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Abstract

Let X1; : : : ;Xn be n independent, symmetric random variables supported on the
interval [-1,1] and let Sn =

Pn
i=1Xi be their sum. We show that the di�erential entropy

of Sn is maximized when X1; : : : ;Xn�1 are Bernoulli taking on +1 or -1 with equal
probability and Xn is uniformly distributed. This entropy maximization problem is
due to Shlomo Shamai [1] who also conjectured the solution1.

1 Introduction

The di�erential entropy h(S) of a real valued random variable S is de�ned as

h(S) = �
Z 1

�1
fS(s) log fS(s)ds; (1)

where fS(s) is the density of S with respect to Lebesgue measure. If S has no density then
h(S) is taken to be �1. We obtain a maximum entropy result for the sum of bounded
independent symmetric random variables. Speci�cally, let X1; : : : ; Xn be any independent
random variables symmetrically distributed about zero and bounded between -1 and 1. Let
Z1; : : : ; Zn�1 be i.i.d. Bernoulli taking on 1 and -1 with equal probability and U be indepen-
dent of Z1; : : : ; Zn�1 and uniformly distributed on [-1,1]. We show that the sums

Sn =
nX

i=1

Xi and S
�
n = U +

n�1X
i=1

Zi (2)

satisfy
h(Sn) � h(S�n): (3)

1Shamai conjectured that the present result holds even without the symmetry assumption.
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The density of S�n is symmetric about zero and piecewise constant. It is given by (up to a
set of Lebesgue measure zero)

fS�

n
(s) =

8>>>>>>>><
>>>>>>>>:

2�n if s 2 (�n;�n + 2)
...�

n�1
j

�
2�n if s 2 (�n + 2j;�n + 2j + 2)

...
2�n if s 2 (n� 2; n)

(4)

where j runs from 0 to n� 1.

The di�erential entropy of S�n computed according to (1) from the above expression for fS�

n

simpli�es to
h(S�n) = H(s�0; : : : ; s

�
n�1) + 1; (5)

where

H(s�0; : : : ; s
�
n�1)

4
= �

n�1X
j=0

s�j log s
�
j ; (6)

and

s�j = Pr(S�n 2 [�n + 2j;�n + 2j + 2]) =

 
n� 1

j

!
2�(n�1); (7)

for j = 0; : : : ; n� 1. Note that s�
4
= (s�0; : : : ; s

�
n�1) is simply the (n� 1)th order binomial 1=2

probability distribution and that H(s�) is the discrete entropy of this distribution.

For n = 1 and n = 2 it is obvious that h(S�n) is maximal. In these cases S�n is uniformly
distributed on [�1; 1] and [�2; 2] respectively (which are also the support sets of Sn) and
it is well known that the di�erential entropy of a random variable supported on [�a; a] is
indeed maximal when it is uniformly distributed.

For n > 2 the result is less obvious. The key step in our proof is the following lemma.

Lemma 1 If Z1; : : : ; Zn are i.i.d. Bernoulli taking on values +1 and -1 with equal probability,
and if a1; : : : ; an satisfy 0 � ai � 1, then

Pr(
nX

i=1

Ziai 2 [�n + 2j; n� 2j]) � Pr(
n�1X
i=1

Zi 2 [�n + 2j; n� 2j]) (8)

for all integers j satisfying 0 � j � J where J is the largest integer such that n� 2j > 0.

We prove the result in two parts. First, in Section 2, we reduce the problem to Lemma 1.
We then prove Lemma 1 in Section 3.
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Motivation The more general problem obtained by removing the symmetry constraints
on the Xi is motivated as follows [1]. The problem is related to the maximum achievable
throughput (sum of transmission rates of all users) of a peak power constrained additive
noise multiple access channel in the limit of low noise power. Speci�cally, consider an n user
multiple access channel with inputs X1; : : : ; Xn and output Y =

Pn
i=1Xi + Z, where Z is

Gaussian (for example) with variance �2 and the inputs Xi are peak constrained to lie in the
intervals [�1; 1]. The maximum throughput is obtained by maximizing the mutual informa-
tion I(Y ;X1; : : : ; Xn) under the constraint that the Xi are independent and supported on
the intervals [�1; 1]. Since the mutual information can be written as

