

A Formalization of the Attribute
Mapping Problem

Elizabeth Shriver
Computer Systems and Technologies Laboratory
HP Laboratories Palo Alto
HPL-1999-127
October, 1999*

attribute-based
storage
management,
formalization

An attribute-managed solver makes assignments of workload
units to devices based on attributes specifications that describe
the workload units and the devices. This paper presents the
sets of attributes that model workloads and devices. It also
discusses the necessary formalization of an attribute-managed
solver in terms of objective functions and constraint
expressions. These formalizations enable progress toward an
implementation of an attributed-managed storage system.

∗ Originally written in July 15, 1996
 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

i

Contents

1 Introduction 1

2 Attributes 1

3 Workload speci�cation 2
3.1 Our workload unit model . 3

3.1.1 The attributes . 3
3.1.2 Utility . 8

3.2 Open issues for the workload model . 9

4 Device speci�cation 11
4.1 Our device model . 11
4.2 Open issues for the device model . 14

5 The mapping problem 16
5.1 Input/output into the mapping problem 16

6 Formalized mapping problem 17
6.1 Basic de�nitions . 18
6.2 Objective functions . 19

6.2.1 Basic objective function . 19
6.2.2 Support cost of devices . 20
6.2.3 Utility . 20

6.3 Transfer rate . 21
6.4 Last-byte latency . 23
6.5 Capacity . 24
6.6 Availability and reliability . 25
6.7 Correctness violations . 25
6.8 Position time . 25

6.8.1 Seek distance . 26
6.8.2 Seek time . 27
6.8.3 Rotational latency . 31

6.9 Open issues for the mapping problem . 32

7 Previous work 33
7.1 Previous workload model work . 33
7.2 Previous device model work . 34

8 Future work 34

9 Conclusions 35

1

1 Introduction

An introduction to self-con�guring self-managing storage systems and attribute-managed
storage can be found in [Golding95]. An understanding of this paper depends on an un-
derstanding of that paper.

We begin with an overview on how attributes are speci�ed in Section 2. We follow this
by descriptions of the models for workloads and devices that are needed for our approach
in Sections 3 and 4. We overview the mapping problem in Section 5 and formalize it in
terms of objective functions and constraint expressions in Section 6. We present a brief
discussion of previous work, future work, and our conclusions in Sections 7, 8, and 9.

This version of this paper (Rev E) has been updated from the previous version (Rev D)
in a number of important ways:

� The workload use patterns of burst request rate and burst count were added to Sec-
tion 3.1.1.

� Several typos were �xed and additional explanations were added.

There are some concepts in this paper that still have to have additional details added.
A partial list of what will have additional details or has additional details discussed in
another paper follows:

� availability and reliability

� streams and objects

� capacity as a distribution

� system goals

There are also concepts that are presented that are not used yet; a partial list of these
follows:

� workload use patterns such as run length and run stride (These will be used in
determining the service time for complex devices.)

� zones on the devices

2 Attributes

Our basic method of describing workloads and devices is through attributes. This section
discusses what an attribute is, how we use them, and how are they speci�ed. In attribute-
managed storage, attributes are the only things we use to map workload units to devices.

Attributes allow us to specify abstractly how the workload and devices behave and
what are the performance needs of the workload. The workload attributes are represented

2

in terms of requirements and use patterns and the device attributes are represented in terms
of capabilities.

Some attributes are measured as single numbers, while others require more complex
speci�cations for a more accurate representation. The complex speci�cations are not dis-
cussed here; at this point, we assume attributes are speci�ed as single numbers.1

A workload (respectively, device) speci�cation is one or more workload units (devices),
with values assigned to the attributes. Attribute values could either be speci�ed (e.g., by a
system administrator for workload attributes and device manufacturer for device attributes)
or they could be derived from values that have been speci�ed. As an example, reliability
of a device can be derived from the availability of the device.

Unspeci�ed attributes that cannot be derived can be left blank in a speci�cation. This
implies that the value of the attribute is not important.

3 Workload speci�cation

We use two items to model a workload|storage objects and data streams. Storage objects,
which we refer to as objects, are the basic persistent unit that applications access, and that
must be assigned to storage devices. These objects could be �les, tables or part of tables
in a database, recorded continuous media streams, or blocks of a scienti�c data set.

Separately, applications access storage objects through data streams, which we call
streams. A stream represents a group of data requests for the object.

The interaction between streams and objects has not been formalized, and is therefore
not discussed here. We present this formalization using the term workload units, which
can be thought of as a �le that needs to be stored on disk with a single open access path.
A workload unit comprises many requests. A device's workload is zero or more workload
units accessing data on the device.

The relative importance of workload units is given by the importance attribute, which
supports a ranking of workload units. This attribute represents the importance of the
workload units in the \grand scheme of things." Importance is used to determine which
workload units' requirements are the most important if all of the workload units' needs
cannot be met.

Similarly, the relative importance of workload unit attributes is given by a weight pa-
rameter, wat, for attribute at; the weight parameter allows a ranking of the importance
of the individual attributes. For example, a high weight value for long-term transfer rate
means long-term transfer rate is important for that workload unit.

Grouping together similar workload units into workload unit classes can reduce the size
of the search space when assigned workload units to devices. It also makes the process of
specifying workload units easier. Workload units having the same speci�cation can be in
the same workload unit class.

1Simpli�cation: Attributes are speci�ed using only single values (i.e., no distributions).

3

Table 1: The requirement attributes for workload units. A value of probability in the
fourth column in the table means the value is between 0 and 1. B refers to bytes and s
refers to seconds.
attribute symbol description unit

long-term
transfer rate

long term transfer rate the amount of data that the work-
load unit needs generated or con-
sumed by the device per unit time
over the lifetime of the workload
unit

B/s

last-byte
latency

last byte latency the per-request latency for the
last byte to be received that can
be tolerated by the workload unit

s

data capacity capacity the amount of data storage that
the workload unit needs on the
device

B

availability availability the fraction of time that the de-
vice is servicing requests that is
needed by the workload unit

probability

reliability reliability the probability needed by the
workload unit that the device
will be servicing requests contin-
uously from time 0 to time t

probability (as
a function of t)

correctness
violation

correct viol the
fraction of data that the workload
unit can tolerate dropped or in-
correctly transfered

probability

3.1 Our workload unit model

3.1.1 The attributes

We develop a workload unit model that captures the storage device needs of the applica-
tion and the behavior of the application. We divide the characteristics or attributes of a
workload unit that we are interested in into two groups: requirements and use patterns.

Requirement attributes Requirements de�ne what the supporting device needs to de-
liver. Long-term transfer rate and capacity are sample requirement attributes. The re-
quirement attributes of a workload unit are described in Table 1. (One of the attributes in
the table is last-byte latency; this is called response time by some.2) Since the availability

2We de�ne the last-byte latency jitter to be the variance in the last-byte latency. The last-byte latency
jitter can be modeled when the last-byte latency is modeled as a distribution.

4

Table 2: The requirement attributes derivations for workload units.
attribute symbol derived from/derived as

long-term transfer rate long term transfer rate request rate � request size
last-byte latency last byte latency bu�er size (for some

applications)
reliability reliability availability

and reliability can be speci�ed independently as requirements, the e�ect of the device going
down is not factored into the long-term transfer rate and the last byte latency.

There are four possible transfer rates that can be speci�ed:

� burst transfer rate: the transfer rate that the workload unit is receiving data at once
the device starts to transfer data,

� request transfer rate: the transfer rate computed over the interval from request is-
suance to request completion, and

� interval transfer rate: the transfer rate computed over an interval of speci�ed length,
and

� long-term transfer rate: the transfer rate computed over the lifetime of the workload
unit.

If we only model the storage system, we cannot accurately determine the burst transfer rate
that the device will be supplying because of the large impact of the communication network
on this measure of transfer rate; therefore, we do not have burst transfer rate as one of our
requirement attributes. The request transfer rate is equal to the request size divided by the
last-byte latency, thus either the request transfer rate or the last-byte latency can be used
as an attribute. We have chosen the term last-byte latency since it is the more-commonly
used measure. We currently do not have a need for the interval transfer rate requirement.

Some of the requirements can be derived from other requirements or use patterns; the
requirement attribute derivations of a workload unit are shown in Table 2. (Some of the
attributes in the \derived from/derived as" column in Table 2 are de�ned in Table 3.)
Having the system derive requirements allows the workload unit to be speci�ed in terms
of attributes that are important for that workload unit. For example, it might be more
natural for a transaction processing application to be speci�ed in terms of the requests per
minute and the mean request size than in terms of the long-term transfer rate.

