
 

Computing the Error Linear  
Complexity Spectrum of a  
Binary Sequence of Period 2n 
 
Alan Lauder1, Kenneth Paterson 
Trusted E-Services Laboratory  
HP Laboratories Bristol 
HPL-1999-128(R.1) 
9th August, 2000* 
 
 
cryptography, 
stream cipher, 
error linear 
complexity 
spectrum, 
algorithm, 
decoding,  
Reed-Muller 
code 

Binary sequences with high linear complexity are of interest in 
cryptography. The linear complexity should remain high even 
when a small number of changes are made to the sequence. The 
error linear complexity spectrum of a sequence reveals how the 
linear complexity of the sequence varies as an increasing 
number of the bits of the sequence are changed. We present an 
algorithm which computes the error linear complexity for 
binary sequences of period l =2n using O(l (logl  )2) bit operations. 
The algorithm generalises both the Games-Chan and Stamp-
Martin algorithms, which compute the linear complexity and 
the k-error linear complexity of a binary sequence of period 
l =2n, respectively. We also discuss an application of an 
extension of our algorithm to decoding a class of linear subcodes 
of Reed-Muller codes. 

 

1 A.G.B. Lauder is a Junior Research Fellow at Wolfson College, Oxford OX2 6UD, and a member of 
the Mathematical Institute, Oxford University, Oxford OX1 3LB, U.K.  
* Internal Accession Date Only    Approved for External Publication  
 Copyright Hewlett-Packard Company 2000 



Computing the Error Linear Complexity Spectrum

of a Binary Sequence of Period 2n

Alan G.B. Lauder and Kenneth G. Paterson, Member, IEEE

Abstract

Binary sequences with high linear complexity are of interest in cryptography. The linear complexity should remain

high even when a small number of changes are made to the sequence. The error linear complexity spectrum of a

sequence reveals how the linear complexity of the sequence varies as an increasing number of the bits of the sequence

are changed. We present an algorithm which computes the error linear complexity for binary sequences of period ` = 2n

using O(`(log `)2) bit operations. The algorithm generalises both the Games-Chan and Stamp-Martin algorithms, which

compute the linear complexity and the k-error linear complexity of a binary sequence of period ` = 2n, respectively. We

also discuss an application of an extension of our algorithm to decoding a class of linear subcodes of Reed-Muller codes.

Keywords

cryptography, stream cipher, linear complexity, error linear complexity spectrum, algorithm, decoding, Reed-Muller

code

I. Introduction

Stream ciphers use binary sequences with good pseudorandomness properties as key streams to encrypt

messages [20]. In this context, the linear complexity of sequences is of interest. For a periodic binary sequence

s this is de�ned to be the length of the shortest linear recurrence which generates the sequence, denoted c(s).

Periodic binary sequences with low linear complexity are cryptographically weak because the entire sequence

can be e�ciently computed given knowledge of a few initial bits using the Berlekamp-Massey algorithm [14]

which requires O(`2) bit operations in the worst case. Here ` denotes the period of s. If s has period ` = 2n

then this can be improved upon by using the algorithm presented by Games and Chan in [8]. The Games-

Chan algorithm computes the linear complexity of s of period ` = 2n using O(`) bit operations. An algorithm

improving on the Games-Chan algorithm for sequences of high linear complexity can be found in [19], while

algorithms which generalise both the Games-Chan algorithm and DFT-based approaches to computing linear

complexity are presented in [1], [16]. These algorithms all su�er from the fact that they require as input an

entire period of the sequence s to compute c(s), while the Berlekamp-Massey algorithm only needs 2 �c(s) bits.

Thus they are not applicable in realistic cryptographic situations. Nevertheless, these algorithms and, more

generally, the linear complexity of sequences of period 2n, are interesting from a combinatorial perspective.

For example, the papers [3], [4], [7], [9], [10] investigate the linear complexities of binary and non-binary de

Bruijn sequences, while in the papers [6], [18], the linear complexities of sequences of period 2n are a key tool

in constructing sequences and arrays with certain window properties.

If a sequence has a high linear complexity, but the linear complexity can be signi�cantly reduced by making

a small number of bit changes to the sequence, then the resulting key stream is also cryptographically weak.

For in this case, knowledge of the �rst few bits can allow the e�cient generation of a sequence which closely

approximates the original sequence. This observation motivates the de�nition of the k-error linear complexity

of sequences [21] and the stability theory of stream ciphers [5], in which the variation of the linear complexities

of sequences with the number of allowed bit changes is studied. The k-error linear complexity of a periodic

binary sequence s of period ` is de�ned to be the minimum value to which the linear complexity of s can

be reduced by making k or fewer bit changes in the �rst period of s, and identical changes in every period

thereafter [21]. Thus the 0-error linear complexity of s is just c(s), the linear complexity of s. We de�ne the

error linear complexity spectrum of s to be the ordered list of k-error linear complexities of s for 0 � k � wt(s).

A.G.B. Lauder is a Junior Research Fellow at Wolfson College, Oxford OX2 6UD, and a member of the Mathematical Institute,
Oxford University, Oxford OX1 3LB, U.K. This work was carried out while he was visiting Hewlett-Packard Laboratories, Bristol.
K.G. Paterson is with Hewlett-Packard Laboratories, Filton Road, Stoke-Gi�ord, Bristol BS34 8QZ, U.K.



