cipher is susceptible to the basic attack described in Section 3 with 232

chosen plaintexts. Suppose further that a key-schedule is chosen such that

over the 32 rounds, only 40 bits of the 80-bit session key are involved in

XORs with outputs of the E expansion which become outer bits of the

S-boxes. Then, in the terminology of Section 3, the permutation g is de-

termined by only half of the session key bits and an exhaustive attack on

those bits can be successfully carried out with knowledge of a handful of

plaintext/ciphertext pairs. The remaining 40 bits of session key can then

also be found by exhaustive attack, the total complexity of the attack

being around 241 trial encryptions, well within the bounds of practicality.

Notice that this attack depends crucially on the interaction between the

system of imprimitivity and the key-schedule.

6 Discussion and Conclusions

We have considered attacks based on a property of a group associated with

an iterated block cipher. The attacks motivate a new design criterion for

iterated block ciphers: the group generated by the round functions should

be primitive. Unfortunately this property seems to be hard to verify in

practice. We note that DES and IDEA (probably, see [11]) do satisfy this

property.

We have given an example of a cipher secure in many conventional

senses but weak because of a deliberately inserted trapdoor. There are

however some immediate criticisms that can be made of our example.

Firstly, the S-boxes are incomplete (that is, not every output bit of the S-

boxes depends on every input bit). This goes against a generally accepted

design principle for S-boxes [1, 14, 19] and would arouse suspicion. A close

examination of the S-boxes and their interaction with the P permutation

would then reveal our trapdoor. Incompleteness in the S-boxes also leads

to a block cipher where half of the ciphertext bits are independent of half

of the plaintext bits. Thus our trapdoor is not so well hidden. Secondly

and less seriously, our cipher's resistance to di�erential attacks is not as

high as one might expect from a 32 round system.

Suppose however that the round function design and weak key-schedule

algorithm of our example are not made public (for example, by using

tamper-resistant hardware). We are then given a 64-bit iterated block

cipher with 32 rounds and an 80-bit key and could be truthfully told by

a panel of experts that it is secure against linear and di�erential attacks.
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The incompleteness noted above can be hidden by applying a suitable

invertible output transformation to the ciphertexts. Because of the size

of the message space and choice of output transformation, we would then

be unlikely to be able to detect any block structure just by examining

plaintext/ciphertext pairs. Yet our example cipher contains a trapdoor

rendering the system completely insecure to anyone with knowledge of

the trapdoor. Clearly in this situation, we must have complete faith in

the purveyor of the block cipher.

We conclude by suggesting some avenues for further research.

The choice of trapdoor in our example was forced upon us by a com-

bination of the E expansion, the round key XORing and the bitwise na-

ture of the P permutation. Can \undetectable" trapdoors based on more

complex systems of imprimitivity be inserted in otherwise conventional

ciphers? It is easily shown that, in a DES-like cipher, any system based

on a linear sub-space and its cosets leads to a noticeable regularity in

the XOR tables of small S-boxes. It seems that we must look beyond

the \linear" systems considered here, or consider other types of round

function.

Our attention has been directed to block systems preserved by the

group G, that is, on a per-round basis. It might also be interesting to look

at the case where the round functions generate a primitive group, but the

subgroup generated by the t-round cipher itself has a block structure.

Attacks exploiting a block structure holding probablistically may also be

powerful and worth examining. In this respect the thesis [9] is particularly

relevant.
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Appendix

We present the S-boxes of our example block cipher in the same format

as the DES S-boxes were presented in [6], that is each box is written as

four rows of permutations:

S-box 1

8 0 10 1 9 3 11 2 4 12 7 14 6 15 5 13

9 5 10 7 8 4 11 6 14 1 13 0 12 2 15 3

14 10 15 11 12 9 13 8 1 5 2 7 0 4 3 6

11 5 9 4 8 6 10 7 1 14 0 12 3 15 2 13

S-box 2

1 15 0 12 3 13 2 14 6 9 5 8 4 10 7 11

11 1 10 2 8 0 9 3 6 15 7 13 5 12 4 14

1 14 3 12 0 15 2 13 8 6 10 4 9 5 11 7

2 5 1 7 0 6 3 4 15 8 14 9 13 10 12 11
S-box 3

15 11 13 9 12 10 14 8 3 4 1 6 0 7 2 5

0 14 1 12 2 15 3 13 10 6 8 5 11 7 9 4

14 1 13 2 15 0 12 3 8 7 11 6 10 5 9 4

4 12 7 13 6 14 5 15 11 3 8 2 9 0 10 1

S-box 4

12 3 6 1 4 11 14 9 7 2 15 10 5 0 13 8

5 3 15 11 7 9 13 1 6 10 14 8 12 0 4 2

4 9 14 11 12 1 6 3 2 7 0 15 10 13 8 5

15 4 5 12 13 14 7 6 9 10 11 8 1 0 3 2
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S-box 5

1 6 4 7 0 2 5 3 13 10 8 14 9 15 12 11

2 4 7 0 6 5 3 1 9 14 13 15 8 10 12 11

0 13 4 9 1 12 5 8 7 15 6 10 2 11 3 14

11 2 15 7 14 3 10 6 1 13 4 12 5 8 0 9

S-box 6

8 5 11 4 9 6 10 7 1 14 3 15 2 13 0 12

7 3 6 0 4 1 5 2 9 14 11 13 8 12 10 15

7 8 6 10 5 9 4 11 3 15 0 14 2 12 1 13

12 6 15 7 14 4 13 5 2 11 1 9 0 8 3 10

S-box 7

12 3 15 1 14 2 13 0 11 5 10 7 8 6 9 4

12 6 13 5 14 4 15 7 0 9 3 10 1 8 2 11

1 12 3 14 2 13 0 15 9 7 8 4 11 6 10 5

11 14 9 15 8 13 10 12 4 1 7 3 5 2 6 0

S-box 8

12 5 10 7 8 3 14 1 6 11 0 9 4 15 2 13

11 12 13 8 9 10 15 14 2 3 0 1 6 5 4 7

3 8 7 12 5 10 1 14 0 13 6 15 2 9 4 11

5 13 3 9 1 11 7 15 10 0 8 6 12 4 14 2
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