I(Y ;X1; : : : ; Xn) = h(Y )� h(Y jX1; : : : ; Xn) (9)

= h(Y )� h(Z) (10)

where h(Y ) and h(Z) are the di�erential entropies of Y and Z, the problem reduces to
maximizing the di�erential entropy h(Y ) = h(

Pn
i=1Xi+Z) subject to the above constraints

on the Xi. In the limit of �2 tending to zero, the solution converges to that of simply
maximizing h(

Pn
i=1Xi). Of course in this limit the maximum mutual information tends to

in�nity. The interesting point, however, is that since the maximizing distribution on the Xi

is highly asymmetric in the limit, namely one Xi is uniform and the other Xi are Bernoulli,
a similar asymmetry must also exist for su�ciently small �2. This in turn means that for
these �2, time sharing must be used to achieve the maximum possible throughput with equal
transmission rates for all users. In contrast, for the average power constrained Gaussian
multiple access channel the symmetric maximum throughtput can be achieved without time
sharing.

It is conjectured that S�n maximizes the di�erential entropy even without the symmetry
constraint on the Xi, however, we have not been able to prove this. This would follow from
another conjecture that given any independent random variables X1; : : : ; Xn,

h(
nX

i=1

Xi) � h(
nX

i=1

ZiXi); (11)

where Z1; : : : ; Zn are Bernoulli taking on +1 and -1 with equal probability. The result of
[2] showing that the discrete entropy of a sum of independent Bernoullis is maximized when
they are symmetric suggests the validity of this conjecture.

2 Reduction to Lemma 1

This �rst part of the proof involves a majorization relationship. Given two probability
distributions p = (p0 � p2 � : : : � pm) and q = (q0 � : : : � qm), p majorizes q if for all k

kX
i=0

pi �
kX

i=0

qi: (12)
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The consequence of majorization we use is that if p majorizes q then H(p) � H(q) where
H(�) is the discrete entropy. See [3] for this and many other results concerning majorization.

Recall that Sn is the sum of n independent random variables Xi which are symmetric and
supported on [�1; 1]. Assume Sn has a density and de�ne the probability distribution s =
(s0; : : : ; sn�1) by setting

sj = Pr(Sn 2 [�n + 2j;�n + 2j + 2]) (13)

for j = 0; : : : ; n � 1. The concavity of the function �x log x and Jensen's inequality imply
that the di�erential entropy of Sn satis�es

h(Sn) � H(s) + 1: (14)

Recall the distribution s� de�ned in (7). It now su�ces to show that H(s) � H(s�). Specif-
ically, this relation together with (5) and (14) imply

h(Sn) � H(s) + 1 (15)

� H(s�) + 1 (16)

= h(S�n); (17)

thereby proving that h(Sn) � h(S�n).

To prove H(s) � H(s�), we show that for all s constructed as above, s majorizes s�. Our
task is simpli�ed slightly by the following lemma.

Lemma 2 Let J be the largest integer j such that j � n� 1� j. If for s� and s de�ned in
(7) and (13)

n�1�jX
l=j

sl �
n�1�jX
l=j

s�l (18)

for all j � J, then s majorizes s�.

Proof: First note that

(s�J = s�n�1�J) � : : : � (s�1 = s�n�2) � (s�0 = s�n�1) (19)

and that
(sJ = sn�1�J); : : : ; (s1 = sn�2); (s0 = sn�1): (20)

In view of this, (18) holding for all j is almost the de�nition of majorization.
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One problem is that (18) does not account for all the partial sums appearing in the de�nition
of majorization, which additionally requires

n�1�j�1X
l=j

sl �
n�1�j�1X

l=j

s�l ; (21)

for j � J where both sums are taken to be zero if n� 2� j < j. This is resolved as follows.
For j � J � 1 and j = J when J < n� 1� J we have from (18)

n�1�jX
l=j

sl �
n�1�jX
l=j

s�l ; (22)

and
n�1�j�1X
l=j+1

sl �
n�1�j�1X
l=j+1

s�l ; (23)

so that
1

2

0
@n�1�jX

l=j

sl +
n�1�j�1X
l=j+1

sl

1
A �

1

2

0
@n�1�jX

l=j

s�l +
n�1�j�1X
l=j+1

s�l

1
A ; (24)

which simpli�es to

1

2
(sj + sn�1�j) +

n�1�j�1X
l=j+1

sl �
1

2

�
s�j + s�n�1�j

�
+

n�1�j�1X
l=j+1

s�l : (25)

This is equivalent to (21), since sj = sn�1�j and s
�
j = s�n�1�j.