This spectrum contains all the information about how the linear complexity of s decreases as the number k of

allowed bit changes increases and is therefore a natural complexity measure to study. It is called the k-error

linear complexity pro�le in [21] by analogy with the linear complexity pro�le introduced by Rueppel [20].

We note that Niederreiter in [17] has given an alternative de�nition of k-error linear complexity pro�le: it is

de�ned there as a measure of how the linear complexity of s changes when considering an increasing number

of initial bits of s but a �xed number k of errors.

Stamp and Martin [21] extended the Games-Chan algorithm to compute, for any �xed k, the k-error linear

complexity of a binary sequence of period ` = 2n usingO(`) arithmetic operations and O(` log `) bit operations.

In contrast, no e�cient algorithm is known for computing the k-error linear complexity of a sequence of general

period. In [13], the �rst value of k for which the k-error linear complexity of s is less than c(s) is shown to be

an explicit function of the Hamming weight of c(s) for sequences of period ` = 2n. This result reveals some

information about the error linear complexity spectrum of s. Of course, the Stamp-Martin algorithm can be

used in a naive fashion to compute the entire error linear complexity spectrum of a period ` = 2n sequence

using O(`2 log `) bit operations. Our main contribution is to show, perhaps surprisingly, that an O(`(log2 `)
2)

algorithm to accomplish this task exists. This follows as an easy consequence of an algorithm we develop for

a slightly more general problem. This more general algorithm also yields a soft-decoding method for a certain

class of linear subcodes of Reed-Muller binary codes introduced in [15]. To our knowledge, this is the �rst

decoding algorithm (of any type) for this class of codes.

The remainder of the paper is organised in the following way. In Section II we introduce necessary de�nitions

and notation and present some preliminary results. Section III contains pseudocode for the main algorithm

of the paper, as well as a proof of the correctness and an analysis of the computational complexity of this

algorithm. Section IV contains a short example which illustrates the ideas we have employed. In Section V

we discuss an extension of our algorithm which also recovers error sequences: these are binary sequences of

weight not greater than k which indicate where bit changes should be made to reduce the linear complexity

of a sequence s to the k-error linear complexity of s. We then discuss the application of this extension to the

decoding of the codes of [15]. We conclude by discussing some open problems in Section VI.

II. Preliminaries

To prove the main result it is convenient to work in a more general setting. In this section we introduce

the notion of a costed binary sequence, and in the sections which follow we present and justify an algorithm

which computes the error linear complexity spectrum of such a sequence. The proof of our main result then

follows easily by restricting our attention once again to ordinary binary sequences.

A. Costed binary sequences

A costed binary sequence S is a triple (s; �; `) where ` is a positive integer, s = s[0]s[1] : : : s[`�1] is a binary

sequence of length `, and � = �[0]�[1] : : : �[`� 1] is a non-negative real sequence of length `. The sequence �

is called the cost sequence of S and the entries of � will record the cost of complementing bits of s. Such cost

sequences are also used in [21]. Notice that we do not insist that the entries in our cost sequences should equal

1. The reasons for this are two-fold. Firstly, in order to give a rigorous and compact proof of the correctness

of our algorithm, we will need a more general notion than just the number of bits when accounting for the

cost of complementing bits in sequences. Secondly, in the application to decoding, we will want to consider

real-valued costs.

In what follows, we shall only consider costed binary sequences whose length is a power of 2.

We de�ne two maps on the set of all costed binary sequences whose length is a positive power of 2. Let

S = (s; �; `) be such a sequence. The �rst map B is de�ned as follows: Let B(S) = (B(s); B(�); `=2) where

B(s) and B(�) are given by the pseudo-code in the following routine, c.f. [21, Fig. 3]:

INPUT: S = (s; �; `)

OUTPUT: B(S) = (B(s); B(�); `=2)

for 0 � i < `=2



B(s)[i] = s[i]� s[i+ (`=2)]

B(�)[i] = minf�[i]; �[i + (`=2)]g

The second map L is de�ned as follows: Let L(S) = (L(s); L(�); `=2) where L(s) and L(�) are given by the

pseudo-code in the following routine, also c.f. [21, Fig. 3]:

INPUT: S = (s; �; `)

OUTPUT: L(S) = (L(s); L(�); `=2)

for 0 � i < `=2

if s[i] = s[i+ (`=2)] then

L(s)[i] = s[i]

L(�)[i] = �[i] + �[i+ (`=2)]

if s[i] 6= s[i+ (`=2)] then

if �[i] > �[i+ (`=2)] then

L(s)[i] = s[i]

L(�)[i] = �[i]� �[i+ (`=2)]

else

L(s)[i] = s[i+ (`=2)]

L(�)[i] = �[i+ (`=2)] � �[i]

We also de�ne similar maps B and L for binary sequences. Given a binary sequence s of length ` a positive

power of 2, we de�ne B(s) by

B(s)[i] = s[i]� s[i+ (`=2)]; 0 � i < `=2:

If s is a binary sequence of length ` such that B(s) = 0 then we de�ne L(s) by

L(s)[i] = s[i] (= s[i+ (`=2)]); 0 � i < `=2:

Observe that the de�nitions given for sequences are consistent with those given for costed binary sequences.

