

K-Harmonic Means - A Data
Clustering Algorithm

Bin Zhang, Meichun Hsu, Umeshwar Dayal
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-124
October, 1999

Clustering, K-
Means, K-
Harmonic
Means, data
mining

Data clustering is one of the common techniques used in data
mining. A popular performance function for measuring
goodness of data clustering is the total within-cluster variance,
or the total mean-square quantization error (MSE). The K-
Means (KM) algorithm is a popular algorithm which attempts
to find a K-clustering which minimizes MSE. The K-Means
algorithm is a center-based clustering algorithm. The
dependency of the K-Means performance on the initialization of
the centers is a major problem; a similar issue exists for an
alternative algorithm, Expectation Maximization (EM),
although to a lesser extent. In this paper, we propose a new
clustering method called the K-Harmonic Means algorithm
(KHM). KHM is a center-based clustering algorithm which uses
the Harmonic Averages of the distances from each data point to
the centers as components to its performance function. It is
demonstrated that K-Harmonic Means is essentially insensitive
to the initialization of the centers. In certain cases, K-Harmonic
Means significantly improves the quality of clustering results
comparing with both K-Means and EM, which are the two most
popular clustering algorithms used in data exploration and
data compression. A unified view of the three performance
functions, K-Means’, K-Harmonic Means’ and EM’s, are given
for comparison. Experimental results of KHM comparing with
KM on high dimensional data and visualization of the
animation of the convergence of all three algorithms using 2-
dimensional data are given.

 Copyright Hewlett-Packard Company 1999

1

K-Harmonic Means
-A Data Clustering Algorithm

Bin Zhang, Meichun Hsu, Umeshwar Dayal
Hewlett-Packard Research Laboratory

June 28, 1999

Abstract
Data clustering is one of the common techniques used in data mining. A popular performance
function for measuring goodness of data clustering is the total within-cluster variance, or the total
mean-square quantization error (MSE). The K-Means (KM) algorithm is a popular algorithm
which attempts to find a K-clustering which minimizes MSE. The K-Means algorithm is a center-
based clustering algorithm. The dependency of the K-Means performance on the initialization of
the centers is a major problem; a similar issue exists for an alternative algorithm, Expectation
Maximization(EM), although to a lesser extent. In this paper, we propose a new clustering
method called the K-Harmonic Means algorithm (KHM). KHM is a center-based clustering
algorithm which uses the Harmonic Averages of the distances from each data point to the centers
as components to its performance function. It is demonstrated that K-Harmonic Means is
essentially insensitive to the initialization of the centers. In certain cases, K-Harmonic Means
significantly improves the quality of clustering results comparing with both K-Means and EM,
which are the two most popular clustering algorithms used in data exploration and data
compression. A unified view of the three performance functions, K-Means', K-Harmonic Means'
and EM's, are given for comparison. Experimental results of KHM comparing with KM on high
dimensional data and visualization of the animation of the convergence of all three algorithms
using 2-dimensional data are given.

Keywords – Clustering, K-Means, K-Harmonic Means, Data Mining.

1. Introduction

Clustering has applications in many different areas like data mining [FPU96], statistical data
analysis [KR90], data compression and vector quantization [GG92], and many others. K-Means
(KM), first developed more than three decades ago [M67], and the Expectation Maximization
(EM) with linear mixing of Gaussian distributions [DLR77] are the most popular clustering
algorithms [BFR98a], [SI84], [MK97]. See [GG92] for more complete references for K-Means
and [MK97][RW84] for EM.

K-Harmonic Means (KHM), like KM and EM, is a center-based, iterative algorithm that refines
the clusters defined by K centers. K-Harmonic Means takes the sum over all data points of the
harmonic average of the squared distance from a data point to all the centers as its performance
function (see formula (1)), which is different from the total with-in cluster variance used by KM.
Let M = {ml | l=1,… ,K} be K centers and S = {xi | i=1,… ,N} be N given data points, the K-
Harmonic Means’ performance function is

2

(1)
The quantity inside the outer summation is the harmonic average of K squared distances, {||x –
ml||2 | l = 1, … ,K}. To give a reason for choosing this function, we briefly review the concept of
harmonic average (also called harmonic mean) in the next section.