Note that the (sj = sn�1�j)'s may not be in the same decreasing order as the (s�j = s�n�1�j)'s.
This is not an issue, however, since if the (sj = sn�1�j) are rearranged in decreasing order,
the inequalities (18) and (21) would continue to hold. 2

Recall how the probability distributions s and s� are related to the random variables Sn

and S�n. Proving (18) would show that in this sense S�n is less densely distributed about
the origin than any Sn obtained as the sum of independent random variables satisfying the
boundedness and symmetry assumptions. The random variable S�n is maximally \spread
out" and hence should have the highest entropy.

A key part of the proof of (18) follows from the symmetry and independence of the random
variables Xi. Speci�cally, conditioned on their absolute values jX1j = a1; : : : ; jXnj = an, the
Xi are independent Bernoulli random variables taking on �ai and ai with probability 1/2.
This implies the following characterization of s; that

sj = Pr(Sn 2 [�n + 2j;�n + 2j + 2]) (26)

= E [Pr(Sn 2 [�n + 2j;�n + 2j + 2] j jX1j = a1; : : : ; jXnj = an )] : (27)

5



Further, from the above observation about the Xi,

Pr(Sn 2 [�n + 2j;�n + 2j + 2] j jX1j = a1; : : : ; jXnj = an ) (28)

= Pr(
nX

i=1

Ziai 2 [�n + 2j;�n + 2j + 2]); (29)

where the Zi are i.i.d. Bernoulli +1 or -1 with probability 1/2.

The distribution s� (7) can also be expressed in terms of the Zi as

s�j = Pr(
n�1X
i=1

Zi = �n + 2j + 1) = Pr(
n�1X
i=1

Zi 2 [�n + 2j;�n + 2j + 2]): (30)

Therefore, if we could show that

Pr(
nX
i=1

Ziai 2 [�n + 2j; n� 2j]) � Pr(
n�1X
i=1

Zi 2 [�n + 2j; n� 2j]); (31)

then (18) would follow by taking expectations of both sides of (31) with respect to the ai
distributed2 as jXij. The validity of (31), however, is precisely the claim of Lemma 1 from
the introduction. The lemma states that if Z1; : : : ; Zn are i.i.d. Bernoulli taking on +1 and
-1 with equal probability and a1; : : : ; an satisfy 0 � ai � 1, then (31) holds for all integers j
satisfying 0 � j � J where J is the largest j for which n� 2j > 0 (or j � n� 1� j).

Thus the proof of h(Sn) � h(S�n) has been reduced to proving Lemma 1, which is carried out
in the next section.

3 Proof of Lemma 1

First note that the left hand side of (31) is independent of the ordering of the ai. Therefore,
we will assume that 1 � a1 � a2 � : : : � an � 0.

The symmetry of the Zi allows us to prove

Pr(
nX

i=1

Ziai 2 [�n + 2j; n� 2j]) � Pr(
n�1X
i=1

Zi 2 [�n + 2j; n� 2j]) (32)

by showing

Pr(
nX

i=1

Ziai > n� 2j) � Pr(
n�1X
i=1

Zi > n� 2j): (33)

2The right hand side of (31) is independent of the ai.
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Based on these observations, the validity of the lemma in the special case of n = 3 is easily
veri�ed. We need only show that Pr(Z1a1 + Z2a2 + Z3a3 > 1) � 1=4. This follows easily
since, assuming 1 � a1 � a2 � a3 � 0, it is obvious that if

P3
i=1 Ziai > 1 then Z1 = 1 and

Z2 = 1 and the probability of this is 1/4.

