
 

POWER Prototype: Towards Integrated  
Policy-Based Management 
 
M. Casassa Mont, A. Baldwin, C. Goh 
Extended Enterprise Laboratory 
HP Laboratories Bristol 
HPL-1999-126 
18th October, 1999* 
 
 

policy, 
management, 
refinement, 
template, model 

A policy-based management system is only really useful if it 
allows not only high level description of abstract policy, but also 
enables such policy to be refined and eventually mapped into an 
appropriate configuration for controlling devices in the 
managed system. Such a full integration has only been 
discussed in the literature but not realised so far. Our 
approach, implemented as the POWER prototype, demonstrates 
a way towards making it a reality in practice. 

∗ Internal Accession Date Only 
 Copyright Hewlett-Packard Company 1999 



1

���������	�	
����������

��	����	��������
����������������	

M. Casassa Mont, A. Baldwin, C. Goh,
{ mcm,ajb,cng}@hpl.hp.com

Extended Enterprise Laboratory,
Hewlett Packard Laboratories Bristol,

Stoke Gifford, Bristol BS34 8QZ
United Kingdom

���	���	���������	
����������������	���������	������	���������
����������������	���������������������������������������	���������
����������������	����������������������������	���������������
���������������������������������������������������������������
	�����������������������������������	�����������������������

��������������������������������������������������������������
������������	�������������������	��������������������������	
������������

��
�����������	������������������������������������������

1. Introduction

The use of policy for the management of information network and system has be-
come very popular since the early days of the pioneers such as [Masullo93,
Moffett93, Wies95]. Nowadays, many commercial products such as Checkpoint’s
Firewall-1, Axent’s Enterprise Security Management, and Hewlett Packard’s Do-
mainGuard all use some form of policy to configure and control the way they
function. In the IETF, there is an active Policy Working Group [IETF-policy]
which aims at resolving issues related to policy-driven network QoS. All of these
show the recognition of the importance of this approach in IT management.

Practical implementations of policy-based management are, however, mainly at a
low level at present. Little has been found to bridge the gap between “business
level policy” and “device level configuration information” (paraphrased) first ex-
pounded in [Wies95, Heiler96], and subsequently re-interpreted in [Goh97], and
will be referred to as policy refinement henceforth. The POWER prototype –



2

POlicy Wizard Engine for Refinement is an integrated policy authoring environ-
ment developed as a realisation of the concepts in these previous works.

1.1 Motivation

The work presented in this paper was motivated by the desire to find a solution for
the seemingly intractable problem of transforming an abstract policy to imple-
mentable configuration. In addition, we also find that most policy description
languages are aimed at the technical operator. This does not go well with several
classes of people who interact with policies, and in particular, those who make
policies, but are not technically orientated [Goh98]. This, in itself, also spurred us
into this work.

Although we started from the perspective of security management, it rapidly be-
came obvious that the same approach is applicable in IT management in general,
including network QoS management. This paper should therefore be read with
such generality in mind.

1.2 Outline of paper

The rest of this paper is in four sections. Section 2 is an overview of the specific
problem we set out to tackle, our design objectives and the philosophy underlying
our approach. Section 3 is a detailed explanation of the design of the prototype, and
in section 4, implementation details including screen captures as illustrations. Sec-
tion 5 concludes with a summary and list of future work.

2. Overview

2.1 Issues and design objectives

The concept of policy hierarchy and transformation process presented in [Wies95],
and later in [Neumair96], were the few fruitful attempts to implement the abstract
policies referred to in [Moffet93, Masullo93]. The dichotomy of “human orien-
tated” abstract policy description and machine executable configuration is still
bridged by human intervention, transforming a policy from one description lan-
guage to another. Often, this process takes place more than once, giving rise to the
following issues:

•  the human operator must have deep understanding of both the business level
policy and domain specific knowledge such as security or network QoS;

•  it is hard to check the accuracy and consistency of transformation carried out
by the human operator;

•  a policy author can only construct a policy by using accurate syntax in addi-
tion to having precise semantics;



3

•  the human input must be compiled and interpreted to produce an output which
is domain specific;

From these issues, we have chosen a subset to work upon, and they became our
initial design objectives:

•  A system should allow most, if not all, classes of policy users as categorised in
[Goh98] to easily interact and understand the meaning of the policy.