Use pattern attributes Use patterns describe how the workload unit will behave once
it is running on a storage system. They are also referred to as the workload behaviors. The
use patterns of a workload unit are described in Table 3 and Table 4

5

Table 3: The use pattern attributes for workload units.
attribute symbol description unit

request rate request rate the rate that individual
requests will be made
from the workload unit to
the device

requests/s

bursty request
rate

burst request rate the request rate during a
burst that individual re-
quests will be made from
the workload unit to the
device

requests/s

bursty inter-
val length

burst count the amount of time that a
bursty interval lasts

s

request size request size the amount of data that
is requested at once

B

access type access type read or write
read frac-
tion and write
fraction

read fraction,
write fraction

the fractions of the re-
quests that are reads and
writes over the lifetime of
the workload unit

probability

We have three use pattern attributes that capture time access patterns|request rate,
bursty request rate, and bursty interval length. The request rate is the rate that the requests
are made from the workload unit, averaged over the lifetime of the workload unit or some
other suitably long interval. The bursty request rate is the rate during a burst, averaged
over the bursty interval length. A burst is de�ned as a group of contiguous requests, where
each pair of sequential requests occurs in less than the burst inter-request gap. The value
of the burst inter-request gap is computed from the histogram of the inter-request gaps of
the workload unit, where the gaps are sorted by size. A workload unit that has a bursty
arrival process where the burst size and frequency can be modeled by exponential functions
will have an inter-request gap; in the �rst �gure in Figure 1, the inter-request gap should
be a value between x1 and x2.

The access type attribute is set to either \read" or \write" if the workload unit performs
only reads or only writes. If a workload unit performs both reads and writes, the read and
write fractions (read fraction and write fraction) tell us the fraction of requests that are
reads and writes. (By de�nition, read fraction = 1� write fraction.)3

Run length and run stride measures of the spatial data access patterns. These attributes
are similar to what [Patterson93] suggests for applications to use as hints to the operating

3Simpli�cation: We assume in Section 6 that a workload unit can only have one access type, i.e., a
workload unit can either read or write.

6

Table 4: The use pattern attributes for workload units, continued.
attribute symbol description unit
run length run length the number of sequential

bytes accessed by consec-
utive requests

B

run stride run stride the number of bytes be-
tween the beginning
bytes of two consecutive
runs

B

locality
fraction

locality frac the fraction of requests
that are in a run

probability

number of re-
quests read
forwards

num requests read

forwards

the number of requests
that are spatially local-
ity (de�ned as the data
wanted by two requests
to be within x bytes)
read forwards within y
requests

requests

number of re-
quests read
backwards
and forwards

num requests read

forwards and

backwards

the number of requests
that are spatially local-
ity (de�ned as the data
wanted by two requests to
be within x bytes) read
backwards and forwards
within y requests

requests

forwards
fraction

frac requests read

forwards

the fraction of requests
that are in a spatial local-
ity interval

probability

forwards and
backwards
fraction

frac requests read

forwards and

backwards

the fraction of requests
that are in a spatial local-
ity interval

probability

7

1

Probability
of being
accessed
(p)i

Probability
of being
accessed
(p)i

Inter-request gap sizex
2

Inter-request gap size

xm 2
xx 1m

Figure 1: Sample histograms of the inter-request gaps of two workload units. The one on the
left represents a workload unit having requests gaps of either xm1

or xm2
. The one on the right

represents a workload unit that has a close-to-constant inter-request gap, and therefore is not
bursty.

system for �le system caching. A run is a group of bytes that are accessed consecutively
across requests. For example, for a video-on-demand application, a run is the entire video
clip. Run length and run stride, as described in Table 4, de�ne whether the workload unit
patterns are sequential, consecutive, or random. If the pattern is sequential, run length
and run stride specify the strided or regular pattern [Nieuwejaar95] if there is one. We
use Nieuwejaar's terminology for sequential and consecutive; a sequential request is one
where the byte o�set being accessed is at a higher �le o�set than the previous request,
and a consecutive request is a sequential request that begins where the previous request
ended. The locality fraction parameter, locality frac, is used to capture the case when only
a fraction of the requests are in a run.

We also de�ne a database random pattern that models database accesses where the
database record is larger then the request size. In this pattern, a random record is
read/written in request size-chunks. Examples of run length and run stride for the var-
ious types of patterns are:

� random: run length = request size, run stride = 0

A zero value for run stride means the value is unde�ned.

� consecutive: run length = the amount of data to be accessed in total, run stride = 0

� sequential: for some positive integers, x and y, such that y > request size � x

run length = request size � x, run stride = y

� database random: for some positive integer, x,

run length = request size � x, run stride = 0

8

Some workload units may have spatial and temporal locality that can not be
described in terms of run length, i.e., the workload may have non-consecutive, yet
still spatially close, accesses. We capture this using the num requests read forwards

and num requests read forwards and backwards measures (along with the
frac requests read forwards and frac requests read forwards and backwards). Informally,
these measures de�ne locality intervals where the num requests read forwards is the number
of local requests in the interval if only the forward direction of the requests are examined.
The num requests read forwards and backwards is the number of local requests in the
interval if the forward and backwards direction of the requests are examined. Another
way to look at num requests read forwards and backwards is it represents the number of
requests that will be read when the x=2 byte is read in a group of x bytes by a workload
unit. The frac requests read forwards and frac requests read forwards and backwards

fractions determine the fraction of the total requests that have spatial locality.
Not stated in the tables are the averaging intervals, which is the length of time that the

values are determined over. As currently speci�ed, all of the use patterns need an averaging
interval.

If an attribute is not speci�ed, then the value of the attribute is not important or it
can be derived.

3.1.2 Utility

When the requirements of a workload unit are being met, there are some attributes that
can be supported by any value in a range of values. The workload unit requirements are
not always hard requirements, i.e., if the workload unit is given less than its optimal value,
it still might be able to function. We have chosen to model this as utility.

Jensen [Jensen91] discusses real-time completion constraints of tasks being serviced by
an operating system in terms of hard and soft. A hard constraint signi�es that a result has
zero or negative utility if produced after a certain time and a soft constraint means the
result has a corresponding utility which is a function of the time at which it is completed.
Campbell et al. [Campbell96] discuss three levels of service (deterministic, predictive, and
best e�ort) which are ways to guarantee performance as hard, soft, and �rm.

We use these ideas to determine how the values speci�ed for the workload unit re-
quirements have to be meet. That is, each workload unit requirement attribute has a
corresponding utility function, which gives the utility of the various possible values of the
attribute. The utility function identi�es the utility of values that the attribute can take.4

Figure 2 shows what the utility function for long term transfer rate can look like if a work-
load unit needs at least 4 MB/s of bandwidth. Figures 3 and 4 show possible utility
functions for last-byte latency.

With the current set of attributes de�ned for workload units, we believe that the utility
curves will always be as simple as the examples presented in Figures 2, 3, and 4.

4Simpli�cation: This discussion assumes that the requirement attributes are given as single values.
This becomes much more complicated when taking into account distributions.

9

1 --

0

long-term transfer rate
|

utility

 4

Figure 2: The long-term transfer rate utility graph for a workload unit that needs at least 4MB/s
of bandwidth. (The capacity utility graph has the same shape as this curve.)

1 --

0
x2

utility

x1
||

last-byte latency

Figure 3: The last-byte latency utility graph for a workload unit that has very high utility for
values of last byte latencies of less than x1, but can tolerate values of last byte latency (with
decreasing utility) to x2. (The availability, reliability, and correctness violations utility graphs
can all have the same shape as this curve.)

The utility function could be used to also represent the weight of the attributes discussed
in Section 3. The decision of whether utility and the weights be kept as separate values for
user input should be made based on the ease of user speci�cation.

If a requirement attribute is not speci�ed, the system can assume that the utility curve
is always 1.

3.2 Open issues for the workload model

The following are the current open issues for the workload model:

� It has been thought that the correctness violation attribute might be used to capture
the data lost if the data is stored on the device using lossy compression. How should
this be formalized?

� Spatial locality is the tendency of the workload to access data that is physically close

10

1 --

0 ||

utility

last-byte latency

| |
x1 x2 x3 x4

Figure 4: A possible last-byte latency utility graph for a workload unit that determines the
last-byte latency based on the size of the bu�ers.

to other accessed data. The greater the spatial locality, the greater the gain in cache
hits as the cache line size is increased. We currently measure the spatial locality by
run length, which only has a value if the access pattern is sequential or database
random. Should another use pattern attribute be added?

� One application can have many di�erent phases, where the phases run sequentially
and have possibly di�erent speci�cations. How can this be modeled? (Phases are
seen as long-term behaviour.)