B. Linear complexity

Given a non-zero, in�nite periodic binary sequence s1 = s[0]s[1] : : : , the linear complexity of s1 is de�ned to

be the smallest c such that there exists binary constants a0; a1; : : : ; ac, not all zero, with
P

0�i�c ais[j+ i] = 0

for all j � 0. We de�ne the linear complexity of the zero sequence to be 0. Let ` denote the period of s1. We

identify s1 with the �nite, length ` binary sequence s = s[0]s[1] : : : s[`� 1] and denote the linear complexity

of s1 by c(s).

We will need a key lemma, proved as [8, Theorem 6].

Lemma 1: Let s be a binary sequence of length 2n. Then

1. c(s) = 2n�1 + c(B(s)) if B(s) 6= 0

2. c(s) = c(L(s)) if B(s) = 0.

This lemma shows how the computation of the linear complexity of a sequence of period 2n can be e�ciently

reduced to the same computation for a sequence of period only 2n�1.

C. Error sequences and k-error linear complexity

Let S = (s; �; `) be a costed binary sequence. An error sequence for S is just a binary sequence e =

e[0]e[1] : : : e[` � 1] of length l. We de�ne cost(s! s� e) =
P

e[i]=1 �[i]. Thus cost(s! s� e) represents the

total cost of changing s by the error sequence e if the cost of changing bit s[i] is �[i].

For k a non-negative real number, the k-error linear complexity of S, denoted ck(S), is de�ned to be

min
cost(s!s�e)�k

c(s� e)



where the min is taken over all error sequences for S whose \costs" are no more than k. So c0(S) = c(s) if

all the entries in � are positive. Notice also that if �[i] = 1 for each i, then the de�nition of k-error linear

complexity given here agrees with that given in Section I.

The following lemma is central to our paper and shows how error sequences with certain costs for B(S) and

L(S) can be used to devise error sequences for S with related costs.

Lemma 2: Let S = (s; �; `) be a costed binary sequence with cost(B(s) ! 0) = T (this cost is calculated

using B(�)).

1. (a) If f is an error sequence for B(S) then there exists an error sequence e for S such that B(s � e) =

B(s)� f and cost(B(s)! B(s)� f) = cost(s! s� e).

(b) If e is an error sequence for S then there exists an error sequence f for B(S) such that B(s�e) = B(s)�f

and cost(B(s)! B(s)� f) � cost(s! s� e).

In these two cases, B(�) is used to calculate cost(B(s)! B(s)� f).

2. (a) If f is an error sequence for L(S) then there exists an error sequence e for S such that L(s�e) = L(s)�f

with B(s� e) = 0 and cost(L(s)! L(s)� f) + T = cost(s! s� e).

(b) If e is an error sequence for S with B(s� e) = 0 then there exists an error sequence f for L(S) such that

L(s� e) = L(s)� f and cost(L(s)! L(s)� f) + T = cost(s! s� e).

In these two cases, L(�) is used to calculate cost(L(s)! L(s)� f).

Proof: In each case we exhibit an error sequence which can be veri�ed to be of the correct form. We

omit the relatively routine calculations involved in this checking.

1. (a) Let f = f [0]f [1] : : : f [(`=2) � 1] be an error sequence for B(S). De�ne the error sequence e =

e[0]e[1] : : : e[`� 1], which we call the B-pull-up of f , as follows:

INPUT: S = (s; �; `), f

OUTPUT: e, the B-pull-up of f

for 0 � i < `=2

if f [i] = 1 then

if �[i] � �[i+ (`=2)] then

e[i] = 1 and e[i+ (`=2)] = 0

else

e[i] = 0 and e[i+ (`=2)] = 1

else

e[i] = e[i+ (`=2)] = 0

(b) Let e be an error sequence for S. De�ne f = B(e). (Observe that f is the unique error sequence whose

B-pull-up is e).

2. (a) Let f be an error sequence for L(S). De�ne the error sequence e = e[0]e[1] : : : e[`� 1] for S, which we

call the L-pull-up of f , in the following way.

INPUT: S = (s; �; `), f

OUTPUT: e, the L-pull-up of f

for 0 � i < `=2

if B(s)[i] = 0 then

e[i] = e[i+ (`=2)] = f [i]

else n� Case B(s)[i] = 1 �n

if �[i] � �[i+ (`=2)] then

e[i] = f [i]� 1 and e[i+ (`=2)] = f [i]

else

e[i] = f [i] and e[i+ (`=2)] = f [i]� 1

(b) Let e be an error sequence for S such that B(s� e) = 0. Observe here that B(e) = B(s). We take f to

be the unique error sequence whose L-pull-up is e. The sequence f may be explicitly de�ned as follows:



INPUT: S = (s; �; `), e

OUTPUT: f

for 0 � i < `=2

if B(e)[i] = 0 then n� Case B(e)[i] = B(s)[i] = 0 �n

f [i] = e[i]

else n� Case B(e)[i] = B(s)[i] = 1 �n

if �[i] � �[i+ (`=2)] then

f [i] = e[i+ (`=2)]

else

f [i] = e[i]

We now present an analogue of Lemma 1 showing how the computation of the k-error linear complexity of

the period 2n sequence S can be reduced to the computation of either the k-error linear complexity of B(S) or

the (k � T )-error linear complexity of L(S), these being sequences of period 2n�1. The lemma can be proved

from the assumption that the algorithm of Stamp and Martin [21] is correct. However, we prefer to give an

independent and completely rigorous proof based on Lemma 2.