•  The business-driven policy maker (referred to as the consultant later) should
be shielded from the need to have deep domain-specific technical knowledge
not relevant to that person’s main job.

•  Using the same system, a business level, or abstract, policy can be expressed
as easily as the device level, or configuration, policy.

•  At all level, the policy maker can concentrate on the semantics of policy with-
out being forced to be distracted by the need of syntactical precision.

•  A business level policy can be refined in such a way that the policy author can,
at some point, actually deployed it directly in devices without leaving the
authoring environment.

We will review the extent to which we come close to these design objectives at the
end.

2.2 Philosophy and approach

A policy can be most generally looked upon as “the constraints and preferences on
the state, or the state transition, of a system, and is a guide on the way to achieving
the overall objective which itself is also represented by a desirable system state”
[Goh97]. Developed from this rather abstract rendering, we began to use the con-
cept of constraint for the components in policy description: the context in which a
policy operates; the triggering event which kicks policy into consideration in the
context; and the policy statement. We will not consider events in this work, but
deal with the other two components using a constraint-based approach. The re-
finement of policy, therefore, consists of two aspects: the refinement of policy
context by making constraints more specific, and refinement (constraining) of ob-
jects used in the policy. This philosophy and approach is reflected in our prototype
and will become clearer with the example given in section 0.

3. Prototype design

In order to deal with the user-related aspect of the design objectives, we created
certain concepts missing in present literature. Based on these concepts, we are able
to design an architecture to support our goals.



4

3.1 Prerequisite concepts

3.1.1 Expert and consultant
Present literature related to policy management has a good understanding of the
concept of refinement [Wies95], even to the extent of identifying the user category
of these policies at the various stages of refinement [Goh98]. However, a vital
separation of responsibility has not been brought out explicitly: there are two types
of policy making person whom we respectively call expert and consultant. The
“expert” is the person with deep domain knowledge, such as that in the field of
security, or network QoS related mechanisms. A “consultant” is the person who
has deep knowledge of the business for which policies are to be established.

The expert deals mainly with policy function to mechanisms mapping and the con-
sultant mainly deals with business to policy function mapping. With this
separation, we can envisage the creation by the expert of policy templates, which
will be used by the consultant to create policy according to the business needs.
This process has so far been largely glossed over in template driven tools found in
existing products, because templates for policy related management have been cre-
ated for convenience rather than due to a deeper need for expert knowledge
embodiment.

3.1.2 Information and system model (ISM)

Figure 1 Example of object hierarchy and object associations.

Modelling in IT management is old hat, but hitherto this concept has not been
greatly exploited in policy refinement. We have created an information and system
model (ISM) in which all policy related information is modelled and stored. The
ISM essentially models objects and their relationships, which can be hierarchical
inheritance or associations. This is a subset of the full model of the managed sys-
tem, only sufficient for enabling policy refinement. The model covers non-system
level objects to include concepts such as roles and organisations, and indeed any-
thing else needed to describe a policy. See fig. 1 for example. The system related

Object

user Informationorganisation

employee department project file web-pageretiree

Association: “user belongs to department”

belongs to



5

part of this model links into the actual managed system, and through the interaction
with the managed objects, it would be possible for policies to be deployed.

3.1.3 Domain dynamicity
The concept of domain is very powerful in describing a given space of operation,
and is particularly useful for discussing policy [Sloman94]. However we have
found it necessary to add dynamicity to this concept, i.e., using constraint-based
description that combines with managed system model gives us a much more pow-
erful and timely determination of the applicability of policy. We call this dynamic
domain the “context” for the policy. As for dynamic sub-domains, we can find an
example in the form of context that help to determine the setting off of an event
trigger in case of an event. Clearly, a degenerate case of this concept will be the
fixed domain idea that is well understood already in this field.