One solution is to model di�erent phases as di�erent workload units and to create
a worst-case from these di�erent phases where, if the requirements of the worst-
case workload unit were met, the requirements for each one of the phases would
also be met. This solution could possibility assign much too much resources to the
application.

Another solution is to model di�erent phases as di�erent workload units and to assign
the \composite workload unit" to a device only when the requirements of each of the
phases can be supported. This solution seems to increase the number of constraint
equations that have to be checked when making an assignment.

� Workload unit requirements can vary over short periods of time (i.e., bursts). How
should this be modeled? ([Low93] might have some ideas.)

� We have looked at the following question: how is a mapping done so that the needs
of the Y workload units are met with a probability of 90% when X workload unit
speci�cations are given (where Y < X)?

One solution to this is based on ordering the combinations of workload units. To
be able to order the combinations, we must be able to able to order the workload
units. Thus, we must de�ne a relation between workload units and devices that is a
total order. The logical choice for a relation is the binary relation, G, on the set of
workload units such that aGb if any device meets the requirements of b, it will meet

11

the requirements of a. But, in reality, this is only a partial order. Does there exist
another relation which is total order and has the avor of the above relation?

� Would de�ning a grouping of \similar workload units" be useful? Currently, we
have a workload unit class which groups together workload units that have the same
speci�cation. Can we group together workload units that have similar speci�cations?
If so, how do we de�ne similar? What would this be used for?

� What should the system administrator be specifying? Garth Gibson has expressed
some concern that the attributes that we have speci�ed are not values that a system
administrator can specify.

� How do streams and objects di�er? How can they be used to model an application?
The di�erent needs of streams and objects might be able to be captured by reser-
vations and pre-reservations (or reservations in advance [Wolf95]). [Degermark95,
Plagemann96, Sreenan96] might be useful to read.

4 Device speci�cation

4.1 Our device model

Initially, our view of a device is very simple; it consists of device mechanisms that service
only one request at a time. A request is speci�ed in terms of an amount of data (i.e., the
request size) and the location of the data. There is no caching, queues with interesting
scheduling algorithms, groups of devices working as one, etc. (These will be addressed by
the modeling of complex devices.) The time to service a request is the time to position the
head (Position Time) plus the time to transfer the data. Multiple \transfer regions" can be
modeled with zones.

Devices are speci�ed in terms of capabilities, behaviors, and cost (Cost). The capabilities
of a device describe the device attributes that are not workload dependent and the device
behaviors describe the device attributes that are workload dependent. The capacity is an
example capability and last-byte latency is an example behavior.

The device capabilities are shown in Table 5. The device behaviors are shown in Table 6.
A number of these attributes are derived from attributes that are speci�ed; the derived
capabilities of a device are shown in Table 7. In particular, we have [Gibson93]

Availability =
MTTF

MTTF+MTTR

MTTF =
Z 1

0
Reliabilityt dt:

If we assume that the reliability function is a exponential we have [Siewiorek92]

Reliabilityt = e�
t

MTTF :

12

Table 5: The capabilities for devices.
attribute symbol description unit

transfer rate Transfer Rate the nominal rate that the device
can transfer data (i.e., the maximum
transfer rate)

B/s

data capacity Capacity the amount of data storage the de-
vice can store

B

mean-time-
to-failure

MTTF the mean amount of time to failure
of the device

hours

mean-time-
to-repair

MTTR the mean amount of time to repair
of the device

hours

correctness
violation

Correct Viol the fraction of data that the device
may drop or incorrectly transfer

availability Availability the fraction of time that the device
is servicing requests

probability

reliability Reliability the probability that the device will
be servicing requests continuously
from time 0 to time t

probability
(as a function
of t)

cost Cost the dollar cost of the device $

Availability has also been de�ned in terms of mean-time-between-failures and mean-time-
to-failure [Gray86].

In addition to the attributes being divided into capabilities and behaviors, the device
attributes have three avors: consumable, generatable, and non-a�ected. If an attribute is
consumable, there will be less of that attribute available once a workload unit is assigned
to a device. Transfer rate and capacity are examples of consumable attributes. If there will
be more of an attribute once another workload unit is assigned, we say that the attribute
is generatable; an example is last-byte latency. If the value of the device attribute is not
a�ected when a workload unit is assigned, the attribute is non-a�ected.5 See Table 8 for
the classi�cations of the device capabilities.

Zones

The transfer rate of a device depends on whether the device has zones. If the device has
zones, the transfer rate depends on the zone, since the zone determines the amount of data
stored in the track. Let

Bytes per Track[i; zone] = the number of bytes on a track in the zoneth

zone on device i; can be computed by

5Simpli�cation: In our �rst approximation of availability, we assume that it is a non-a�ected attribute.

13

Table 6: The behaviors for devices.
attribute symbol description unit

long-term
transfer rate

Long Term Transfer Rate the long-term rate that the
workload is receiving transfered
data; this takes into account the
positioning time; is a function
of the workload assigned to the
device

B/s

last-byte
latency

Last Byte Latency the per-request latency for the
last byte of the requested data
to be received; is a function
of the workload assigned to the
device

s

positioning
time

Position Time the amount of time that the de-
vice takes to position the head
(based on the seek time and the
rotational latency)

s

Table 7: Derived capability attributes for devices.
attribute symbol derived from

transfer rate Transfer Rate rotation speed, number of platters, number of sectors
per track in the zone, number of bytes per sector, zone
layout

availability Availability mean-time-to-failure, mean-time-to-repair
reliability Reliability mean-time-to-failure

Table 8: The avors of each capability attribute.
consumable generatable non-a�ected

transfer rate X
last-byte latency X
data capacity X
availability X
reliability X
correctness violations X

14

Sectors per Track[i; zone] � Bytes per Sector[i]

Rotation Time[i; zone; B] = the amount of time that it takes to rotate

device i to pass B bytes when the head on

a cylinder in the zoneth zone. This is based on the

revolution speed.

We also can compute average values for a zoned device:

Ave Bytes per Track[i] = Bytes per Track[i; zone] averaged over all zones

Ave Rot Time[i; B] = Rotation Time[i; zone; B] averaged over all zones.

This allows us to also de�ne the following which we will use as shorthand notation:

Bytes per Cylinder[i; zone] = the number of bytes on a cylinder in the

zoneth zone on device i

Ave Bytes per Cylinder[i] = Bytes per Cylinder[i; zone] averaged over all zones

If the transfer rate of the device is not given by the device vendor or if the device has
zones, we can compute the transfer rate of data as follows:

Transfer Rate[i; zone] =

Bytes per Track[i; zone]

Rotation Time[i; zone;Bytes per Track[i; zone]]
:

We can approximate the transfer rate a number of di�erent ways:

Average Transfer Rate[i] =

PNum of Zones[i]
zone=1 Transfer Rate[i; zone]

Num of Zones[i]

Min Transfer Rate[i] = min
1�zone�Num of Zones[i]

Transfer Rate[i; zone]

Max Transfer Rate[i] = max
1�zone�Num of Zones[i]

Transfer Rate[i; zone]:

If an equation does not specify which approximation should be used, assume
Average Transfer Rate[i].

4.2 Open issues for the device model

There are a number of open issues in de�ning the device model:

� John thinks that correctness violations are not needed for devices, but are needed for
network delay. Can the Correct Viol[i] be used to model the network delay or data
loss due to the network?

15

seconds-behind0

tim
e

F
ig
u
r
e
5
:
A
grap

h
w
h
ich

sh
ow

s
h
ow

m
an
y
secon

d
s
a
w
ork

load
u
n
it
can

get
b
eh
in
d
for

a
p
articu

lar
d
ev
ice.

E
ach

step
coin

cid
es

w
ith

an
even

t.
T
h
e
lin

e
is
an

ap
p
rox

im
ation

of
th
e
grap

h
.

�
If
an

ap
p
lication

is
gen

eratin
g
req

u
ests

24
h
ou
rs/d

ay,
it
is
n
ot

clear
w
h
en

to
b
ack

u
p
th
e
d
ata

on
th
e
d
ev
ices.

A
lso,

d
i�
eren

t
ap
p
lication

s
(i.e.,

w
ork

load
u
n
its)

h
ave

d
i�
eren

t
d
ata

b
ack

u
p
req

u
irem

en
ts.

In
th
is
case,

on
e
of
th
e
reason

ab
le
w
ay
s
to

b
ack

u
p
th
e
d
ata

is,
every

X
req

u
ests,

a
b
ack

u
p
read

is
sen

t
ou
t
of
th
e
d
ev
ice

to
th
e
b
ack

u
p

d
ev
ice.