We now proceed with the general case. Let

Sj = fzn�1 :
n�1X
i=1

zi > n� 2jg � f+1;�1gn�1; (34)

and

Sj;a = fzn :
nX

i=1

ziai > n� 2j)g � f+1;�1gn; (35)

where zn�1 = z1; : : : ; zn�1 and zn = z1; : : : ; zn denote sequences of +1 and -1. Then

Pr(
n�1X
i=1

zi > n� 2j) =
jSjj

2n�1
; (36)

and

Pr(
nX

i=1

ziai > n� 2j) =
jSj;aj

2n
: (37)

Therefore, the lemma is equivalent to

jSj;aj � 2jSjj (38)

for all 0 � j � J . Note that there is nothing to prove for j = 0 since both S0 and S0;a are
empty. Also note for future reference that Sj consists of all z

n�1 with j� 1 or fewer -1's and
therefore its cardinality is

jSjj =
j�1X
k=0

 
n� 1

k

!
: (39)

.

The proof of (38) is outlined as follows. First we �nd disjoint sets S 0j;a and S 00j;a satisfying

Sj;a � S 0j;a [ S
00
j;a; (40)

and
jS 0j;aj = 2jSjj: (41)

Then we exhibit a map � with domain S 00j;a and range S 0j;a which is one to one and has the
property that if zn 2 Sj;a then �(zn) 62 Sj;a. Therefore

Sj;a �
�
S 0j;a n �(Sj;a \ S

00
j;a)
�
[
�
Sj;a \ S

00
j;a

�
; (42)
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and since � is one to one, the cardinality of the set on the right equals the cardinality of S 0j;a
which by (41) is 2jSjj thereby proving (38).

Part 1: In the �rst part of the proof we specify the sets S 0j;a and S 00j;a. Consider for the
moment the set of sequences zn with exactly k -1's. Denote this set by

Tk = fzn :
nX

i=1

I(zi = �1) = kg; (43)

where I(�) is the indicator function. Since the ai � 1, a sequence having 2j or more -1's can
not satisfy

nX
i=1

ziai > n� 2j; (44)

implying that

Sj;a �
2j�1[
k=0

Tk (45)

For a sequence zn 2 Tk let i1 < : : : < ik denote the k indices i for which zi = �1. For such
an index ir, the number of indices i > ir for which zi = +1 is exactly n� ir� (k�r). Denote
this number by wr so that

wr = n� ir � k + r (46)

where the dependence on zn is assumed.

If, for a sequence zn 2 Tk and m � k, it is the case that

w1 � m; w2 � m� 1; : : : ; wm � 1; (47)

then
nX

i=1

ziai � n� k �m: (48)

The reason is that (47) implies the existence of m distinct indices i01 < : : : < i0m satisfying
ir < i0r for 1 � r � m and for which zi0r = 1. Letting S = fi1; : : : ; ik; i01; : : : ; i

0
mg we then have

nX
i=1

ziai =
X
i62S

ziai +
mX
r=1

(ai0r � air)�
kX

r=m+1

air (49)

�
X
i62S

ai (50)

� n� k �m; (51)

where we use that ai0r � air for each r.
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Therefore, any zn in Tk for k � j which is also in Sj;a must have

w1 < 2j � k or w2 < 2j � k � 1 or : : : or w2j�k < 1; (52)

since otherwise by (48)

nX
i=1

ziai � n� k � (2j � k) (53)

= n� 2j: (54)

Since the wr's are integers, the constraints (52) are equivalent to

w1 � 2j � k � 1 or w2 � 2j � k � 2 or : : : or w2j�k � 0; (55)

with the general form that for some 1 � r � 2j � k

wr � 2j � k � r: (56)

The constraint (55) yields the inclusion

Sj;a �

0
@j�1[

k=0

Tk

1
A[

0
@2j�1[

k=j

fzn : zn 2 Tk and wr � 2j � k � r for some 1 � r � 2j � kg

1
A (57)

which is tighter than (45).