3.2 Architecture

The architecture of our prototype is shown in figure.2.

Figure 2: Policy Authoring Environment Architecture

There are six key components in this architecture.

Expert Policy
Writer

Expert Policy
Writer

Information &
System
Model

Information &
System
Model

Policy
Wizard
Engine

Policy
Wizard
Engine

Graphical
User Interface

Graphical
User Interface

Policy Template
Library

Policy Template
Library

Deployable
Policy

Deployable
Policy

Policy
Deployer
Policy

Deployer
Device

Mapper
Device

Mapper

Managed System



6

3.2.1 Policy Template Library (PTL)
Use of template for policy is common [Wies95], but existing examples only fulfill
a “form-to-fill-in” function. The main goal of our policy template is to store a ge-
neric policy description that provide information about its refinement to the Policy
Wizard Engine (see section 3.2.3). For example, an abstract policy template “peo-
ple can carry out some operation on specific information” has enough embedded
information to be refined as: “engineers can add entry in a database that belongs to
the department”. This is achieved through referring to objects that are defined and
described in the ISM. For example “people”, “operation” and “information” are
ISM concepts. The Policy Wizard Engine manipulates the information stored in-
side a template yet masking its complexity so that the consultant will have a
“human readable” view of the information.

The PTL is a collection of policy templates which have been created by the expert
of the domain that the policies are meant for. Each template is a “package” that
describes the policy according to certain principle, and the way a consultant, using
the authoring environment, can refine it. This is achieved through embedding the
refinement steps and instructions in the template as components.

The policy template is implemented as a Prolog “fact” and can be manipulated by
the Policy Wizard Engine. Its components can be classified accordingly to their
usage:

•  Policy Statement: The description of the policy. These are predicate logic
statements with several views, one of which is “natural-language like” and is
exposed to the policy user.

•  Policy Context: The description of contextual constraints within which the
policy will operate. The contextual information allows one to arbitrarily define
a domain dynamically within which the policy statement is valid.

•  Informational components: they provide extra information to the policy user.
For example the “abstract” and the “description” contain descriptive text about
the meaning of the policy.

•  Procedural components: they have embedded process instructions used to
drive the “refinement flow”. For example the “sequence” component defines
the steps the Policy Wizard Engine will lead the consultant through.

Both the policy context and policy statement can be expressed as logical predicates
with AND, OR, NOT as constraints and conditions.

3.2.2 Information and system model (ISM)
As mentioned previously, the ISM models the information in the underlying envi-
ronment we want to manage using policy. The concept used here may easily be
implemented using the Common Information Model from the Distributed Man-
agement Task Force CIM [DMTF-CIM], with extensions in the area of business
and organisation model. Included with the implementation will be the low-level



7

linkage of object classes to information sources that creates the mapping to man-
aged objects. In our prototype,  this is implemented as a set of Prolog statements
that can be easily accessed by the Policy Wizard Engine.

3.2.3 Policy wizard engine (PWE)
The Policy Wizard Engine is the heart of the Policy Authoring Environment. It is
the combination of:

•  A Prolog inference engine.

•  An interpreter that manipulates a policy template according to the embedded
information, and provide support to the graphical user interface.

•  A module that interacts with the ISM using a defined API.

•  A module that deals with “deployable policies”.

•  Procedures that interact with the “Policy Deployer” using a defined API.

At start up, the PWE will load policy templates from the library. Through the use
of a GUI, a relevant template can be selected, and by interpreting the embedded
information in the template, the PWE will guide the consultant in the refinement
process to ensure that:

•  within an abstract policy, objects, which can be made more specific through
the selection of its sub-class, can be so specified;

•  legitimate additional constraint can be included as contextual information.

At the end of the refinement process the PWE will save the policy either for further
refinement later or for it to be used in deployment.