For all three algorithms, the computation starts with an initialization of the center positions and
followed by iterative refinement of these positions. Many experimental results show that KHM is
essentially insensitive to the initialization of the centers than KM and EM. The dependency of the
K-Means performance on the initialization of the centers is a major problem; a similar issue exists
for an alternative algorithm, Expectation Maximization(EM), although to a lesser extent. Many
papers have been published to find good initializations for KM [BF98]. This paper takes a totally
different approach by changing MIN() used in KM to HA() (Harmonic Average), which is similar
to MIN() but “softer”, to make the performance function “easier to optimize” by an algorithm that
is essentially insensitive to initialization. More explanation will be given later.

The rest of the paper is organized as follows:
• Harmonic Average HA();
• comparing with the MIN();
• comparing KHM performance function with KM;
• KHM’ algorithm;
• implementation issues;
• computational complexity per iteration;
• EM algorithm based on linear mixing (limited version);
• a unified view of all three performance functions – KM’, KHM’ and EM’s;
• different ways of mixing bell shape functions;
• experimental results.

2. Harmonic Average

Harmonic Average (HA) has been known for a long long time. The harmonic average of K
numbers is

(2)
the reciprocal of the arithmetic average of the reciprocals of the numbers in the set.

Here is an example on when the harmonic average occurs. A person driving a car on a highway
noticed that between the adjacent two exits he has been driving at average speed of 60 miles/hr,
70 miles/hr and 75 miles/hr (he passed four exits). The exits are equally distanced of A miles
apart. What is the average speed between the first exit and the last exit he passed? The total

,
1

}),...,1|({

1
∑

=

== K

i i

i

a

KKiaHA

∑
∑=

=

==

−

=
N

i
K

l li

K
ll

N
iiKHM

mx

KmxPerf
1

1
2

11 .

||||
1

)}{,}({

3

number of miles between the first and the last exit is (A+A+A). The number of hours used to
pass two adjacent exits are A/60, A/70 and A/75. The total amount of time used between the first
exit and the last exit is (A/60 + A/70 + A/75).

The average speed = (total number of miles)/(total number of hours)
= (A + A + A)/(A/60 + A/70 + A/75) = 3/(1/60 + 1/70 + 1/75)
= The harmonic average of 60, 70 and 75.

3. Comparing HA() with MIN()

We compare HA() with MIN() in the first quadrant of a K-dimensional space, Q1 = { (a1,… … ,aK) |
ai ¥ 0 for i=1, … ,K}. The comparison in this section provides the basis for comparing the KHM
performance function with KM which uses MIN().

The plot of HA() is very similar to that of MIN(). Figure 1 has a plot of MIN() and HA()/K for
K=2.

Figure 1. The plots of MIN() on the left and HA()/K on the right.

Analytically, we show that HA() and MIN() are the same on the boundary of Q1 and their
derivatives are also “close”. On any boundary, where at least one of the coordinates is zero, both
MIN() and HA() equal to zero (the boundary value of HA() can be defined by the limit, which
always exists, approaching from inside of the first quadrant). In the interior, we compare their
gradient. Since the value of MIN(a1,… … ,aK) is determined by the smallest value of al’s, the
derivative of MIN(a1,… … ,aK), with respect to the smallest variable is 1 and all others zero.

The derivative of HA(a1,… … ,aK), with respect to the smallest variable is

and w.r.t. a variable other than the smallest one, is

,0)
)/(

1(
)1(

1

)1(

1}),...,1|({
min/2

min2

1

22
 →=

+
==

∂
=∂

+ ∞→

≠=
∑∑

aa
k

K

ki i

k
K

i i
k

k

i
kaa

O

a
a

a
aa

KiaHA

.
)1()

1
(

}),...,1|({
0/

min''

2min

1

22
min

min
min

K

a
a

K

a
a

K
a

KiaHA
iaaK

i i

K

i i

i →
+

==
∂

=∂
→

≠=
∑∑

1 3 5 7 9 S1

S60

2

4

6

8

10

Function MIN(X,Y)

1 4 7

10 13 16 19
S1

S9

S17

0

2

4

6

8

10

Geometric Average

4

where amin = min{ai | i=1,… ,K}. The derivative of HA() differs from the derivative of MIN()
significantly only near “the main diagonal” – a1 = a2 = … … = aK. When the value of a variable
is relatively large comparing with amin, the harmonic average is less sensitive to its change. The
last formula shows the exact rate the derivative of HA() diminishes.