To obtain S 0j;a and S 00j;a, we need to further decompose the sets

Zj;k
4
= fzn : zn 2 Tk and wr � 2j � k � r for some 1 � r � 2j � kg: (58)

For a particular zn in this set, let r� be the largest r for which wr � 2j � k � r. Therefore
wr > 2j�k� r for all r > r� and wr� � 2j�k� r�. The dependence of r� on zn, j, and k is
implicit. The set Zj;k can now be decomposed based on the value of r�. Speci�cally express
Zj;k as the disjoint union of the sets

Zj;k;l
4
= fzn : zn 2 Zj;k and r� = lg; (59)

so that

Zj;k =
2j�k[
l=1

Zj;k;l: (60)

The set Zj;j;j is particularly simple. Recall that Zj;j;j consists of all sequences z
n with j -1's

and r� = j, meaning that wj � 2j � j � j = 0. Therefore, the last -1 (the jth) must occur
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at index n or zn = �1. There are no constraints on the indices of the other j � 1 -1's. The
cardinality of Zj;j;j is easily computed as

jZj;j;jj =

 
n� 1

j � 1

!
: (61)

The �rst part of the proof is completed by identifying S 0j;a as

S 0j;a =

0
@j�1[

k=0

Tk

1
A [ Zj;j;j (62)

and S 00j;a as

S 00j;a =

0
@ 2j�1[

k=j+1

Zj;k

1
A [

�
Zc

j;j;j \ Zj;j

�
(63)

=

0
@ 2j�1[

k=j+1

2j�k[
l=1

Zj;k;l

1
A [

0
@j�1[

l=1

Zj;j;l

1
A : (64)

The cardinality property (41) of S 0j;a follows from

jS 0j;aj =

������
0
@j�1[

k=0

Tk

1
A [ Zj;j;j

������ (65)

=
j�1X
k=0

 
n

k

!
+

 
n� 1

j � 1

!
(66)

=
j�1X
k=0

 
n� 1

k

!
+

 
n� 1

k � 1

!
+

 
n� 1

j � 1

!
(67)

= 2
j�1X
k=0

 
n� 1

k

!
(68)

= 2jSjj; (69)

where it is understood that
�
n�1
�1

�
= 0.

Part 2: The second part of the proof is the construction of the one to one map � with
domain S 00j;a, range S

0
j;a and the property that if

nX
i=1

aizi > n� 2j (70)
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then ẑn = �(zn) satis�es
nX

i=1

aiẑi � n� 2j: (71)

The construction of � uses the following lemma.

Lemma 3 Given a set of m elements S = f1; 2; : : : ; mg and l � bm=2c there exists a one to
one map  l;m from the collection of subsets of size l to itself with the property that  l;m(A)
is contained in the complement of A.

The validity of this lemma can be seen by considering the bi-partite graph with left and
right vertex sets corresponding to the subsets of size l of S, and edge set consisting of
f(Al;Ar) : Al � Ac

rg. The resulting graph is regular, and therefore exhibits a complete
matching (See, for example, [4]). We can thus let  l;m correspond to such a complete
matching.

We now de�ne �. First, for a particular zn 2 Zj;k;l � S 00j;a, let

S = fi1; i2; : : : ; il�1; ilg; (72)

denote the �rst l � 2j� k indices i where zi = �1. Let  l;il be the map provided by Lemma
3 (we will show that l � bil=2c) sending subsets of size l of f1; 2; : : : ; ilg into subsets of size
l such that  l;il(A) � Ac.

De�nition 1 De�ne ẑn = �(zn) as

� ẑi = �zi for i � il + 1 and for i 2 S
S
 l;il(S).

� ẑi = zi for all other i.

To show that � is well de�ned we must show that for all Zj;k;l � S 00j;a, l � bil=2c. To see this,
note �rst that from (64) the set of (k; l) for which Zj;k;l � S 00j;a is given by

fk; l : (k � j + 1; 1 � l � 2j � k)or(k = j; l � k � 1)g (73)

so that l � k � 1 in all cases. Therefore it makes sense to talk about il+1 and wl+1. Now
note that from the de�nition of Zj;k;l (59), wl and wl+1 satisfy

wl � 2j � k � l and wl+1 � 2j � k � l (74)

and since by de�nition wl � wl+1, it must be that

wl = wl+1 = 2j � k � l: (75)
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On the other hand, from (46) we have wl = n� il � k + l, so that

il = n� wl � k + l (76)

= n� (2j � k � l)� k + l (77)

= n� 2j + 2l (78)

> 2l; (79)

thereby proving that l � bil=2c.

We now have to prove that � has the desired properties which are

1. �(S 00j;a) � S 0j;a

2. � is one to one from S 00j;a to S 0j;a.

3. If
Pn

i=1 aizi > n� 2j then ẑn = �(zn) satis�es
Pn

i=1 aiẑi � n� 2j.

The �rst property, that �(S 00j;a) � S 0j;a, follows from two facts: �rst, for k � j, �(Zj;k;l) �
T2j�k and T2j�k � S 0j;a for k � j + 1; second, for l � j � 1, �(Zj;j;l) � Zj;j;j � S 0j;a. The �rst
fact holds because for zn in Zj;k;l � S 00j;a the number of -1's in �(zn) equals wl = 2j � k � l
(the number of +1's in positions greater than il given by (75)) plus l (the number of -1's in
positions less than or equal to il) giving a total of 2j � k. To see the second fact note that
from the de�nition of Zj;j;l, wj > 0 for l � j � 1, meaning that zn = 1. Therefore, for zn

in these sets, ẑn = �(zn) satis�es ẑn = �1 and since from fact one ẑn has (2j � j = j) -1's,
�(zn) 2 Zj;j;j.

That � is one to one also follows partially from the above discussion which shows that for
k1 < k2 and all l1, l2

�(Zj;k1;l1) \ �(Zj;k2;l2) = ;: (80)

It is also the case that for l1 < l2

�(Zj;k;l1) \ �(Zj;k;l2) = ;: (81)

This is true since it follows from the de�nition of the sets Zj;k;l that if zn1 2 Zj;k;l1 and
zn2 2 Zj;k;l2, then z1i 6= z2i for at least one i � il2 . Note that il1 � il2 by (78). For this range
of i � il2 , �(z

n) ips sign, and hence �(zn1 ) 6= �(zn2 ).

The only thing left to demonstrate that � is one to one is to show that if zn1 6= zn2 but both
zn1 and zn2 are in Zj;k;l, then �(z

n
1 ) 6= �(zn2 ). Note that by (78) il, the index of the lth -1, is

the same for all zn 2 Zj;k;l. If zn1 and zn2 di�er in some position i satisfying il + 1 � i � n
then, since � just ips sign for this range of positions, it follows that �(zn1 ) 6= �(zn2 ). On
the other hand, suppose zn1 and zn2 di�er for i satisfying 1 � i � il. Then, if S1 is the set
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of i such that i � il where z
n
1 is -1, and S2 is the corresponding set for zn2 , it must be that

S1 6= S2. Therefore, according to De�nition 1 and the one to one property of the subset map
 l;il, the subset of indices i � il where �(z

n
1 ) is -1 and the corresponding subset of indices

for �(zn2) must di�er. This completes the proof that � is one to one.

It remains to prove the �nal property of � that if
Pn

i=1 aizi > n�2j then ẑn = �(zn) satis�esPn
i=1 aiẑi � n� 2j. To see this, de�ne the subsets of indices

S(1) = fi1; : : : ; ilg and S(2) = fi : il + 1 � i � ng ; (82)

and
S = S(1) [  l;il(S

(1)) [ S(2): (83)

The cardinality of S is

jSj = n� il + 2l (84)

= n� (n� 2j + 2l) + 2l (85)

= 2j (86)

so that jScj = n� 2j. If

nX
i=1

aizi =
X
i2S

aizi +
X
i2Sc

aizi (87)

> n� 2j; (88)

then X
i2S

aizi > n� 2j �
X
i2Sc

aizi

� n� 2j � jScj

= 0: (89)

From the de�nition of � (De�nition 1), however, ẑn = �(zn) satis�es

ẑi = �zi for i 2 S and ẑi = zi for i 2 Sc: (90)

Therefore, (89) implies that
P

i2S aiẑi < 0, and hence

nX
i=1

aiẑi =
X
i2S

aiẑi +
X
i2Sc

aiẑi (91)

<
X
i2Sc

aiẑi (92)

� jScj (93)

= n� 2j: (94)

This completes the proof.
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