3.2.4 Graphical User Interface (GUI)
The Graphical User Interface is an important part of the architecture. It hides the
low-level policy details, such as the policy template infrastructure and Prolog pro-
gramming language, from the consultant in order to present an easy and simplified
way to access the system functionality. The consultant is always in control while
using this highly interactive GUI, but is restricted by what is legitimate, a con-
straint established by the combination of the expert’s input and the information
modelled by the ISM. In this way, the consultant will not be able to stray from the
permissible state of the managed system. The errors that will result from the policy
refinement process will be concentrated in a smaller number of the POWER sys-
tem and can be more easily rectified.

3.2.5 Deployable policies database
A policy is deployable only when, through the use of the ISM, a set of real world
system objects can be found and for which configuration specified. The system
stores those policies in order to perform two possible future activities:

•  to be uploaded by the “Policy Deployer” and be deployed;



8

•  to be available to the consultant or other system modules for further manipu-
lations.

While the Policy Template Library is a knowledge base largely independent of the
underlying system, the policies in this database have hooks to the real word by
referring to entities described in the “Information  System Model”. Moreover, the
“deployable policies” must be “understood” by the “Policy Deployer” in order to
be really deployed in the real word. Depending on the implementation, it is possi-
ble to create only a half-way house database for “refined policies” and for further
policy manipulation alone.

3.2.6 Device mapper
The crucial step in making policy refinement an integrated process is to be able to
pass the information stored in the refinement policy to a component that can trans-
form automatically the information into configuration details. The device mapper
is such a component, capable of using the information contained in the ISM to
convert from a policy description in the form of a policy statement and context
containing variables into a series of system specific function calls. Clearly the al-
gorithm used is very dependent on the device to be configured.

The example we used in the prototype is access control configuration representing
the relationships between users, operations and resource objects that are to be se-
cured. A way to implement it in the common operating systems such as NT and
Unix OS will be for the mapping function to create groups of people who have the
same ability to access particular objects. The policy mapper starts by evaluating the
context with respect to each resource type so that a list of users can be identified
for each identifiable resource. These user lists are then combined to form group
definitions.

Using the linkage in the ISM where the managed system information can be ob-
tained, we are able to bind the unbound variables in the refined but still abstract
policy, such that the users corresponding to individual resources can be identified.
This data is reorganised into a set of group definitions and members. The process is
then optimised through heuristics to remove replicated groupings. The resource
enumeration carried out to generate the group structures can then be revisited and
the given groups are matched against the operations being performed on each re-
source. This thus provides a number of entries in an access control list for that
policy.

3.2.7 Other components
Not all components of the architecture outlined in the fig. 1 has been implemented.
They include the following:

•  Expert Policy Writer. Given that a policy template is not only an abstract rep-
resentation of context and policy statement, it is also a directive for the
refinement process, the expert needs a good authoring environment in order to



9

create such templates. As it is not the most important part of our prototype for
demonstrating our concepts, it has been delayed and will form part of future
work.

•  Policy deployer. This is a unit that depends entirely on the network and man-
agement system. Depending of the domain, it could be a mechanism in HP’s
OpenView IT Operation product, or just the depositing of information in a di-
rectory for DEN (directory enabled network).

It is our belief, however, that a usable system must include these two components
which we would work on in the future.

4. Implementation

In our implementation, we created a prototype based on a security policy refine-
ment scenario, which allows the steps in a refinement process to be carried out.

4.1 Scenario

As mentioned previously, we started working on this problem with a scenario of
security related management and found it equally applicable to other domains. The
scenario is expressed as follows:

We have a system containing objects that belong to different users, how
do we create a policy through refinement to control the access of these
objects based on the attributes of the organisation, roles and user iden-
tity?