Lemma 3: Let S = (s; �; 2n) be a costed binary sequence and k � 0. Let T = cost(B(s)! 0). Then ck(S)

is equal to

1. 2n�1 + ck(B(S)) in the case that 0 � k < T .

2. ck�T (L(S)) in the case that T � k.

Proof: We use Lemma 2 to prove Part 2; Part 1 may be proved in a similar way (using B-pull-ups

instead of L-pull-ups).

We �rst show that ck(S) � ck�T (L(S)). Suppose that we have an error sequence f for L(S) which minimises

the linear complexity of L(S) among all error sequences whose \costs" are not greater than k � T . Hence

c(L(s) � f) = ck�T (L(S)) and cost(L(s) ! L(s) � f) � k � T . Using Part 2(a) of Lemma 2, we take the

L-pull-up of f to obtain an error sequence e for S such that L(s� e) = L(s)� f , B(s� e) = 0 and

cost(s! s� e) = T + cost(L(s)! L(s)� f) � T + (k � T ) = k:

By Part 2 of Lemma 1, c(s� e) = c(L(s � e)) = c(L(s) � f) = ck�T (L(S)). Hence e is an error vector for S

with cost(s! s� e) � k and c(s� e) = ck�T (L(S)). It follows that ck(S) � ck�T (L(S)).

We now show that ck�T (L(S)) � ck(S). Observe �rst that if e is an error sequence for S which minimises

the linear complexity of S over all error sequences whose \costs" are not greater than k � T , then we must

have that B(s� e) = 0. For suppose that B(s� e) 6= 0. Then taking e0 to be the B-pull-up of B(s) we �nd

that B(s� e
0) = 0 and cost(s! s� e

0) = T � k. So by Part 2 of Lemma 1, c(s� e
0) = c(L(S � e

0)) � 2n�1.

But since B(s� e) 6= 0 we have c(s� e) > 2n�1 by Part 1 of Lemma 1, which gives us a contradiction.

Hence B(s� e) = 0 and we may apply part 2(b) of Lemma 2 to deduce that there exists an error sequence

f for L(S) such that L(s� e) = L(s)� f and cost(s! s� e) = T + cost(L(s)! L(s)� f). Then

cost(L(s)! L(s)� f) = cost(s! s� e)� T � k � T:

Since B(s � e) = 0, Part 2 of Lemma 1 applies to show that c(L(s) � f) = c(L(s � e)) = c(s � e) = ck(s).

Hence f is an error vector for L(S) with cost(L(s) ! L(s)� f) � k � T and c(L(s) � f) = ck(s). It follows

that ck�T (L(S)) � ck(S).

This completes the proof of Part 2.

D. Error Linear Complexity Spectrum

We de�ne the error linear complexity spectrum (ELCS) of S = (s; �; 2n) to be the set of pairs

f(k; ck(S)) : 0 � k � cost(s! 0)g:

Notice here that we do not restrict k to be an integer, so the ELCS is not a �nite set. Of course, the

ELCS of S can be visualised as a graph with axes for cost and linear complexity and with points (k; ck(S)),



8

21 3 4 5

1

2

3

4

5

6

7

Fig. 1. The graph of the ELCS of sequence S = (s; �; 8) with s = 10011110 and � = 11111111. Notice how the graph

is determined by the set of critical points f(0; 8); (1; 5); (3; 1); (5; 0)g.

0 � k � cost(s ! 0). For example, we will see in Section IV that the costed binary sequence S = (s; �; 8)

with

s = 10011110 and � = 11111111

has ELCS as shown in Figure 1.

The following lemma shows how the ELCS of B(S) and of L(S) can be joined together to give the ELCS

of S.

Lemma 4: Let S = (s; �; 2n) be a costed binary sequence. Let B(S) = (B(s); B(�); 2n�1) with T =

cost(B(s) ! 0), and L(S) = (L(s); L(�); 2n�1) with U = cost(L(s) ! 0). Suppose that the ELCS of B(S) is

f(k; ck(B(S))) : 0 � k � Tg and the ELCS of L(S) is f(k; ck(L(S))) : 0 � k � Ug. Then the ELCS of S is

f(k; ck(B(S)) + 2n�1) : 0 � k < Tg [ f(T + k; ck(L(S))) : 0 � k � Ug

Proof: Follows immediately from Lemma 3.

E. Critical Error Linear Complexity Spectrum

Let (k; ck(S)) be a point on the ELCS of the costed binary sequence S. We say that (k; ck(S)) is critical if

for all points (k0; ck0(S)) of the ELCS with k0 < k we have that ck0(S) > ck(S). In other words, critical points

are the points on the graph of the ELCS where a decrease in the k-error linear complexity occurs. The sublist

of all critical points in the ELCS of S is called the critical error linear complexity spectrum (CELCS) of S.

We include the point (0; c(s)) in the CELCS of S. Thus the main result of [13] explicitly gives the k value of

the second critical point of a sequence of period 2n. Because the linear complexity of s� e can take on only

�nitely many di�erent values, the CELCS of S contains a �nite number of points. Observe that the CELCS

of a costed binary sequence entirely determines its ELCS and vice versa, hence the terminology critical. For



example, the CELCS of the period 8 sequence S de�ned above is the set:

f(0; 8); (1; 5); (3; 1); (5; 0)g:

Lemma 5: Let S = (s; �; 2n) be a costed binary sequence. Let B(S) = (B(s); B(�); 2n�1) with cost(B(s)!