T
h
is
a�
ects

th
e
p
erform

an
ce

of
th
e
d
ev
ice

an
d
sh
ou
ld

b
e
taken

in
to

accou
n
t

w
h
en

com
p
u
tin

g
th
e
tran

sfer
rate

an
d
th
e
last-b

y
te

laten
cy.

�
T
h
ere

are
glitch

es
in

th
e
tran

sfer
rate

an
d
last-b

y
te

laten
cy

from
even

ts
su
ch

as
th
erm

alrecalib
ration

s,
slip

sector
sp
arin

g,
seek

m
isses,

an
d
read

errors.
T
h
is
m
igh

t
b
e

ab
le
to

b
e
m
o
d
eled

b
y
slip

rate,
th
e
fraction

of
tim

e
lost

d
u
e
to

th
e
d
ev
ice

p
ro
cessin

g
th
ese

ty
p
es

of
even

ts.
A
s
an

ex
am

p
le,

th
e
valu

e
of

slip
rate

can
b
e
com

p
u
ted

b
y

su
m
m
in
g
all

of
th
e
valu

es
for

th
e
variou

s
even

ts
th
at

cau
se

p
erform

an
ce

variation
s

su
ch

as
th
erm

al
recalib

ration
s. 6

T
o
com

p
u
te

an
ap
p
rox

im
ation

of
th
e
slip

rate
of

a
d
ev
ice,

w
e
n
eed

to
su
m

th
e
d
u
ra-

tion
s
d
u
e
to

variou
s
even

ts
over

th
e
lon

gest
even

t
in
terval.

T
h
e
cu
m
u
lative

e�
ect

of
even

ts
can

b
e
seen

clearly
in

a
grap

h
th
at

p
lots

th
e
am

ou
n
t
of

tim
e
a
w
ork

load
u
n
it

req
u
est

cou
ld

get
b
eh
in
d
as

a
fu
n
ction

of
tim

e;
a
sam

p
le
grap

h
is
sh
ow

n
in

F
igu

re
5.

T
h
e
valu

e
of

slip
rate

lin
e
th
at

b
est

�
ts
th
e
grap

h
:

S
lip

R
a
te[i]

�
slop

e:
(1)

�
H
ow

d
o
w
e
m
o
d
el
com

p
lex

d
ev
ices?

6In
th
e
ca
se

o
f
ev
en
t
E
V
,
w
e
g
et

th
e
fo
llow

in
g
if
w
e
w
ere

to
d
eterm

in
e
th
e
ex
p
ected

va
lu
es

to
su
m
:

E
(d
elay

fro
m

E
V

in
in
terva

l
o
f
len

g
th

t)
�

tfreq
E
V
d
u
ra
tio

n
E
V

w
h
en

d
u
ra
tio

n
E
V
�

t.

16

{ There exist devices that are a slow tape or optical jukebox fronted by a cache
disk. Can these be modeled as complex devices? (The access rate depends
strongly on the working set: if it �ts/hits on disk, looks like a disk. Otherwise
somewhere between disk and tape jukebox.)

{ [Louis95] has purge and migration policies as attributes where purge policies
determine when and what data is purged and migration policies determine how
and when the data is moved. Should we have these as part of complex devices?

5 The mapping problem

Now that we have a model for the workload and devices, we need an assignment from a
set of workloads to a set of devices. The purpose of the assignment is to associate a group
of workload units to a device, where the device will be able to service the I/O requests
coming from the workload units. An assignment is the list of the devices that should be
able to meet the needs of the workload. It also includes the mapping of workload units to
devices, along with the amount of each device attribute assigned to each workload unit. We
sometimes refer to just the assignment of one workload unit as workload unit assignment.7

5.1 Input/output into the mapping problem

The mapping problem, as stated, is not well-de�ned. Do all of the workload units have to
be supported? Do all of the devices have to be used? These questions can be asked best by
determining what the groups of workload units and devices identify. Think of a workload
unit class having one of the following \tags":

� \Support all of the workload units in me."

� \Support as many as x of the workload units in me."

� \Support some of the workload units in me (with no upper bound)."

Similarly, a device can be tagged with one of the following:

� \Use me; I'm already bought."

� \You can use me; I'm easy to get."

� \You can use me, but I might have to be ordered."

7Simpli�cation: One or more workload units can be assigned to one device. That is, there are no
partial workload units assignments and workload units cannot span devices.

17

To support these di�erent ideas, we have de�ned the following terms. A set is a �xed
number of items where all are meant to be used or supported. A pool is a �xed number of
items where some are meant to be used or supported. A sea is a variable number of items.
It can be thought of conveniently for devices as a pool plus a manufacturing plant that
can deliver devices on request. (We have dynamic versions of each of the above terms that
allow us to de�ne a changing group of workload units or devices. For example, a dynamic
workload unit set represents an evolving set of workload units.)

With the groupings of sets, pools, and seas, we can ask a number of di�erent questions:

� set of workload units/set of devices: Can the workload units' needs be met by this
set of devices? The answer is yes/no.

� set of workload units/pool of devices: What subset of devices from the devices that
I own do I need to use to meet the workload units' needs?

� set of workload units/sea of devices: What devices do I need to buy to meet the needs
of these workload units?

� pool of workload units/set of devices: How can I use my spare device capacity that
is currently on my machine, i.e., what extra workload units can I run? Help|I just
lost half of my machine|what set of workload units can I run?

� pool of workload units/pool of devices: How can I use my spare capacity? (This
question makes the most sense if being asked for a number of di�erent workload
units/device con�gurations so that the best choice can be picked.)

� sea of workload units/set (pool) of devices: How much of my workload can I do with
these devices that I own?

� sea of workload units/sea of devices: What is the best cost performance I can get
from these devices with these types of workload units?

These questions can be seen in Figure 6.
An assignment is determined by a solver, which takes as input: the workload speci�-

cation, device speci�cations, and goals which identify the intent of the solver. A sample
goal is \cost is more important than performance." The output will be the assignment
of workload units to devices, and the amount of resources assigned to each workload unit
from the device that it is assigned to.

6 Formalized mapping problem

We formalize our mapping problem by specifying constraint equations/expressions that
need to be meet and objective functions that need to be maximized. We use constraint

18

Number of …
Devices

set pool sea

Work-load
units

set
Can the
needs be
met?

How many
of these
devices do I
need?

What do I
need to buy to
meet these
needs?

pool

Help! I just
lost half of
my
machine--
what set of
streams can
I run?

How can I
use my
spare
capacity?

sea

How much
work can I
do with
these
devices?

How much
work can I
do with
what I own?

What is the
best cost
performance I
can get?

Figure 6: Sample questions that can be asked with di�erent types of input.

equations/expressions and objective functions since that is how the multi-constraint knap-
sack problem is presented and we feel that approximation algorithms developed for the
multi-constraint knapsack problem can be used as the base algorithm for our solver. The
following sections present the constraint equations/expressions and objective functions for
each attribute. The discussion refers to workload units; the expressions should apply to
both objects and streams.

6.1 Basic de�nitions

We have the following de�nitions:

S = number of workload unit classes

size[j] = number of workload units in the jth unit class

D = number of devices

The output of the mapping problem will be the values x[i; j], d[i],8 and quantityat[i; j]
where

x[i; j] = number of workload units from the jth workload unit class

assigned to ith device

8If the input for the workload and devices is set/set, then d[i] = 1 for all i.

19

d[i] = 1 if ith device is used by some workload unit

0 otherwise

quantityat[i; j] = the amount of attribute at that a workload unit

in workload unit class j is assigned on device i

The value of quantityat[i; j] is discussed in Section 6.2.3.
We use the convention of workload unit attributes beginning with lower case and device

attributes beginning with upper case.
We de�ne x[I; J] as a shorthand for the set of x[i; j] for all i such that 1 � i � D and

for all j such that 1 � j � S. Similarly, x[i; J] is de�ned as the set of x[i; j] such that
1 � j � S.

The de�nition of x[i; j] implies that the number of workload units from a given workload
unit class assigned to all of the devices is equal to the number of workload units needed to
be assigned from that class. This can be expressed in the following constraint equation:

DX
i=1

x[i; j] = size[j] (2)

for 1 � j � S.
The value of d[i] identi�es whether device i is used in x[I; J]. This can be formalized

as either one of the following constraint expressions:

d[i] = 1 () 9 j such that 1 � j � S and x[i; j] > 0 (3)

d[i] = 1 ()
SX
j=1

x[i; j] > 0: (4)

6.2 Objective functions

The following 3 sections present varying levels of complex objective functions.
In these sections, the value z is an approximation of the value of the assignment x[I; J]

(with respect to an objective function), which is the expected value of the objective function
across the domain of workloads it will be faced with in real life.