4. Comparing KHM’ Performance Function with KM’

KM’ performance function is

(3)
where Sl is the subset of x’s that are closest to ml than any other centers in M. (Or {Sl|l=1,… ,K} is
the Voronoi partition given by the K centers). The double summation in (3) can be considered as
a single summation over all x (data points) and the squared distance under the summations can be
expressed by MIN(). Therefore, the KM performance function can be rewritten as

(4)
(The name “K-Means” come from the algorithm that finds a local optimal of this performance
function. From the last formula, the KM’ performance function can be called K-MIN’s, which
provides the comparison with the name – “K-Harmonic Means”). Replacing MIN() by HA(), we
get the performance function of KHM:

The distance function used in this paper is the squared Euclidean distance, ||x – m||2, but
generalizing to other distance functions are possible.

A unified view of the KM’, KHM’ and EM’s performance functions is given later in Section 9, in
which all are considered as ways of mixing bell-shape functions. Linear mixing of bell-shape
functions is used in EM [MK97].

5. The KHM Algorithm

There can be many different optimization algorithms to find a local optimum of a non-linear
function. In this section, we derive an algorithm for KHM’ performance function which is very
insensitive to initialization.

To derive the optimization algorithm, we take partial derivatives of the KHM’s performance
function in (1) with respect to the center positions, mk, k=1,… ,K, and setting them to zero, (to
simplify the notations, let di,l = ||xi – ml||),

,||||)}{,}({ 2

1
11 ∑ ∑

= ∈
== −=

K

l Sx
l

K
ll

N
iiKM

l

mxmxPerf

},,...,1|||{||)}{,}({ 2

1
11 KlmxMINmxPerf

N

i
li

K
ll

N
iiKM =−= ∑

=
==

.

||||
1

},...,1|||{||)}{,}({
1

1
2

2

1
11 ∑

∑
∑

=

=

=
==

−

==−=
N

i
K

l li

N

i
li

K
ll

N
iiKHM

mx

KKlmxHAmxPerf

5

(An arrow is put on top of the zero on the right to show it is a zero vector. The center positions,
mk, are also vectors.)

“Solving” mk’s from the last set of equations, we get a recursive formula: (Reminder: di,l = ||xi –
ml|| on the right of (5) are still functions of the center positions.)

(5)
This is the KHM’ recursive formula. The KHM algorithm starts with a set of initial positions of
the centers, di,l = ||xi-ml|| are calculated, and then the new positions of the centers are calculated
using (5) or from the decomposed sequence below (implementation details are given later),

(6.1 - 6.5)
The recursion is continued until the performance value stabilizes.

Numerical results show a super-linear convergence rate. The proof of convergence is still in
progress.

6. Implementation of KHM

A naïve implementation of the KHM algorithm tends to encounter numerical difficulties due to
the reciprocals, 1/||x-m||2, in the recursion formula. Proper calculation of the coefficients is
important for a successful implementation. The calculation of qi,k’s (combination of (6.1) and
(6.2)), where the difficulties occur, are done as follows:

(7)
where

.0
)

1
(

)(*4
*

),(

1

1

2
2

,

3
,

r
=−−= ∑

∑=

=

N

i
K

l li
ki

ki

k

KHM

d
d

mx
K

m
MXPerf

∂
∂

.

)1(

1

)1(

1

1

1

2
2

,

3
,

1

1

2
2

,

3
,

∑
∑

∑
∑

=

=

=

== N

i
K

l li
ki

N

i
iK

l li
ki

k

d
d

x

d
d

m

,
)

1
(

1

1

2
2

,
∑

=

= K

l li

i

d

α ,3
,

,
ki

i
ki d

q
α= ,

1
,∑

=
=

K

k
kii qq ,,

,
i

ki
ki q

q
p = .

1
,∑

=
=

N

i
ikik xpm

).,...,1|(,min, KldMINd lii ==

∑∑
≠≠

+
=

+
=

min

22

,

min,

min,
3

,

min,

min

22

,

min,3
,

4
min,

,

])(1[

*)(

])(1[
l li

i

i
ki

i

l li

i
ki

i
ki

d
d

d
d

d

d
d

d

d
q

6

All the ratios (di,min/di,l) are in [0,1]. The procedure is given below:

Calculate_q_vector(xi,M): /* Index i is fixed inside this function.
This function is called for each data point. */

Step 1: calculate di,k= ||xi-mk||, for k=1,… ,K.
Step 2: search for di,min=min{ di,k | k=1,… ,K}.
Step 3: form vector < di,min/ di,k | k=1,… ,K> (di,min/di,min is always set to 1. If di,min=0, all other

components are set to zero.)
Step 4: calculate the q vector from (7).

The rest of the implementation, (6.3) to (6.5), is straightforward.

7. Computational Costs of KHM in Each Iteration

In each iteration, calculating all the pairwise distances from N data points to K centers (of D
dimensional vectors) costs O(N*K*D). KM and EM (linear mixing) share the same cost on this
part. After getting the coefficients pi,k, calculating the linear combinations, mk = S pi,k*xi , costs
another O(N*K*D). EM costs the same on this part. KM costs less (O(N*D)) on this due to the
partitioning but an additional O(N*K) comparison and assignment (marking) operations are used
to do the partitioning. After calculating the distances, all quantities used in the algorithm no
longer depend on the dimension and all other costs are O(N*K). The leading asymptotic term for
all three algorithms are the same, O(N*K*D).

The asymptotic computational complexity per iteration for KM, KHM and EM (linear mixing
model) are all O(N*K*D). It is the convergence rate and the convergence quality (dependency on
the initialization) which differentiate them in real world applications.

(Note: due to the partitioning nature, faster algorithms/implementations have been designed for
KM using trees to do spatial partition of either the centers or the data [GG92],[PM99].)

Space complexity of KHM is NxD for data points, KxD for the K centers and KxD+2*K for
temporary storage. The temporary storage requirement tend to be lower than KM because the
later needs a O(N) temporary storage to keep the membership information and N>>K in real
problems.

8. The EM Clustering Algorithm Based on Linear Mixing of Gaussian Distributions

We briefly review a limited version of the EM algorithm needed later for comparison with KHM
and KM later. We limit ourselves to the EM algorithm with linear mixing of K identical spherical
bell-shape (Gaussian distribution) functions because this limited version of EM matches the
version of KM and KHM (see Section 9 and 10 for more details). Using general form (non-
identical, non-spherical) bell shape functions in the three algorithms is beyond the scope of this
paper.

7

Let

(8)
a linear mixing of K identical spherical bell-shape functions. EM algorithm is a recursive
algorithm with the following two steps:

E-Step:

(9)
where p(x|m) is the prior probability with Gaussian distribution, p(ml) is the mixing probability.

M-Step:

(10)

(11)

where N is the size of the whole data set.

For more details, see [MK97] and the references there.

9. A Unified View of The Three Performance Functions

Without introducing any change, applying the identity mapping -log(EXP(-())) to the
performance functions of KM and KHM, we get

(12)

));}|||{||(log(),(
1

2∏
=

∈−−−=
N

i
KM MmmxMINEXPMXPerf

,
)(*)|(

)(*)|()|(

1
∑

=

= N

i
lli

lli
il

mpmxp

mpmxpxmp

,
)|(

*)|(

1

1

∑

∑

=

== N

i
il

N

i
iil

l

xmp

xxmp
m

,)|(
1

)(
1

∑
=

=
N

i
ill xmp

N
mp

)]).||||(
)2(

1
*[log(),(2

1 1

mxEXPpMXPerf
N

i

K

l
DlEM −−−= ∏ ∑

= = π

8

(13)
Now they share the same form of the EM’s performance function:

(14)
The quantity inside the brackets “[]” in (14) is the linear mixing of the bell-shape functions – the
EXP()’s. Comparing with EM’s performance function, we can look at the performance functions
of KM and KHM also as mixings of bell-shape functions. (The extra factor, 1/sqrt[(2p)D], does
not have any real impact because it only change the performance function by adding a constant to
it, which does not change the locations of the optima of the function. It is OK to either add the
factor to KM and KHM’s performance functions, or remove the factor from the EM’s. We choose
not to change any of them.)

10. MIN Mixing, Harmonic Mixing and Linear Mixing of Bell-shape Functions

The performance functions of KM and KHM can be viewed as a (log of) mixing of bell-shape
functions. Define

MIN Mixing:

(15)
Min-Mixing can also be called Max-Mixing because EXP(-x) is monotone decreasing and

(16)
Harmonic Mixing:

(17)
Linear Mixing:

(18)

∑
=

−−
K

l
lDl mxEXPp

1

2)||||(
)2(

1*
π

}),...,1|||{||(2 KlmxHAEXP l =−−

}.,...,1|)||||({}),...,1|||{||(22 KlmxEXPMAXKlmxMINEXP l =−−==−−

}),...,1|||{||(2 KlmxMINEXP l =−−

).})|||{||(log(),(
1

2∏
=

∈−−−=
N

i
KHM MmmxHAEXPMXPerf

)]).||||(
)2(

1*[log(),(2

1 1

mxEXPpMXPerf
N

i

K

l
DlEM −−−= ∏ ∑

= = π

9

A 2-dimensional and four-center harmonic mixing is plotted in Figure 2.

Figure 2. The left picture is half of the bell-shape curve.
The right is the 2-D Harmonic Mixing with four centers.

One quick observation is that EM’s linear mixing has more parameters -- the mixing probabilities,
pl, to be estimated (See (18)). This is one reason that the EM algorithm converges slowly. (See
[MK97] p105, for an explanation of the slow convergence of EM algorithm.)

For both MIN-Mixing and Harmonic Mixing, the maximums of the components (the individual
bells) match the maximums of the mixture. This can be proved easily by setting the gradient of
the mixing functions to zero. It is also shown in Figure 4 for a particular example. But for linear
mixing, they do not match -- the maximums of the mixture shift towards the centroid of the
maximums of the components as shown in Figure 3. When Linear Mixing EM is used, the
centers of the bell shape functions are biased from the true centers of the local densities of data
(because the maximums of the mixture is intended to match the local densities of data).

Three different mixings of two bell shape functions in one-dimensional space are plotted in each
plot in Figure 3. Four different distances between the centers of the bell shape functions are
shown. As the two centers move closer, the difference among the three mixtures increase. The
two peaks in linear mixing even merge into a single peak (see the plot in upper-left corner). For
the other two mixings, however, they remain to have two peaks no matter how close the centers
are (analytical proof is straightforward – just calculate the Hessian matrix and show it is negative
definite). When the centers are far apart, all three mixtures are very close. This explains that
when the number of centers matches the number of naturally well separated clusters, all three
algorithms tend to give very similar results (See Experiments in Group 1 on BIRCH Data Set).

1 4 7

10 13 16 19

S1

S8

S15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Four centers

0

0.2

0.4

0.6

0.8

1

1.2

10

Figure 3. Comparing Three Different Mixings of Two Bell-shape Functions in One Dimension.
Color coding: brown – MIN Mixing in KM (hard to see because it perfectly overlap
with the individual bells), light blue – Harmonic Mixing in KHM, and yellow –
Linear Mixing in EM. Two individual bells are in pink and dark blue. As the
centers move from far to near, the difference among the three mixings increase.

For finding clusters, linear mixing (the limited version with fixed covariance matrix of the bells)
does not behave properly when centers get too close to each other. As two or more local peaks
merge into a single peak, the maximum of that single peak behaves like a ghost center and the
individual centers loose their identity. This is clearly shown in our experimental results (See the
experimental results from EM in Group 2 and Group 4).

(Note: In the EM with a general covariance matrix as parameters, this problem seems to be less
severe because the diameter of the bells can shrink as the centers get closer, if not trapped by
local optimums. But the number of parameters to be estimated grow at a quadratic rate with the
number of centers, which creates a much more severe problem.)

11. Experimental Results

Two data sets are used: the BIRCH data set is from UC Irvine [B99]; and another data set, Hier,
is generated by a Hierarchical Data Generator (HDG).

The HDG maps each data point in a given data set into a cluster of points with either uniform or
normal distribution. We call this mapping Zoom-In. The variance of the clusters can be set by
user. When this mapping is repeatedly applied, the clustering of the final resulted data set shows a
hierarchical structure. (Comparing it with the clustering of matter in the Universe.)

The detailed information on these data sets is given in Table 1.

Name Size (points) Structure
BIRCH 100,000 100 clusters in a 10x10 grid with 1000 points in each cluster in

normal distribution. The radius of each cluster is sqrt(2) and the

Comparing MAX Mixing, Geometric Mixing and Linear
Mixing (m1 = 6, m2 = 43)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

F1=EXP(-(x-m1)̂ 2)
F2=EXP(-(x-m2)̂ 2)
EXP(-(1/(x-m1)̂ 2 +1/(x-m2)̂ 2))
F1+F2
"MAX(F1,F2)"

Comparing MAX Mixing, Geometric Mixing and Linear Mixing
(m1 = 20, m2 = 30)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

F1=EXP(-(x-m1)̂ 2)
F2=EXP(-(x-m2)̂ 2)
EXP(-(1/(x-m1)̂ 2 +1/(x-m2)̂ 2))
F1+F2
"MAX(F1,F2)"

Comparing MAX Mixing, Geometric Mixing and Linear Mixing
(m1 = 19.5, m2 = 30.5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

F1=EXP(-(x-m1)̂ 2)
F2=EXP(-(x-m2)̂ 2)
EXP(-(1/(x-m1)̂ 2 +1/(x-m2)̂ 2))
F1+F2
"MAX(F1,F2)"

Comparing MAX Mixing, Geometric Mixing and Linear Mixing
(m1 = 17, m2 = 33)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

F1=EXP(-(x-m1)̂ 2)
F2=EXP(-(x-m2)̂ 2)
EXP(-(1/(x-m1)̂ 2 +1/(x-m2)̂ 2))
F1+F2
"MAX(F1,F2)"

11

neighboring clusters are 4*sqrt(2) apart.
Hier 20,000 Started with 4 vertices of a square, each one is mapped into 100

points uniformly distributed, then each of the 400 points is
mapped into 50 points uniformly distributed.

Table 1. The Data Sets.

We choose 2-dimensional data in this presentation for the power of visualization. It has been
experienced widely that a single performance value does not provide enough information for
judging the quality of an algorithm. We have applied KHM on 40-dimensional data with 150,000
points. It also showed better convergence (less sensitive to initialization).

Twelve experiments conducted are organized in four groups:
Group 1 shows the quality of the three algorithms on the BIRCH data set when the “correct”
number of centers are used. All three algorithms started from the same random initialization.
The centers under EM is “more mobile” than under KM. They are most mobile under KHM.
From the plots (given at the end of this paper), eight pairs of centers are trapped under KM (two
centers found in one cluster) after it has already converged to a local optimum. Only one pair of
centers is trapped under KHM; and 4 pairs under EM. The results are comparable under many
different random initializations used (only one set is presented here).

Group 2 shows that when the initialization is very bad, both KM and EM converges very slowly
(if converge to anything meaningful at all). All three algorithms started from the same bad
initialization. KM moves the centers out “layer-by-layer” like peeling an onion. KHM converges
very fast and reached a configuration that is close to the global optimum in about 40 iterations.
EM does not work well when the centers are close to each other (the reason was given earlier –
the individual bell shape functions loose their identity and are merged into a big bell shape
function with a ghost center). Most centers out of the 2000 centers merged with others. The
problem could be fixed by allowing the variance (“diameter”) of the bell-shape functions to
change. But that will introduce a lot more parameter(s), which cause new convergence problems.

Group 3 shows that KHM can start from really bad initializations. In the Bad Initialization, 400
centers are linearly spread out on a small line segment out the region occupied by data. KHM
converged nicely. KM and EM do not work under this bad initialization. A random initialization
is used for them.

Group 4 repeat the same experiment as Group 1 but with a bad initialization instead of the
random initialization. In the Bad Initialization, 100 centers are linearly spread out on a small line
segment in the center of all data (See the first plot in Group 4). KHM converged nicely in 90
iterations with only two pairs trapped. KM and EM do not converge well even after 300
iterations.

Exp.
Group#

Algorithm Data
Set

#of
Centers

#of Iterations of
the snapshots

Local
Opt.?

Initia-
lization

Conver-
gence

KM 50 Yes Stopped
KHM 50,100,120 No* Stabilized1
EM

BIRCH 100
50,100 No*

Random
Stabilized

KM 20,60,100,200 No
KHM 5,10,40,200 No* Stabilized2
EM

BIRCH 2000
20,60,100,200 No

Bad Init.

12

KM 45 Yes Random Stopped
KHM 15,25,50 No* Bad Init. Stabilized3
EM

Hier 400
100 No* Random Stabilized

KM 10,25,100,300 No
KHM 10,25,40,90 No* Stabilized4
EM

BIRCH 100
10,25,100,300 No

Bad Init.

No* -- See the last column.
Table 2. The Setup of the Experiments.

Overlay is used in all plots. The given data set is plotted in light yellow as the background (The
BIRCH data set is reduced to 20,000 data points, or 1/5 of the original, before plotting for better
visibility of the clusters). The centers are plotted in red.

Animation was done with all the convergence paths. The number of iterations listed in Table 2
are the maximum number of iterations. Due to the limitation of printing on paper, we provide
only a few snapshots for each experiment.

Initializations of the centers for all experiments are also plotted.

The title bar of each figure is encoded as:
Group#: Algorithm, Data Set, Number of Centers, Number of Iterations Done, Initialization.

12. Experiment Using High Dimensional Data
High dimensionality creates new challenges to data clustering. We conducted an experiment using a 40
dimensional data set with 150,000 data points. Starting from the same random initialization of 100 centers,
two experiments are run: 1) KM – stopped at a local optimum after 8 iterations; 2) KHM first with 20
iterations and then switch to KM which stopped after 7 iterations at a local optimum. The results are
shown in the following table. The results show that KHM helped KM to avoid a bad local optimum.

Algorithm Number of
Iterations

Final Performance
Value (KM’s)

Note

1 KM 8 96152 Local optimum
2 KHM/KM 20/7 85485 Local optimum

13. Future Research

Geometrically, K-Harmonic Means’ performance function is intuitive. Is there a statistical
interpretation of the performance function like the one K-Means has?

K-Harmonic Means is a new clustering algorithm with a new performance function. Does it
provide new opportunities for a scale-up of K-Harmonic Means for very large data sets?

In a number of experiments, it is consistently shown that K-Harmonic Means is very insensitive
to the initialization and K-Harmonic Means converge faster than K-Means when the initialization
is far from a local optimal (of K-Means). But experience also show that K-Means converge very
fast when the initialization is close to a local optimum. K-Means performance function is popular
and with clear interpretation. Putting this information together, it suggests combining K-
Harmonic Means with K-Means to take advantage of both. How many iterations should be run
using KHM before switching to KM?

13

References

[A73] Anderberg, M. R. 1973. Cluster analysis for applications. Academic Press, New
York. xiii + 35p.

[B99] Bay, S. D. (1999). The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:
University of California, Department of Information and Computer Science.

[BFR98] Bradley, P., Fayyad, U. M., and Reina, C.A., “Scaling EM Clustering to Large
Databases,” MS Technical Report, 1998.

[BF98] Bradley, P., Fayyad, U. M., C.A., “Refining Initial Points for KM Clustering”, MS
Technical Report MSR-TR-98-36, May 1998.

[BFR98a] Bradley, P., Fayyad, U. M., and Reina, C.A., “Scaling Clustering to Large
Databases”, KDD98, 1998.

[DH72] Duda, R., Hart, P., “Pattern Classification and Scene Analysis”, John Wiley & Sons,
1972.