0) = T , and L(S) = (L(s); L(�); 2n�1) with cost(L(s)! 0) = U . Let the CELCS of B(S) be f(ki; cki(B(S))) :

0 � i � tg for some t, where k0 = 0 and kt = T . Furthermore, let the CELCS of L(S) be f(Ki; cKi
(L(S))) :

0 � i � ug for some u where K0 = 0 and Ku = U . Then the CELCS of S is

f(k0; ck0(B(S)) + 2n�1); (k1; ck1(B(S)) + 2n�1); : : : ; (kt�1; ckt�1
(B(S)) + 2n�1);

(T +K0; cK0
(L(S))); (T +K1; cK1

(L(S))); : : : (T +Ku; cKu
(L(S)))g

Proof: Follows from Lemma 4.

III. An Algorithm to Compute the CELCS of a Costed Binary Sequence

We now present our algorithm for computing the critical error linear complexity spectrum of a costed binary

sequence of period ` = 2n. As well as a costed binary sequence S = (s; �; `), the algorithm has as inputs three

integers tsf, lim and c, whose function will be explained shortly.

Algorithm CELCS(S = (s; �; `),tsf,lim,c)

if l > 1

calculate B(S) and L(S)

let T = cost(B(s)! 0)

if T > 0

CELCS((B(s); B(�); `=2); tsf;minflim; tsf+ T � 1g; c+ (`=2))

if tsf+ T � lim

CELCS((L(s); L(�); `=2); tsf+ T; lim; c)

else n� Case ` = 1 �n

if s[0] = 0

output (tsf; c)

if s[0] = 1 and �[0] > 0

output (tsf; c+ 1)

if s[0] = 1 and tsf+ �[0] � lim

output (tsf+ �[0]; c)

A. Notes on the algorithm

The algorithm is recursive, calling itself with progressively shorter costed sequences as input. It can be

thought of as exploring a binary tree where a node at depth i (0 � i � n) corresponds to a costed binary

sequence of length 2n�i and the two edges emanating from a node correspond to the two mappings B and

L that can be applied to this sequence. At any stage in the execution of the algorithm, the variable tsf is

set to the total cost of changes made to the sequence so far, and the variable lim marks a limit to the total

cost of changes one should consider when searching a particular part of the tree. We will establish below

that execution of the algorithm CELCS((s; �; 2n); 0; N; 0) where N = cost(s ! 0) will produce as output the

CELCS of the costed binary sequence (s; �; 2n).

B. Correctness of Algorithm CELCS

We require one preliminary lemma from which our main results follow very quickly.

Lemma 6: The algorithm CELCS((s; �; `); tsf; lim; c), where tsf � lim, outputs the following list of points:

f(tsf+ k0; c+ ck0(S)); (tsf+ k1; c+ ck1(S)); : : : (tsf+ ku; c+ cku(S))g



where (k0; cku(S)); : : : ; (ku; cku(S)) are the critical points of S = (s; �; `) whose �rst coordinates lie in the

range [0; lim� tsf].

Proof: We prove the lemma by induction on `. If l = 1 then there are two cases to consider.

1. cost(s! 0) = 0. In this case the single critical point whose �rst coordinate lies between 0 and lim� tsf

is (0; 0). The algorithm outputs f(tsf; c)g as required.

2. cost(s ! 0) > 0. Here s[0] = 1 and �[0] > 0. If �[0] � lim � tsf then the two critical points with �rst

coordinate in the range 0 to lim� tsf are (0; 1) and (�[0]; 0). The algorithm outputs

f(tsf; c+ 1); (tsf+ �[0]; c)g

as required. If �[0] > lim� tsf then the single critical point with �rst coordinate in the range 0 to lim� tsf

is (0; 1). Once again, the algorithm correctly outputs (tsf; c+1). This completes the consideration of length

1 sequences.

Assume now that the result is true for all costed binary sequences of length 2n
0

with n0 < n. Let S = (s; �; `)

be a costed binary sequence of length ` = 2n > 1.

The algorithm CELCS((s; �; `); tsf; lim; c), where tsf � lim, calls as subroutines the two algorithms

1. CELCS((B(s); B(�); `=2); tsf;min (tsf+ T � 1; lim); c+(`=2)), where cost(B(s)! 0) = T . Observe here

that tsf � min (tsf+ T � 1; lim) because T > 0.

2. CELCS((L(s); L(�); `=2); tsf + T; lim; c), where cost(B(s) ! 0) = T . (This call is only made when

tsf+ T � lim, and so in particular min (tsf+ T � 1; lim) = tsf+ T � 1.)

By the inductive hypothesis, the �rst of these outputs

f(tsf+ k0; (c+ (`=2)) + ck0(B(S))); : : : (tsf+ kv; (c + (`=2)) + ckv (B(S)))g

where (k0; ck0(B(S))); : : : ; (kv ; ckv (B(S))) are the critical points of B(S) whose �rst coordinates lie in the

range [0;min (T � 1; lim� tsf)]. (Observe that min (T � 1; lim� tsf) = min (tsf+ T � 1; lim)� tsf.) By

Lemma 5, if lim � tsf � T � 1 then this is the whole of the required output. Similarly by Lemma 5, if

lim � tsf � T then this is the �rst portion of the required output, the remainder coming from the second

recursive call which we now describe.