6.2.1 Basic objective function

Let

importance[j] = importance of a workload unit in the jth workload unit class

Cost[i] = cost of the ith device

Formally, our mapping problem can be de�ned as determining the set of values of x[i; j]
where the value of \bene�t" of the workload unit set is maximized, which is expressed as

20

follows

z =
DX
i=1

SX
j=1

importance[j]x[i; j] (5)

and the cost of the devices is minimized, which is expressed as follows

z =
DX
i=1

Cost[i]d[i]: (6)

(5) and (6) can be written as one objective function where w represents the weight
between the cost of the devices and the bene�t of the workload units:

z =
DX
i=1

SX
j=1

importance[j]x[i; j]� w
DX
i=1

Cost[i]d[i]: (7)

6.2.2 Support cost of devices

The physical cost of a storage system is not just limited to the cost of the devices. There
are also costs associated with the power, space, cabinet, etc. These costs do not have to
grow linearly with the number of devices supported. Let9

Support Cost[n] = support cost for the use of n devices

De�ne Number Devices as
PD

i=1 d[i]. The objective function (7) can be replaced with
the following equation to take into account the cost of supporting the devices:

z =
DX
i=1

SX
j=1

importance[j]x[i; j]� w

DX
i=1

Cost[i]d[i] + Support Cost[Number Devices]

!
: (8)

6.2.3 Utility

We use the ideas presented in Section 3.1.2 to determine how the values speci�ed for the
workload unit attributes have to be meet. As discussed in Section 3.1.2, each workload
unit attribute has a corresponding utility function, which gives the utility of the various
possible values of the attribute. (See Figures 2, 3, and 4 for sample utility graphs.) Let

wat[j] = the weight of attribute at for a workload unit in

workload unit class j

quantityat[i; j] = the amount of attribute at that a workload unit

in workload unit class j is assigned on device i

utilityat[j;AT] = the utility of attribute at for a workload unit in

workload unit class j with the value of the

device attribute being AT

9Simpli�cation: We assume that all devices have the same cost to support.

21

All of the attributes for a workload unit must have a non-zero value for an assignment to
be made. This is formalized in the following constraint expression:

utilityat[j; quantityat[i; j]] < 0 (9)

for all workload requirement attributes at, 1 � j � S such that x[i; j] > 0 where 1 � i � D.
(This constraint could be implemented by making the zero utility values have the value
negative in�nity.)

The utility of a given workload unit assignment is part of the \bene�t" of the assignment.
Therefore, the sum over all of the requirement attributes is multiplied into the bene�t
summand of objective function (8), giving us:

z =
DX
i=1

SX
j=1

0
@importance[j]x[i; j] X

all attributes at
wat[j]utilityat[j; quantityat[i; j]]

1
A

� w

DX
i=1

Cost[i]d[i] + Support Cost [Number Devices]

!
: (10)

This function replaces (8).
It is not intuitive how to use the above objective function without having to explore

all possible values of quantityat; we suggest that the following idea be implemented. The
system should determine what reasonable values are for each attribute for each workload
unit class, set the values and run the solver. The result of the objective function (i.e.,
the value of z) should be compared with the previous best value of the objective function
and the best should be saved. Then, the values of the workload unit attributes should be
adjusted, and the procedure iterated.

The attributes are set (and adjusted) so that the only range tested is where the value
of the utility is non-zero. The adjustment mirrors the type of function that the utility
function is, e.g., if the utility function is linear for a speci�c attribute, then the value set
will be increased at a linear rate. The value set also should depend on the importance of
the workload unit and the weight of the attribute.10

6.3 Transfer rate

A method is needed to verify that a device has adequate bandwidth to support the workload
units assigned to it. Let

Transfer Rate[i] = the nominal transfer rate of ith device

Position Time[i; j] = the time to position the head of device i

10Simpli�cation: This maps, for every set of workload units that are part of a workload unit class, the
same amount of resources, i.e., quantityat[i; j] is the same for all i. But, di�erent devices should be able
to support di�erent amounts of resources for the same workload unit class. Therefore, more work on the
algorithm is needed.

22

when it is servicing request from a workload

in workload unit class j

Position Time[i; j] is de�ned in (22).
The amount of time that it takes to service a request from the current workload unit is

the time to position the head and to transfer the data:

Service Time[i; j] = Position Time[i; j] +
request size[j]

Transfer Rate[i]
: (11)

The Long Term Transfer Rate[i; j] is the rate at which device i services requests from work-
load unit class j:

Long Term Transfer Rate[i; j] =
request size[j]

Service Time[i; j]
: (12)

The workload unit long-term transfer rate equation. The long-term transfer rate
that the workload unit gets must be greater than or equal to what it needs. This gives us
the following constraint equation:

long term transfer rate[j] � Long Term Transfer Rate[i; j] (13)

for 1 � i � D and for 1 � j � S such that x[i; j] > 0. We call this constraint equation the
workload unit long-term transfer rate equation.

The service time utilization equation. The number of bytes needed by all of the
workload units in a time interval must not exceed what the device can process in that time
interval; this constraint is just the simple utilization equation:

SX
j=1

x[i; j]request rate[j]Service Time[i; j] < 1 (14)

for 1 � i � D. We call this constraint equation the service time utilization equation. This
equation replaces (13) since long term transfer rate[j] = request size[j] � request rate[j].

The device long-term transfer rate equation. We also must verify that the device's
bandwidth is not over-exceeded. That is, in any one second, the amount of data that all of
the workload units assigned to the device need can be produced by the device. To do this,
we calculate the fraction of time that will be spent positioning the head for the current
assignments made to the device. This is

SX
j=1

x[i; j]request rate[j]Position Time[i; j]:

23

If we multiply the above value by the transfer rate of the device, we compute the amount
of bandwidth that can be considered positioning time overhead for the current set of as-
signments. This is

Transfer Rate[i]
SX
j=1

x[i; j]request rate[j]Position Time[i; j]:

The amount of data that all of the workload units need (in one time interval) is

SX
j=1

x[i; j]request rate[j]long term transfer rate[j]
request size[j]

Long Term Transfer Rate[i; j]
:

Therefore, to verify that the devices can service the requests without exceeding their
bandwidth, we have the following constraint equation:

SX
j=1

x[i; j]request rate[j]long term transfer rate[j]
request size[j]

Long Term Transfer Rate[i; j]

� Transfer Rate[i]�

Transfer Rate[i]
SX
j=1

x[i; j]request rate[j]Position Time[i; j] (15)

for 1 � i � D. We call this constraint equation the device long-term transfer rate equation.
This constraint equation does not need to be supported; it is implied by (13) and (14).

6.4 Last-byte latency

We de�ne the last-byte latency to be the amount of time that it takes from request time to
the time that the last byte is received.

Let

last byte latency[j] = last-byte latency that can be tolerated by

a workload unit in the jth workload unit class

Last Byte Latency[i; j; x[i; J]] = the last-byte latency that is seen from a workload unit

from the jth workload unit class assigned to device i

when the assignments x[i; J] are made

request size[j] = the request size of a workload unit in the

jth workload unit class

Transfer Rate[i; j] = transfer rate of the ith device given a

request from a workload unit in

workload unit class j

24

Position Time[i; j] = the time to position the head of

device i so that a request from

workload unit class j can begin

Position Time[i; j] is de�ned in (22). (The term x[i; J] had been de�ned in Section 6.1.)
When a new workload unit is assigned to a device, the last-byte latency of the device

changes for the workload units already assigned to the device. (This is because the last-
byte latency depends on the positioning time of the disk head and the positioning time
is workload-dependent.) So, the requirements for an assigned workload unit might not be
able to be met anymore. Therefore, the constraint expression must verify the requirements
for all workload unit classes, not just the one currently being considered. This is reected
in our constraint expression by \1 � j 0 � S." (We call this a feedback loop.)

A workload unit can only be assigned to a device if the current last-byte latency for the
device is less than or equal to the workload unit's needs and if adding the workload unit
does not violate the latency-requirements for the workload units currently assigned to the
device (as discussed above). Thus we get the following constraint expression

last byte latency[j 0] � Last Byte Latency[i; j 0; x[i; J]] (16)

for 1 � j 0 � S such that x[A; j 0] > 0, 1 � j � S such that x[A; j] > 0, and 1 � i � D.
The device last-byte latency is easy to model when just considering a simple device

since the last-byte latency is just the time needed to service the request (Service Time[i; j]
as de�ned in (11)):

Last Byte Latency[i; j; x[i; J]] = Service Time[i; j]: (17)

If, for example, the device has a queue, the last-byte latency would include the queue delay,
the time the request is on the queue.

6.5 Capacity

Devices have limited capacity to store data. Some workload units have well-de�ned re-
quirements for the amount of data that needs to be stored. Let

capacity[j] = the capacity needed by a workload unit in the jth workload unit class

Capacity[i] = the capacity of the ith device

A device should have enough capacity to service all of the workload units' data assigned
to it. This can be expressed as the following constraint expression

SX
j=1

capacity[j]x[i; j] � Capacity[i] (18)

for 1 � i � D.

25

6.6 Availability and reliability

Let

availability[j] = availability needed by a workload unit in the jth workload unit class

reliability[j] = reliability needed by a workload unit in the jth workload unit class

Availability[i] = availability of the ith device

Reliability[i] = reliability of the ith device

We treat availability and reliability as values that do not change based on the load
on the device. Therefore, the necessary constraint expressions do not depend on what
workload units are assigned to the device, but just on the absolute values for the device.
We see this as follows:

availability[j] � Availability[i] (19)

reliability[j] � Reliability[i] (20)

for x[i; j] > 0, 1 � j � S, and 1 � i � D.11

6.7 Correctness violations

Let

correct viol[j] = the fraction of data that a workload unit from the

jth workload unit class can tolerate incorrectly transfered

Correct Viol[j] = the fraction of data that device i incorrectly transfers

The correctness violations do not change based on the load on the device. Therefore, the
necessary constraint expressions do not depend on what workload units are assigned to the
device, but just on the absolute values for the device. We see this as follows:

correct viol[j] � Correct Viol[i] (21)

for x[i; j] > 0, 1 � i � D, and 1 � j � S.

6.8 Position time

The time to position the head on the desired block is the seek time plus the rotational
latency delay:

Position Time[i; j] = Seek Time[i; j] + Rot Lat[i; j] (22)

11Simpli�cation: We do not discuss independent failure modes.

26

where Seek Time[i; j] is the time to move the device head into place and Rot Lat[i; j] is
the time to rotate the device so that the desired block is under the head. Position time
also includes the protocol overhead and the time to perform a head switch if needed. The
protocol overhead is the time needed to decode the command and to check the ECC. We
are not modeling either one of these at this time; they are insigni�cant when compared to
the seek time and the rotational latency. For example, [Hospodor95] states that the time
to perform a head switch is les than 1 ms and the seek time was 3{25 ms.

The seek time and rotational latency are workload dependent. This can be seen by
considering two workloads|one where the requests are consecutive and the other where
the requests are random. The mean seek time for the consecutive workload will be very
small since the device head will not have to move very frequently; the mean seek time for
the random workload is much higher. The mean rotational latency for the both workloads
depends on the request rate.

We analyze the values of Seek Time[i; j] and Rot Lat[i; j]12 based on the assigned work-
load units' access pattern attributes. We are limited by our lack of knowledge of which
cylinders the workload unit's data will be located on. (We also do not know what zones
the data are on.) We assume the blocks of the �le being accessed by a workload unit are
stored consecutively on a cylinder and then on neighboring cylinders.

In the following sections, we analyze the seek distance, seek time, and rotational latency
based on the access patterns of the workload units assigned to the devices. The access
patterns that we consider are: uniform random access, consecutive access, sequential access,
and single hot spots.

6.8.1 Seek distance

The seek distance represent the integer number of cylinders traversed between the current
cylinder and the requested cylinder. We represent it as a discrete random variable. In this
section, we formalize the expression of expected seek distance when servicing a request.
(The following analysis is similar to what is presented in [Chen92].)

Let Pr(dis = k) be the probability that the distance that needs to be seeked on device
i to service a request from the jth workload unit class is equal to k tracks. We have the
following three cases:

� If the workload unit assigned to device i has a uniform random access pattern, we
have

Pr(dis = k) =

(
0 k = 0

2(Num of Cylinders[i]�k)
Num of Cylinders[i](Num of Cylinders[i]�1)

otherwise

(23)

12It would be more correct to represent the parameters of Seek Time and Rot Lat as [i; x[i; J]] since we
do not think it is worth it to model seek time and rotational latency to the point that we could determine
di�erent values for di�erent workload units assigned to the same device.

27

The 2(Num of Cylinders[i]�k)
Num of Cylinders[i](Num of Cylinders[i]�1)

quantity comes from the fact that the location
of the �rst request and the location of the next request are randomly located on disk.

Note that the above discussion assumes that the data accessed is randomly distributed
across the device. This would only be true if the device has one zone. Since the zones
have varying amounts of data stored on them, a multiple zoned disk does not have
the data randomly distributed across the cylinders.

� If the workload unit assigned to device i has a consecutive access pattern, we have

Pr(dis = k) =

8>><
>>:

1� request size[j]
Ave Bytes per Cylinder[i]

k = 0
request size[j]

Ave Bytes per Cylinder[i]
k = 1

0 otherwise

The above approximation does not take into account the time needed to settle the
head when moving between platters.

� If the workload unit assigned to device i has a sequential access pattern, we have

Pr(dis = k) =

8>><
>>:

num left
Ave Bytes per Cylinder[i]

k = bnum skippedc

1� num left
Ave Bytes per Cylinder[i]

k = dnum skippede

0 otherwise

where

num skipped =
run stride[j]� run length[j]

Ave Bytes per Cylinder[i]

num left = run stride[j]� run length[j] mod Ave Bytes per Cylinder[i]:

The above values for Pr(dis = k) are based on one workload unit being assigned to
a device. In reality, a device supports many workload units. We, therefore, need to ap-
proximate the seek distance in such instances. Studies on interactive timesharing, o�ce
automation, transaction processing and �nancial batch systems [Bates91] have shown that

the average seek distance is Num of Cylinders[i]
10

and about half of the requests result in seeks of
less than one cylinder. [Hospodor95] states that the average seek distances for a multi-user
Unix system is .155 of a stroke. Thus, we suggest that instead of using the analytic method
of determining the seek distance, the empirical distance of Num of Cylinders[i]

10
be used.

6.8.2 Seek time

There are two predominant methods used to specify device seek time: a single average
seek time (i.e., Ave Seek Time[i]) or the seek time needed as a function of the number of
cylinders being seeked (i.e., Seek Time[i; dis] where dis is the number of cylinders being
seeked).

28

We discuss the seek time needed for one workload unit assigned to a device for uniform
random access, consecutive access, sequential access, and single hot spots. We then discuss
the seek time needed for the empirical method of approximating the seek distance when
multiple workload units are assigned to a device.

Uniform random access

We use standard approximation for Seek Time[i; j] when the values of run length[j],
run stride[j], and data skew[j] of the assigned workload units identify the workload units
as having uniform random access.

If the average seek time is speci�ed for the device (Ave Seek Time), we can use that
value to approximate our seek time:

Seek Timeran[i; j] = Ave Seek Time[i]: (24)

If the average seek time for the device is not speci�ed, but the seek curve is, we can
calculate the average seek time. The average seek time is the weighted average of the seek
time for each possible seek distance:

Ave Seek Time[i; j] =
Num of Cylinders[i]X

k=1

Pr(dis = k) � Seek Time[i; k]:

Using the value of Pr(dis = k) from (23), we get

Ave Seek Time[i] =

2
PNum of Cylinders[i]

dis=1 (Num of Cylinders[i]� dis)Seek Time[i; dis]

Num of Cylinders[i](Num of Cylinders[i]� 1)
:

Consecutive access

If there is only one workload unit assigned to the device, and the values of run length[j],
run stride[j], and data skew[j] identify the workload unit as having a uniform consecutive
access pattern, we can get tighter approximations to the seek time than for the case of
uniform random access.

Assuming that the disk must access all of the sectors on one track, and then access the
sectors on the next platter (same track), etc., the average seek time for all of the accesses
to read the data on one cylinder is

Seek Timecons1[i; j]

=
amount of time spent performing seeks

number of requests

=
Seek Timeran[i; j] + Num of Platters[i] � Head Switch Time[i]j

Ave Bytes per Cylinder[i]
request size[j]

k :

29

If the amount of data accessed is larger than a cylinder (i.e.,
run length[j] � Ave Bytes per Cylinder[i]), then there is a seek that occurs
when the head moves to the next cylinder. The amount of time spent performing seeks to
read the data that is stored on n cylinders is contributed by the seek to the �rst cylinder,
n � 1 seeks to the next cylinder, and the seeks within one cylinder for each of the n
cylinders. This is

Seek Timeran[i; j] + (n� 1)Seek Time[i; 1]

+ n � Num of Platters[i] � Head Switch Time[i]: (25)

The total number of requests that can be serviced by the data stored on the n cylinders is

n
�
Ave Bytes per Cylinder[i]

request size[j]

�
: (26)

We can put these together to get

Seek Timecons[i; j] =
formula (25)

formula (26)
(27)

where n = run length[j]
Ave Bytes per Cylinder[i]

.

Sequential access

If we have one workload unit assigned to the device and it has uniform sequential access
(de�ned by the values of run length[j], run stride[j], and data skew[j]), our Seek Time[i; j]
derivation becomes more complex.

When analyzing Seek Time[i; j], we perform case analysis on the di�erent possible sizes
of the runs.

� run length[j] � Ave Bytes per Cylinder[i] (i.e., the runs are contained on one or more
cylinders)

If the runs are contained on one or more cylinders, the amount of time spent per-
forming seeks to read one run that is stored on n cylinders is contributed by the seek
to the �rst cylinder, the n � 1 seeks to the next cylinder, and the seeks within one
cylinder for each of the n cylinders. Formally, we have

Seek Timeran[i; j] + (n� 1)Seek Time[i; 1]

+ n � Num of Platters[i] � Head Switch Time[i] (28)

where n = run length[j]
Ave Bytes per Cylinder[i]

.

The calculation of the number of requests that can be serviced from n cylinders
must take into account that some of the bytes are skipped. Approximately,
run length[j]=run stride[j] of the bytes are desired, so the number of requests is6664

j
n�Ave Bytes per Cylinder[i]

run stride[j]

k
run length[j]

request size[j]

7775 : (29)

30

� Ave Bytes per Track[i] � run length[j] � Ave Bytes per Cylinder[i] (i.e., multiple runs
�t on a cylinder, but not on one track)

The amount of time spent performing seeks to read the data stored on one cylinder
is

Seek Timeran[i; j] + Num of Platters Accessed[i; j] � Head Switch Time[i] (30)

where Num of Platters Accessed[i; j] depends on whether the run stride is greater than
the number of bytes on a track or not. If run stride[j] � Ave Bytes per Track[i], the
number of platters that are accessed is the product of the number of platters that a
run is across and the number of runs there are on the cylinder:

Num of Platters Accessed[i; j]

= run length[j]=Ave Bytes per Track[i]

� Ave Bytes per Cylinder[i]=run stride[j]:

If run stride[j] � Ave Bytes per Track[i], every platter is accessed:

Num of Platters Accessed[i; j] = Num of Platters[i]:

The calculation of the number of requests that can be serviced from one cylin-
der must take into account that some of the bytes are skipped. Approximately,
run length[j]=run stride[j] of the bytes are desired, so the number of requests is

j
Ave Bytes per Cylinder[i]

run stride[j]

k
run length[j]

request size[j]
: (31)

� run length[j] � Ave Bytes per Track[i] (i.e., multiple runs �t on a track)

The amount of time spent performing seeks to read the data requested from one
cylinder is

Seek Timeran[i; j] + Num of Platters[i] � Head Switch Time[i]: (32)

The number of requests that can be serviced by the data stored on one cylinder is

6664
j
Ave Bytes per Track[i]

run stride[j]

k
run length[j]

request size[j]

7775Num of Platters[i]: (33)

31

0 | |
x x+h

b

Cylinder number

pr
ob

ab
ili

ty

-a

1 -

-

Figure 7: A sample distribution of uniform accesses with a hot spot of size h.

Hot spots/highly skewed random access

If one workload unit is assigned to device i and the spatial access patterns de�ne the
workload unit as having a hot spot of size h = dhot spot size[j]=Ave Bytes per Cylinder[i]e
cylinders, then the amount of time spent doing seeks is the weighted sum of the time doing
seeks when a request and the following request are both in the hot spot and when the
requests are not both in the hot spot:

Seek Timehs-ran[i; j] = p � Seek Time[i; h] + (1� p) � Seek Timeran[i; j]

where p is the probability that both a request and the following are in the hot spot. If the
probability density curve is as shown in Figure 7, the value of p is ((b� a)h)2.

Empirical seek time

If the average seek distance is Num of Cylinders[i]
10

as speci�ed above, the seek time is:

Seek Time[i; j] = Seek Time[i;Num of Cylinders[i]=10]: (34)

6.8.3 Rotational latency

The standard approximation for rotational latency is 1/2 the time to rotate the disk a full
revolution:

Rot Lat[i; j] = Ave Rot Time[i;Ave Bytes per Track[i]=2] (35)

where Ave Rot Time[] and Ave Bytes per Track[] are de�ned in Section 4.1.
If the access patters are consecutive or sequential, we can develop a closer approxima-

tion.

32

Consecutive access

If the workload unit has a consecutive access pattern, we must calculate the amount of
time that it takes to rotate the disk once the next request arrives to determine the amount
of time spent for rotational latency. Since the desired data is the next data on the disk,
the disk has to at least make a complete revolution before servicing the next read. Since
the device is rotating during the think time of the workload unit, we do not count this to
the rotational latency needed to service the request. We get

Rot Latcons[i; j]

= Ave Rot Time[i;Ave Bytes per Track[i]]

� (think time[j] mod Ave Rot Time[i;Ave Bytes per Track[i]]): (36)

Sequential access

There are two di�erent cases to rotational latency: when the data is being accessed con-
secutively (since a run can last for many requests) and when data is skipped.

If the data is being accessed consecutively, the rotational latency is what (36) gives us.
The number of bytes that is skipped that a�ects the rotational latency is b = (run stride[j]�
run length[j]) mod Ave Bytes per Track[i]. Therefore, the rotational latency when data is
skipped is

Rot Latseq-sk[i; j]

= Ave Rot Time[i; b]

� (think time[j] mod Ave Rot Time[i;Ave Bytes per Track[i]]): (37)

The rotational latency is the weighted average of the two cases:

Rot Latseq[i; j] = w � Rot Latcons[i; j] + (1� w) � Rot Latseq-sk[i; j] (38)

where

w =
of requests that seem consecutive

of requests

=

j
run length[j]
request size[j]

k
Ave Bytes per Track[i]

run stride[j]

:

6.9 Open issues for the mapping problem

There are a number of open issues in the mapping problem:

� How are blank workload units and device attributes handled when the mapping is
being done?

33

� How should disk quotas and roles be modeled?

� If there are X workload units speci�ed but we know that only Y of them will be run at
once, how can the mapping be done so that percentile percentile of the combinations of
workload units will have their requirements satis�ed by the devices prob probability?

� We feel that the speci�cation of attributes for both workload units and devices should
be in the form of distributions. (Some work that has been done on distributions.)
But, how to do the mapping is still an open question.

� Garth Gibson mentioned that the jitter depends on the zone of the device that the
data is in. How should this be modeled?

7 Previous work

Our approach of specifying application attributes and mapping this to resources is similar
to [Franken95]; Franken et. al. de�ne applications and resources in terms of properties,
where a property is a characteristic of an element that can be identi�ed by examining
the element. Properties of multimedia applications and computing and communication
resources are used to determine the computing and communication resources that maximize
the probability that a failure does not occur while the resources are being utilized for the
stated applications.

7.1 Previous workload model work

Most people have developed workload models by examining workload traces and determin-
ing what low-level operations can be used to distinguish between di�erent trace results or
by some other method of determining low-level operations or commands ([Calzarossa94] is
an example of this). This type of approach is not helpful to us; we need a method that
identi�es the workload by its requirements of the storage system.

There has been recent work on characterizing the workload of scienti�c applications in
terms of �le system usage on parallel machines [Nieuwejaar95]. Unfortunately, the results
have not included a general workload model.

One model that considers the I/O is SynRGen [Ebling94] which uses parameterized
micromodels to model user actions against a �le system. Since SynRGen was developed
to stress-test a �le system, the number of �les, symbolic and hard links, and the directory
hierarchy are important; these things are not important to us.

The idea of specifying requirements of streams is not new; [Schill95] speci�es the qual-
ity of service requirements of various multimedia data streams to test high performance
transport systems.

34

7.2 Previous device model work

There has been some work in device modelling, with two major approaches: practical
and theoretical. [Ruemmler94] and [Worthington94, Worthington95] are simulator-based
methods of disk modelling. [Ruemmler94] models sector size, cylinders, tracks per cylin-
ders, data sectors per track, number of zones, track skew, cylinder skew, among others.
[Worthington95] presents a disk drive simulator which simulates such features as zoned
recording, spare regions, defect slipping and reallocation, disk bu�ers and caches, various
pre-fetch algorithms, fast writes, bus delays, control and communication overheads and
command queuing. Both of these models are too detailed for our needs.

Louis and Tea� [Louis95] presents a storage class metadata structure which contains
many device-dependent attributes which are similar to the ones in our model as seen in the
following section.

The parallel disk model [Vitter94] is an example of a theoretical device model. It states
that the data are stored on D devices in a round-robin fashion in constant-sized blocks.
Data is accessed from the storage system in terms of parallel I/Os, which reads or writes
D blocks, one per device. The model has been used to develop I/O-optimal algorithms
where the number of parallel I/Os was counted.

8 Future work

There are many areas that we have not yet had time to explore and that seem like interesting
areas for future work.

� How can the device model and mapping be enhanced so that the exibility of the
resulting system can be measured (and maximized)? The exibility of a storage
system is some measure of the amount of resources that are not assigned|the more
resources non-assigned, the greater the exibility. (It seems that the measure of
exibility should be summed over the consumable attributes with the generatable
attributes subtracted.)

� How can this method of objective functions and constraint equations/expressions be
used to solve the self-managing storage system problem, i.e., some workloads units
have been assigned and new ones are coming in; how should it be determined if the
assigned workload units should be moved around?

The ideas for dynamic data placement from [Weikum90] might be helpful. [Wolf89]
uses a variable which they call tweak limit that presents the number of �les which
can be moved from their current disks when their system is changing assignments as
a result of a changing workload; we might want to do something similar.

35

9 Conclusions

This document gives our current view on the workload and device models, and the necessary
objective functions and constraint expressions needed to formalize the mapping of workload
units to devices. An assumption made throughout is that single values are used to specify
both the workload and the devices. We state the instances where we are making simplifying
assumptions.

We learned a number of things:

� Even though many parts of the problem seem hard, there are easy parts. (We think
we solved most of these.)

� The objective function and constraint expression approach seems like a good way to
specify and model the problem.

� There are a number of di�erent questions that can be asked for attribute mapping;
we modeled these with sets, pools, and seas.

References

[Bates91] Ken Bates. VAX I/O subsystems: optimizing performance. Professional Press
Books, Horsham PA 19044, 1991.

[Calzarossa94] M. Calzarossa and G. Serazzi. Construction and use of multiclass workload
models. Perf. Evaluation, 19(4):341{52, 1994.

[Campbell96] Andrew Campbell, Cristina Aurrecoechea, and Linda Hauw. A review of
QoS architectures. Proceedings of 4th International Workshop on Quality of Service
(IWQoS96) (Paris, France), pages 173{95, Jan de Meer and Andreas Vogel, editors,
7-8 March 1996.

[Chen92] Shenze Chen. Design, modeling, and evaluation of high performance I/O sub-
systems. PhD thesis. Department of Computer Science, University of Massachusetts,
September 1992.

[Degermark95] M. Degermark, T. Kohler, S. Pink, and O. Schelen. Advance reservations
for predictive service. Proceedings of 5th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV'95) (Durham,
NH), pages 3{14, 18{21 April 1995.

[Denning80] P. J. Denning. Working sets past and present. IEEE Transactions on Software
Engineering, SE{6(1):64{84, January 1980.

36

[Ebling94] Maria R. Ebling and M. Satyanarayanan. SynRGen: an extensible �le ref-
erence generator. Proceedings of ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems 1994 (Nashville, TN). Published as Performance
Evaluation Review, 22(1):108{17, 16{20 May 1994.

[Franken95] Leonard J. N. Franken, Peter Janssen, Boudewijn R. H. M. Haverkort, and
Gidi van Liempd. Quality of service management in distributed systems using dynamic
routation. Proceedings of 3rd International IFIP TC6 Conference on Open Distributing
Processing (ICODP '95) (Brisbane, Australia), pages 367{78, Kerry Raymond and Liz
Armstrong, editors, 20{24 February 1995.

[Gibson93] Garth A. Gibson and David A. Patterson. Designing disk arrays for high data
reliability. Journal Parallel and Distributed Computing, 17(1{2):4{27. Academic Press,
Incorporated, January/February 1993.

[Golding95] Richard Golding, Elizabeth Shriver, Tim Sullivan, and JohnWilkes. Attribute-
managed storage. Workshop on Modeling and Speci�cation of I/O (San Antonio, TX),
26 October 1995. Available as Technical Report HPL{SSP{95{11, Storage Systems
Program, Hewlett-Packard Laboratories.

[Gray86] Jim Gray. Why do computers stop and what can be done about it? Proceedings
of 5th Symposium on Reliability in Distributed Software and Database Systems, pages
3{11. IEEE Computer Society Press, catalog number 86CH2260{8, 1986.

[Hospodor95] Andy Hospodor. Mechanical access time calculation. Advances in Informa-
tion Storage Systems, 6:313{36, 1995.

[Jensen91] E. Douglas Jensen. Alpha: a non-proprietary experimental operating system
for distributed mission-critical real-time applications|an overview of its objectives
and kernel abstractions. Concurrent Computer Corporation, Draft of 17 March 1991.
Provided by the author.

[Louis95] S. Louis and D. Tea�. Class of service in high performance storage system. Pro-
ceedings of 3rd International IFIP TC6 Conference on Open Distributing Processing
(ICODP '95) (Brisbane, Australia), pages 307{18, Kerry Raymond and Liz Armstrong,
editors, 20{24 February 1995.

[Low93] Steven Low and Pravin Varaiya. Burstiness bounds for some burst reducing
servers. 12th Annual Joint Conference of the IEEE Computer and Communication
Societies (INFOCOM'93). IEEE Computer Society, Cat. No.93CH3264-9, 1 April
1993.

[Majumdar84] Shikharesh Majumdar. Locality and �le referencing behaviour: principles
and applications. MSc thesis published as technical report 84{14. Department of
Computer Science, University of Saskatchewan, Saskatoon, August 1984.

37

[Nieuwejaar95] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level parallel
I/O. 3rd Annual Workshop on I/O in Parallel and Distributed Systems (IOPADS'95)
(Santa Barbara, CA), pages 47{62, 25th April 1995.

[Patterson93] R. Hugo Patterson, Garth A. Gibson, and M. Satyanarayanan. A status
report on research in transparent informed prefetching. Operating Systems Review,
27(2):21{34, April 1993.

[Plagemann96] Thomas Plagemann. Protocol con�guration|a exible and e�cient ap-
proach for QoS provision. Proceedings of 4th International Workshop on Quality of
Service (IWQoS96) (Paris, France), pages 235{7, Jan de Meer and Andreas Vogel,
editors, 7-8 March 1996.

[Ruemmler94] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
IEEE Computer, 27(3):17{28, March 1994.

[Schill95] ASchill, C. Mittasch, T. Hutschenreuther, and F. Wildenhain. A quality of ser-
vice abstraction tool for advanced distributed applications. Proceedings of 3rd Interna-
tional IFIP TC6 Conference on Open Distributing Processing (ICODP '95) (Brisbane,
Australia), pages 353{64, Kerry Raymond and Liz Armstrong, editors, 20{24 February
1995.

[Siewiorek92] Daniel P. Siewiorek and Robert S. Swarz. Reliable computer systems: design
and evaluation. Digital Press, Second edition, 1992.

[Sreenan96] Cormac J. Sreenan. QOS support in a broadband multipoint server. Proceed-
ings of 4th International Workshop on Quality of Service (IWQoS96) (Paris, France),
pages 209{17, Jan de Meer and Andreas Vogel, editors, 7-8 March 1996.

[Vitter94] Je�rey S. Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory
I: two-level memories. Algorithmica, 12(2/3):110{47, August and September 1994.

[Weikum90] Gerhard Weikum, Peter Zabback, and Peter Scheuermann. Dynamic �le al-
location in disk arrays. Technical report 147. Department of Computer Science, ETH
Zurich, CH-8092 Zurich, Switzerland, December 1990.

[Wolf89] Joel Wolf. The placement optimization program: a practical solution to the disk
�le assignment problem. 1989 ACM SIGMETRICS and Performance '89 International
Conference on Measurement and Modeling of Computer Systems (Berkeley, California,
May 1989). Published as Performance Evaluation Review, 17(1):1{10. ACM, May
1989.

[Wolf95] L. Wolf, L. Delgrossi, R. Steinmetz, S. Schaller, and H. Wittig. Issues of reserving
resources in advance. Proceedings of 5th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV'95) (Durham,
NH), pages 27{37, 18{21 April 1995.

38

[Worthington94] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling
for modern disk drives and non-random workloads. Technical report CSE{TR{194{
94. Department of Computer Science and Engineering, University of Michigan, March
1994.

[Worthington95] Bruce L. Worthington. Aggressive centralized and distributed scheduling of
disk requests. PhD thesis, published as Technical report CSE{TR{244{95. Department
of Computer Science and Engineering, University of Michigan, June 1995.

[Zipf49] George K. Zipf. Human behavior and the principle of least e�ort. Addison-Wesley,
Reading, MA, 1949.