[DLR77] Dempster, A. P., Laird, N.M., and Rubin, D.B., “Miximum Likelyhood from
Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society,
Series B, 39(1):1-38, 1977.

[FPU96] Fayyad, U. M., Piatetsky-Shapiro, G. Smyth, P. and Uthurusamy, R., “Advances in
Knowledge Discovery and Data Mining”, AAAI Press 1996

[GG92] Gersho & Gray, “Vector Quantization and Signal Compression”, KAP, 1992
[GMW85] Gill, P.E., Murray, W. and Wright, H.M., “Practical Optimization”, Academic Press,

1981.
[G85] Gonzales, T.F., “Clustering to Minimize the Maximum Intercluster Distance”, Theo.

Comp. Sci. 38, p293-306, 1985.
[KR90] Kaufman, L. and Rousseeuw, P. J., “Finding Groups in Data : An Introduction to

Cluster Analysis”, John Wiley & Sons, 1990.
[M67] MacQueen, J. 1967. Some methods for classification and analysis of multivariate

observations. Pp. 281-297 in: L. M. Le Cam & J. Neyman [eds.] Proceedings of the
fifth Berkeley symposium on mathematical statistics and probability, Vol. 1.
University of California Press, Berkeley. xvii + 666 p.

[MA] McKenzie, P. and Alder, M., “Initializing the EM Algorithm for Use in Gaussian
Mixture Modeling”, The Univ. of Western Australia, Center for Information
Processing Systems, Manuscript.

[MK97] McLachlan, G. J. and Krishnan, T., “The EM Algorithm and Extensions.”, John
Wiley & Sons, Inc., 1997

[PM99] Pelleg, D. and Moore, A, “Accelerating Exact k-means Algorithms with Geometric
Reasoning”, KDD-99, Proc. of the Fifth ACM SIGKDD Intern. Conf. On Knowledge
Discovery and Data Mining, page 277-281.

[RW84] Rendner, R.A. and Walker, H.F., “Mixture Densities, Maximum Likelihood and The
EM Algorithm”, SIAM Review, vol. 26 #2, 1984.

[SI84] Selim, S.Z. and Ismail, M.A., “K-Means-Type Algorithms: A Generalized
Convergence Theorem and Characterization of Local Optimality”, IEEE Trans. On
PAMI-6, #1, 1984.

14

Group 1: #1 - Random Initialization used for all three experiments in Group 1.
#2 - KM converged to a local optimal in 50 iterations and stoppped by itself.
#3 - EM after 50 iterations.
#4 - EM after 100 iterations.

15

Group 1: #1 - KGM after 50 iterations.
#2 - KGM after 100 iterations.
#3 - KGM after 120 iterations.

16

Group 2: The random initialization used for all experiments in Group 2.

17

Group 2: #1 - KM after 20 iterations.
#2 - KM after 60 iterations.
#3 - KM after 100 iterations.
#4 - KM after 300 iterations.

18

Group 2: #1 - KGM after 5 iterations.
#2 - KGM after 10 iterations.
#3 - KGM after 40 iterations.
#4 - KGM after 200 iterations.

19

Group 2: #1 - EM after 20 iterations.
#2 - EM after 60 iterations.
#3 - EM after 100 iterations.
#4 - EM after 300 iterations.

20

Group 3: #1 - Random initialization of 400 centers used for both KM and EM.
#2 - KM reached a local optimal after 45 iterations and stopped.
#3 - EM after 100 iterations.

21

Group 3: #1 - The bad initialization used for KGM in this experiment.
#2 - KGM after 15 iterations.
#3 - KGM after 25 iterations.
#4 - KGM after 50 iterations.

22

Group 4: The bad initialization used for all three experiments in this group.

23

Group 4: #1 - KM after 10 iterations.
#2 - KM after 25 iterations.
#3 - KM after 100 iterations.
#4 - KM after 300 iterations.

24

Group 4: #1 - KGM after 10 iterations.
#2 - KGM after 25 iterations.
#3 - KGM after 40 iterations.
#4 - KGM after 90 iterations.

25

Group 4: #1 - EM after 10 iterations.
#2 - EM after 25 iterations.
#3 - EM after 100 iterations.
#4 - EM after 300 iterations.