From the inductive hypothesis we know that the second subroutine in the case lim� tsf � T will output

f((tsf+ T ) +K0; c+ cK0
(L(S))); : : : ((tsf+ T ) +Ku; c+ cKu

(L(S)))g

where (K0; cK0
(L(S))); : : : (Ku; cKu

(L(S))) are the critical points of L(S) whose �rst coordinates lie in the

range [0; lim� (tsf+ T )]. By Lemma 5 this is the second portion of the required output.

Thus the algorithm outputs the claimed list for costed binary sequences of length 2n. This completes the

proof.

Theorem 7: Let S(s; �; 2n) be a costed binary sequence and write N = cost(s ! 0). Then the algorithm

CELCS((s; �; 2n); 0; N; 0) correctly outputs the critical error linear complexity spectrum of S.

Proof: By Lemma 6, with this input, the algorithm outputs the critical points of S = (s; �; `) whose �rst

coordinates lie between 0 and N . This is the complete critical error linear complexity spectrum of S because

cost(s! 0) = N implies that the critical point with highest �rst coordinate is (N; 0).

Now we revert to considering the error linear complexity spectra of binary sequences, as de�ned in Section I.

Let s1 be a binary sequence of period ` = 2n. If we associate with s1 the costed binary sequence S = (s; �; 2n)

where s is the �nite sequence s[0]s[1] : : : s[` � 1] and �[i] = 1 for 0 � i < 2n, then it is easy to see that the

error linear complexity spectrum of s1, as de�ned in Section I, is just the error linear complexity spectrum

of S. This is because allowing up to k bit changes in each period of s1 is equivalent, with this choice of �, to

considering error sequences e satisfying cost(s! s� e) � k.

So knowledge of the critical error linear complexity spectrum of S will entirely determine the error linear

complexity spectrum of s1. Thus by Theorem 7, the algorithm CELCS(S; 0; 2n; 0) can be used to determine

the error linear complexity spectrum of s1.



C. Performance of Algorithm CELCS

We now consider the computational complexity of our algorithm. For simplicity, we assume that the entries

in the cost vectors are scaled and quantised to be non-negative integers rather than real numbers.

Theorem 8: Let S = (s; �; 2n) be a costed binary sequence and suppose N = cost(s ! 0). Then the

algorithm CELCS(S; 0; N; 0) outputs the complete critical error linear complexity spectrum of S in O(2nn(n+

log2M)) bit operations, where each entry in the cost sequence � is an integer no greater than M .

Proof: The algorithm explores part of a binary tree with each node at depth i having a computational

cost of O(2n�i(log2M + i)) bit operations. Here, we have taken into account the possible doubling in size of

the components of the cost sequences at each depth in the tree. Hence the total computational cost is

O

0
@ X

0�i�n

2i2n�i(log2M + i)

1
A = O (2nn(n+ log2M))

bit operations.

Taking M = 1 in the above proof, we get:

Corollary 9: Algorithm CELCS can correctly output the complete critical error linear complexity spectrum

of a binary sequence of period ` = 2n in O(`(log2 `)
2) bit operations.

Observe that the computational complexity of the Stamp-Martin algorithm in [21, Figure 3] is O(` log2 `)

bit operations. Stamp and Martin give a running time of \O(`) steps". This actually measures the arithmetic

complexity of the Stamp-Martin algorithm, as they did not consider the growth of the costs. Thus our

algorithm �nds the whole spectrum at the expense of only an additional factor of log2 ` in the number of bit

operations.

IV. An Example

Consider the periodic binary sequence s
1 obtained by repetition of the �nite sequence s = 10011110

introduced in Section II. One may associate with s
1 the costed binary sequence S = (s; �; 8) where the cost

sequence � consists solely of 1's. The execution of the algorithm CELCS(S; 0; 8; 0) is depicted in Figure 2. We

have used the notation s[i]
�[i] to record sequence elements and their costs. The �gure reveals that the critical

error linear complexity spectrum of S is

f(0; 8); (1; 5); (3; 1); (5; 0)g:

Observe that the binary sequence s has odd weight 5, and recall that all binary sequences of period a power

of 2 with odd weight have maximal linear complexity. Thus to reduce the linear complexity of S one must

make an odd number of changes. This explains the fact that the �rst coordinates of the critical error points

(k; ck(S)), for k > 0, all have equal parity. This will always be true for the CELCS of binary sequences of

period a power of 2 when the cost sequence is the all 1's sequence.

V. Error sequences and an application to coding theory

A. Critical error sequences

Let (k; ck(S)) be a point on the CELCS of the costed binary sequence S = (s; �; `). Let e be an error

sequence for S such that c(s � e) = ck(S) and cost(s ! s � e) = k. We call e a critical error sequence for

S. An ordered list of critical error sequences for each critical point (k; ck(S)) is called a critical error list.

Observe that such a list is not necessarily unique. (More generally, we can consider error sequences for each

point on the ELCS of S, but from our de�nitions, it should be clear that such error sequences can be taken

to be critical ones.)

Let S = (s; �; 2n) and f be a critical error sequence for B(S). Then it follows from Lemma 2 and the proof

of Lemma 3 that the B-pull-up of f is a critical error sequence for S. Similarly, given a critical error sequence

f for L(S) one may take the L-pull-up and obtain a critical error sequence for S. It then follows easily that



(S) 01 1 1 1

L(S) : 12101000
T : 3

H
H
H
H
H
H
H
H
H
Hj

�
�
�

�
�
�

�
�

�
��

CELCS(B(S),0,2,4)

B(S) : 1101
L(S) : 1012

T : 1

@

@
@R

�

�
�	

CELCS(B(S),0,0,6)

B(S) : 11
L(S) : 00

T : 1

�

�
�	

CELCS(B(S),0,0,7)

S : 11
CP : (0; 8)

CELCS(L(S),1,2,4)

B(S) : 00
L(S) : 12

T : 0

@

@
@R

CELCS(L(S),1,2,4)

S : 12
CP : (1; 5)

CELCS(L(S),3,8,0)

B(S) : 0010
L(S) : 1200

T : 0

@

@
@R

CELCS(L(S),3,8,0)

B(S) : 10
L(S) : 12

T : 0

@

@
@R

CELCS(L(S),3,8,0)

S : 12
CP : (3; 1)

CP : (5; 0)

Fig. 2. Schematic execution of Algorithm CELCS(S; 0; 8; 0)

if we take the union of the B-pull-up of a critical error list of B(S) and the L-pull-up of a critical error list

for L(S), we will obtain a critical error list for S itself. We also note that it is trivial to write down critical

error sequences for the three cases for ` = 1 that occur in Algorithm CELCS:



INPUT: S = (s; �; 1) of length 1, tsf, lim

OUTPUT: The critical error list for critical points of S with first coordinate

in the range [0; lim� tsf]

if s[0] = 0

output e = 0

if s[0] = 1 and �[0] > 0

output e = 0

if s[0] = 1 and tsf+ �[0] � lim

output e = 1

Thus one may use the subroutines presented in the proof of Lemma 2 for computing B- and L-pull-ups

to devise an algorithm very similar to Algorithm CELCS which computes a critical error list for a costed

binary sequence. It is also possible to compute single critical error sequences by reversing the Stamp-Martin

algorithm and using B- and L-pull-ups. For an alternative approach to �nding critical error sequences, see

[11].

Example 10: We re-visit the costed binary sequence S of Section IV. Recall that (3; 1) is a point on the

CELCS of s obtained, according to Figure 2, by applying L three times to s and then applying the second

of the three cases for ` = 1. Reversing these steps, we begin with e = 0 and take three L-pull-ups (using the

appropriate cost vector at each stage), obtaining the sequence of critical error sequences:

0! 01! 0001 ! 01100001:

Thus e = 01100001 is a critical error sequence for S at the point (3; 1). Indeed s � e = 11111111 has linear

complexity 1 and cost(s! s� e) = 3.

B. A decoding algorithm for some subcodes of the Reed-Muller codes

For any 2 � u � n we de�ne the code C(n; u) to be the vector space of all binary sequences s of length

2n whose linear complexity c(s) is at most 2n�u+1
� 1. In [15, Theorem 2] it is shown that C(n; u) is a

[2n; 2n�u+1
� 1; 2u] binary, linear code. In fact, it is a subcode of the (n� u)-th order Reed-Muller code with

the same minimum distance.

Given an arbitrary received sequence r (which we assume to be a binary vector of length 2n), to �nd the

closest codeword c 2 C(n; u) to r (in terms of Hamming distance), we must �nd the minimum value of k

such that the linear complexity of r is reduced to less than or equal 2n�u+1
� 1 by making exactly k changes

to r. We can use the ideas presented in the preceding sections to solve this problem. Firstly, we compute

the CELCS of the costed binary sequence R = (r; �; 2n) where � = 11 : : : 1, by executing the algorithm

CELCS(R; 0; 2n; 0). Next we choose a point (k; ck(R)) in the spectrum of R with k minimal subject to the

condition that ck(R) � 2n�u+1
� 1. We assume that this point is a critical point without any loss. Finally,

we recover a critical error sequence e for the point (k; ck(R)) using the method of Section V-A. The sequence

e is an error vector of minimum weight for r and the codeword closest to r is c = r � e. The computational

complexity of this minimum distance decoding algorithm is O(`(log `)2) bit operations, where ` = 2n is the

code length.

Example 11: We consider the code C(3; 2) consisting of all length 8 sequences with linear complexity at

most 3 and a received word r = 10011110: We showed in the example of Section IV that the CELCS of r is:

f(0; 8); (1; 5); (3; 1); (5; 0)g:

Thus the minimum number of changes that we can make to r to reduce its linear complexity to 3 or lower is

3 (in fact (3; 1) is a point on the CELCS of r, so this number of changes can reduce the linear complexity to

just 1). We showed in Example 10 that a critical error sequence for the point (3; 1) is e = 01100001. Hence

the nearest codeword to r in C(3; 2) is c = r � e = 11111111.

It has been observed [2] that by allowing arbitrary cost sequences � in this decoding algorithm, we can

obtain a soft decision decoding algorithm for the code C(m;u). The input to the algorithm is now a costed



binary sequence R = (r; �; 2n) in which r is a binary, hard-decision version of the received vector and � is a

real vector recording the unreliability of these hard decisions.

VI. Conclusion

We have exhibited an algorithm which computes the error linear complexity spectrum of a binary sequence

of period ` = 2n using O(`(log `)2) bit operations. Furthermore, we have described how this algorithm may

be adapted to output a critical error list which speci�es exactly which changes must be made to reduce the

linear complexity of the sequence by increasing amounts. This modi�ed algorithm may be used to give a

soft-decision decoding algorithm for a particular class of subcodes of Reed-Muller codes.

The formulation of our algorithm as a partial exploration of a binary tree with branching depending on

explicitly computed quantities may lend it to further analysis. For example, it would be of interest to

investigate the distribution of error linear complexity spectra for random sequences of a given period. Related

information, such as the average number of critical points, might be easier to obtain, while characterising the

non-zero sequences with the maximum or minimum number of critical points also seems feasible.

We note that reasonably e�cient algorithms already exist to compute the linear complexities and the k-error

linear complexities of sequences of period p
n over �nite �elds of characteristic p [5], [12]. It seems plausible

that these can be adapted to compute error linear complexity spectra too. But it remains a challenging

open problem to devise an algorithm which e�ciently computes the error linear complexity spectra of binary

sequences of arbitrary period.

References

[1] S.R. Blackburn, \A generalisation of the discrete Fourier transform: determining the mimimal polynomial of a periodic
sequence", IEEE Trans. Inform. Theory, IT-40, pp. 1702-1704, 1994.

[2] S.R. Blackburn, personal communication.
[3] S.R. Blackburn, T. Etzion and K.G. Paterson, \Permutation Polynomials, de Bruijn Sequences and Linear Complexity",

Journal of Comb. Theory Ser. A, 76, pp. 55-82, 1996.

[4] A.H. Chan, R.A. Games and E.L. Key, \On the complexities of de Bruijn sequences", J. Comb. Theory, Ser. A, 33, pp.
233-246, 1982.

[5] C. Ding, G, Xiao and W. Shan, The stability theory of stream ciphers, Lecture Notes in Computer Science, Vol. 561, Springer-

Verlag, Berlin, 1991.
[6] T. Etzion, \Constructions for perfect maps and pseudo-random arrays", IEEE Trans. Inform. Theory, IT-34, pp. 1308-1316,

1988.

[7] T. Etzion and A. Lempel, \Construction of de Bruijn sequences of minimal complexity. IEEE Trans. Inform. Theory, IT-30,
pp. 705-709, 1984.

[8] R.A. Games and A.H. Chan, \A fast algorithm for determining the linear complexity of a pseudorandom sequence with

period 2n", IEEE Trans. Inform. Theory, IT-29, pp. 144-146, Jan. 1983.
[9] P.A. Hines, \Characterising the linear complexity of span 1 de Bruijn sequences over �nite �elds", J. Combin. Theory Ser.

A 81(2), pp. 140{148, 1998.

[10] P.A. Hines, \On the minimum linear complexity of de Bruijn sequences over non-prime �nite �elds", J. Combin. Theory Ser.

A 86(1), pp. 127{139, 1999.
[11] T. Kaida, S. Uehara and K. Imamura, \Computation of the k-error linear complexity of binary sequences with period 2n", in

Concurrency and Parallelism, Programming, Networking, J. Ja�ar and R.H.C. Yap, eds., Lecture Notes in Computer Science
Vol. 1179, pp. 182-191, Springer-Verlag, Berlin, 1996.

[12] T. Kaida, S. Uehara and K. Imamura, \An algorithm for the k-error linear complexity of sequences over GF (pm) with period

pn, p a prime", Information and Computation, 151, pp. 134-147, 1999.
[13] K. Kurosawa, F. Sato, T. Sakata and W. Kishimoto,\A relationship between linear complexity and k-error linear complexity",

IEEE Trans. Inform. Theory, IT-46, pp. 694-698, 2000.
[14] J.L. Massey, \Shift Register Synthesis and BCH decoding", IEEE Trans. Inform. Theory, IT-15, pp. 122-127, Jan. 1969.

[15] J.L. Massey, D.J. Costello, J. Justesen, \Polynomial weights and code constructions", IEEE Trans. Inform. Theory, IT-19,
pp. 101-110, Jan. 1973.

[16] J.L. Massey and S. Serconek, \Linear complexity of periodic sequences: a general theory", Advances in Cryptology -

CRYPTO'96, N. Koblitz (Ed.), Lecture Notes in Computer Science Vol. 1109, pp. 358-371, Springer-Verlag, Berlin, 1996.
[17] H. Niederreiter, \Some computable complexity measures for binary sequences", Proc. SETA98, pp. 67-78, Springer Verlag,

1999.

[18] K.G. Paterson, \Perfect Maps", IEEE Trans. Inform. Theory, IT-40, pp. 743-753, 1994.
[19] M.J.B. Robshaw, \On Evaluating the Linear Complexity of a Sequence of Least Period 2n", Designs, Codes and Cryptography

4(3), pp. 263-269, 1994.

[20] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.



[21] M. Stamp and C.F. Martin, \An algorithm for the k-error linear complexity of binary sequences of period 2n", IEEE Trans.

Inform. Theory, IT-39, pp. 1398-1401, July 1993.