Figure 3: Policy Statement



10

4.2 Prototype views

We created by hand a set of policy templates which are accessible by the PWE, and
an information base to represent the data in the ISM containing hierarchies of
classes of object and associations of objects. With such information, we are able to
use our prototype, which is made up of the components described in the architec-
ture, to provide the following functions to the consultant via the GUI:

•  Selection of policy template set using either keyword combinations or policy
categories, thuskicking off the refinement process. Fig. 3 shows the beginning
of the refinement of a policy “All engineers can perform operations on infor-
mation within their organisation.”. The policy statement, found in the lower
left panel, highlight the objects that could be refined: “User”, “Operation” and
“A collection or individual piece of information”. They represent objects of
the managed domain, and are linked directly to the ISM and can be made more
specific.

Figure 4: Object Refinement suggested by the Policy Wizard Engine

•  Refinement through object subclass selection suggested by the PWE. The
policy we have at this stage is very generic and frankly, rather useless. By al-
lowing ourselves to be guided through the “Refinement Choice Point” panel,
as shown in fig.4, which shows organisation as the object to refine, we can



11

choose the appropriate object subclass for the policy using the bottom panel.
Here, the object hierarchy tree—with “department” and “project” as example
of subclasses—is presented.

In this way, each object that can be made more specific will be presented one
at a time for the consultant to consider, until all objects are covered.

•  Refinement of context suggested by the PWE. As mentioned previously, the
refinement process may be carried out according to object and according to
context. Context refinement is, as per our prototype, the addition of constraint
to form a conjunction with the existing constraints. See fig. 5.

•  The consultant can, at any point, carry out either form of refinement, even
though a methodical approach following the embedded process in the template
is recommended. When finished, the consultant will be returned to the begin-
ning to construct another policy from the template, or ask the system to
“deploy”. The deployment is done behind the scene, with the output in the
form of a configuration file that indicates the completion of the policy-to-
configuration transformation process.

Fig 5: Refinement by Context

4.3 Policy template

The policy template supplies the cleverness that the PWE can use to guide the con-
sultant. Shown in fig. 6 is an example of a policy template that is presented through
the GUI in the last section. The example is self-explanatory, in that the Prolog facts
include the necessary header information such as “keywords”, “category”, “ab-
stract” and so on.



12

Fig 6: Policy Template example

4.4 Policy mapper output

The policy mapper is includes an algorithm that transform a refined policy into
configuration information. At the time of writing, the information is created and
written to a text file. The information takes the following form:

// Policy  pol1  generates Access control functions
// functions take form Function( resouces, access,
Operation group/uers list
// Configuring resources[H69483,1,H54558]
setCalEntryACL([H69483,1,H54558], create,
[europe1\ruby])
// Configuring resources[H69878,2,H54574]

template(t3,
             [[ c0, keywords, [$engineer$,  $information$, $organisation$ ]],
              [ c1, category, $Access to Information$],
              [ c2, abstract, $All engineers can perform operations on information within their organisation$],
              [ c3, description, $Users that are Engineers can perform operations on  \r\n information that belong to\r\nthe same
                      organisation they belong to].$],

              [ c4, expiration-date, $01/01/1999$],
              [ c5, deployable, $deployable$],
              [ c6, start, c7],
              [ c7, sequence, [c8, c12, c13, c16, c18]],

              [ c8, context, [internal: [and([belongsTo(information,orgUnit(U)),
                                                     isMember(user(Un,UId), engineer),
                                                     isMember(user(Un,UId), orgUnit(U))])],
                                                     refinementBy: [[information,c10],
                                                                              [orgUnit(U),c10]]]],
              [ c10, refinementDetails, [category: ism,
                                                        condition: [],
                                                        refinementBy: [class]]],

              [ c12, policyStatement, [category: deployable,
                                                      internal: [and([canAccess(user(Un,UId), operation, information)])],
                                                      condition: [],
                                                      refinementBy: [[user(Un,UId),c10],
                                                                                [information,c10]]]],
              [ c13, classRefinementChoice, [class: [orgUnit(U),c10]]],

             [ c16, constraintChoice, [constraint:[and([about(information,user(Un,UId))])],
                                       choices:[accept:c18, ignore:c18]]],
             [ c18, end, []] ]).



13

setCalEntryACL([H69878,2,H54574], create,
[europe1\jake])// Configuring resources[H70273,3,H54590]
setCalEntryACL([H70273,3,H54590], create,
[europe1\megan])

5. Summary and future work

The POWER prototype is an implementation that demonstrates the conceptual and
philosophical intent of some of the predecessors working in the policy-driven man-
agement area. It shows for the first time a way to seamlessly integrate policy
refinement with policy-based configuration generation. The strength of this proto-
type is the achievement of our design objectives, leading to:

•  a departure from the “technician-centric view” to a  “multi-user view” using
the separation of responsibility for “expert” and “consultant”, and enabling
easy policy authoring;

•  the exploitation of prevailing modelling paradigm to enable policy refinement,
reification and transformation into device-meaningful configuration.

This prototype still leaves much to be worked on. In addition to implementing the
missing components in the architecture, i.e. a expert template creation environment
and a policy deployer linkage, future work includes, but not is not limited to, the
following:

•  Additional functionality in the Policy Template Language and Policy Wizard
Engine:

− fuller descriptive power for constraint specification;

− events;

− nesting or “template hopping”;

− management of iteration in which the same refinement process could be
repeated more than once, for example, for all the sub-classes of an object.

•  Additional modules to the architecture:

− consistency and conflict analysis;

− meta-policies management.

6. References

� !"#
$%!&� ����������!����������"���#�����������	
�	�������	
�����
�����
�����''������������'���'��������

�(��)*&�(����$����
��	���
�������
��
������
���������	
�	
������
��	� ���	���+��

�������� ��� ���� ,WK� %#%+'%---� �������������� �������� ���  ���������



14

�	���� �����������.�!���������� / ��!� 0)*1�� �	���	������������ 23
24
��������3))*�

�(��),&�(����$���������
��	� ���	�
��!"����	���� +���������� ��� ����5+�����

6���� 7�������	� ���������� 8������� /5+� �67�� 0),1�� #������� 23
24
��������3))*�

�5�����)9&�5������:���8����;���������
��#�	
��	�� "����	
��	� ���	�
��
$��%�&
��'
#����(� +���������� ��� ���� %#%+'%---� <������� ���������� .� !���������
�	��������:	�����=������������3))9�����9*>
9,)�

�%-"#
�����	&�%-"#�+����	�8(������)**%%%+����+� *����+������*������'�����+�����

�:���)?&�:�����"���:��@�����A���;������(����	
�
�"��
,����
��	� ���	�
�������'
�"���+����������%---�2QG�%�������������8��������������������� ���������
����<���������-������������8��������A$��$�������=����3))?����9,
*?�

�!�����)4&�!�������!���$���������������
��	� ���	�)
�	
��������"�
�	�
��������
+���������� ��� %---� 3VW� %�������������8���������� �	����!����������
B����������������3))4

�!������)4&�!��������=� �����������!���������
-��������
��
�����."���
�������
��	'
� ���	��� %---�=��$��������� %������<�������!�����������6���33��<��)�
 ��������3))>�

�<������)9&�<��������A�C�8����;�C�����
��"��)
������	 
��	� ���	�
��������
��
��	� �
�����."���
!"�"�	 
��������� �����������	����-������������3))9����)9
3D4

�������)4&� ��������!�����������	 
 ������
 ��
��	� ���	�
 ��
�����."���
 ��������� +��

�������� ��� ���� >��� %#%+'%---� �������������� �������� ���  ���������
�	��������������.�!����������/ ��!�E)41�3))4

�������)>&���������!���������
��#�	
��	� ���	�
 ��
�����."���
��������� =���������
<������������	����!����������������2������>��3))>����444
9D�

�8��)?&�8����;��/��	 
�
�������������	
��
��	� ���	�
��������
��
������
������������	
�	�
������
0�	��������	(�+�����������������%#%+'%---�%��������������	������
���%����������<�������!�����������������A��������$���7����!�	�3))?�


