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Data clustering is one of the common techniques used in data 
mining. A popular performance function for measuring 
goodness of the K-clustering is the total within-cluster 
variance, or the total mean-square quantization error (MSE).  
The K-Means (KM) algorithm is a popular algorithm which 
attempts to find a K-clustering which minimizes MSE. In this 
paper, we approach the min-MSE clustering problem by way of 
a Local Search (LS) algorithm, and analytically derive a 
clustering algorithm  which we call LKM. A number of analyses 
of LKM are given; in particular, we prove that the set of local 
optima that can trap KM is a superset of those that can trap 
LKM. The experimental results also show that LKM converges 
faster and better than KM. More importantly, LKM naturally 
extends to an aggregated version, called A-LKM, which can be 
applied to the problem of clustering large data sets. A-LKM is a 
clustering algorithm which clusters subsets of data points, or 
subclusters, instead of individual data points. It can be used to 
cluster, for example, a large data set that has been aggregated 
through an algorithm such as the Phase 1 of the BIRCH 
algorithm ([ZRL96]), with the intention of fitting the 
aggregated data into the main memory to enable main memory-
based clustering. We prove that A-LKM, as applied to the 
problem of clustering subclusters, preserve the monotone 
convergence property. Experimental results also show that A-
LKM performs better than A-KM, in clustering aggregated 
data. 
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1.0 INTRODUCTION

Data clustering is one of the common techniques used in data mining. An ideal case is to group
related data into the same cluster and unrelated data into different clusters. Examples of
applications of clustering include customer segmentation, document categorization, and
scientific data analysis.

One popular class of data clustering algorithms is the center-based clustering algorithms.  By
finding  K centers positions (local high densities of data), M={mi |i=1,… ,K},  the data, S
={xi|i=1,… ,N}, can be put into clusters using the voronoi partition (i.e. every data item goes with
the center that it is closest to).  To find  K centers, the problem is defined as an optimization
(minimization) of a performance function,  Perf(X, M),  defined on both the data items and the
center locations.  A popular performance function for measuring goodness of the K-clustering is
the total within-cluster variance, or the total mean-square quantization error (MSE).  Formally,
let

RD  be the Euclidean space of dimension   D;
S ⊆  RD  be a finite subset of N data items;
P = (S1,… ,SK) – a partition of S, where S = ∪ i=1… K Si  and Si ∩ Sj = ∅ , the empty set;
mi =Ê {x|xœS i }/ ni and ni = |Si|, the mean and size of the ith cluster.

The goodness of the partition is measured by the total within-cluster variance (or total mean-
square quantization error):

(We’ll also use the shorter notation |x-mi |2 for (x-mi ) (x-mi )T ).

The optimization problem is to find a clustering P that minimizes MSE(P).

The K-Means (KM) algorithm is a popular algorithm which attempts to find a K-clustering
which minimizes MSE.  It is proved to converge to a local optimum [GG91].  In this paper, we
approach the min-MSE clustering problem by way of a Local Search (LS) algorithm, and derive
a data clustering algorithm which we call LKM (Local Search K-Means). LKM turns out to be
strikingly similar to KM despite the fact that it is derived from an entirely different path. The
major difference between LKM and KM is the criteria for moving a data item.  A number of
analyses of LKM are given; in particular, we prove that the set of local optimums that can trap
KM is a superset of those that can trap LKM. The experimental results also show that LKM
converges faster and better than KM.
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One problem which some recent research has focused on is clustering large data sets ([ZRL96]
[NH94] [BFR98]). In particular, the BIRCH algorithm, proposed in [ZRL96], uses aggregation
of data as the mechanism for scaling up data clustering algorithms.  The first phase of BIRCH
aggregates the original data set into a number of locally dense subclusters such that the
information about the subclusters can fit into main memory, so as to enable main memory-based
clustering over the subclusters. BIRCH accomplishes its first phase by inserting data items into a
tree based on a distance function and a bounding function so that the data items in each leaf
nodes form the subclusters.  By properly selecting the thresholds, the size of tree is controlled to
fit into the main memory available.  After building the tree (more precisely the aggregation of
data), other data clustering algorithms, such as K-Means, can be applied to the aggregated data
(i.e., the subclusters) to complete the clustering task.

LKM naturally extends to an aggregated version, which we call A-LKM. A-LKM is a clustering
algorithm which clusters subsets of data points, instead of individual data points.  It can be used
to cluster a large data set that has been aggregated through an algorithm such as the BIRCH
algorithm. The criterion for moving a subcluster of data from one cluster to another cluster is
analytically derived in LKM, and every move will result in a decrease of the value of MSE,
satisfying the monotone convergence property.  In contrast, such property is not proven when
applying KM directly to an aggregated data set, substituting every subcluster with a data point
represented by the subcluster’s centroid.  We also experimentally demonstrate advantages of the
A-LKM algorithm over A-KM (which is K-Means applied to aggregated data) for clustering
aggregated data.

This paper is organized as follows.  Section 2.0 develops LKM algorithm from Local Search
optimization algorithm; Section 3.0 compares LKM with the K-Means; Section 4.0 develops the
Aggregated LKM and  presents experimental results of A-LKM and Section 5.0 concludes the
paper.

2.0 THE LKM ALGORITHM

We derive both the LKM and A-LKM based on the Local Search optimization algorithm. We
first introduce the Local Search Optimization Algorithm in the next subsection.

2.1 the Local Search Algorithm

Local Search (LS) algorithm is a general algorithm for finding a local optimum of a function
([GMW97]).  For a performance function defined on a finite set, the optimum can be found
theoretically by brute force search if it is affordable.  The only reason for not doing so in practice
is the cost.  If the search is limited to a small region, which is defined by specifying a set of
neighborhoods for each data item, the greedy algorithm (brute force search for the best in the
neighborhood) will find a local best.  By repeating this process, a local optimum of the function
can be found.
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Let F: P à  R  be a function defined on a finite set P .  A neighborhood of a point p∈  P  is a
subset of P  that contains p.  Each point in P may have many neighborhoods.  The sizes of the
neighborhoods directly impact the cost of the brute force search and the quality of the local
optimum.  For each particular optimization problem, we are interested in only the kind of
neighborhoods that help us to balance the cost of the brute force search, the speed of
convergence and the goodness of the “local” optimum the algorithm converges to.  The kind of
neighborhoods we use in this paper will be clearly defined later.

To find a “local” optimum of a performance function, F, defined on P, we have

Generic Version of Local Search Algorithm (G-LS)
Step 1: Starting from an initial position, current_p= p0∈  P and mark all neighborhood unused.
Step 2: Choose a unused neighborhood, N(current_p) of current_p.  If no more such
neighborhoods left, STOP.
Step 3: Search in N(current_p) for p1= argmin( F(p) |  p ∈  N(current_p)); //i.e. p1 gives the

minimum of F over N(current_p).
Step 4: If F(p1) < F(current_p), set current_p = p1;  EndIf.

Mark  N(current_p) used.   Goto Step 2.

The generic version of the algorithm is very simple and it will converge to a “local” optimum
because the value of F(current_p) is monotone decreasing.  The word “local” means that the
converged point, pfinal, gives the smallest value of  F  among all the points in the union of all the
neighborhoods of pfinal,.  How to choose the best set of neighborhoods to balance the three
objectives -- low cost of the brute force search, high speed of convergence, and better “local”
optimum – is still an art for most problems.

In Step 4 of G-LS, F(p1) < F(current_p) gives the criterion for moving from current_p to p1.  If
the search in the current neighborhood does not find a strictly lower value of F, the current_p
will not be changed (no move), and another neighborhood of current_p will be tried (See Step 2).
If after exhausting all the neighborhoods of current_p and still no lower value of F is found, the
algorithm will stop.

2.2 Deriving the LKM Algorithm Using the Local Search Algorithm

A tailored version of this simple algorithm is used to find a “local” optimum of the “total with-in
cluster variance” performance function.  We will prove that the local optimum found by this LS
algorithm is a subset of the local optimums that the original K-Means algorithm can converge to.
The following conclusion can be made:

The local optimums of the performance function found by the LKM, which includes all global
optimums, is a subset of the local optimum that the original K-Means algorithm can converge to.
The LKM is less likely to be trapped by the local optimums than K-Means.
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First we will give a tailored version of the algorithm so that the notations are consistent with the
performance function; then, we will define the kind of neighborhoods to be used.

The total with-in cluster variance is defined on the (voronoi) partitions of the data set, S.  Let P
= { P = (S1, … , SK) | S = ∪ i=1… K Si  and Si ∩ Sj = ∅ }, the set of partitions of S.  A “point” P = (S1,
… , SK) ∈  P  is a partition of the data set S.  For each data item s∈S, a neighborhood of P is
defined as

Ns(P) = { All the partitions of S that can be derived by changing the membership of s}.

Or, in mathematical notation, if s∈Si

Ns(P) = {P} ∪  { P’ = (S’1, … , S’K) | S’i = Si – {s}, S’j = Sj ∪  {s}, S’k = Sk  for k ≠ j,
j=1,… ,K }.

All neighborhoods have the same size K, which determines the cost of the controlled brute force
search.  There are as many as |S| neighborhoods for each partition.  After convergence, the
“local” optimum under this neighborhood definition means that no single data item can be
moved from one cluster to another to improve the value of the performance function.  K-Means
algorithm does not guarantee this.  An example will be given later.

The tailored version of the criteria for making a move in Step 4 is given by the incremental
change δP’ MSE(P) = MSE(P’) - MSE(P), where MSE() is the total with-in cluster variance, P =
(S1, … , SK) and P’ = (S’1, … , S’K) ∈  Nx0(P).  x0 ∈  S is the data item being considered for a move.

The above derivation is briefly explained here.  The 2nd line is derived by canceling out the terms
over Sk’s which are the same for both P’ and P. The 3rd line is derived by rewriting the first two
terms using Si  and Sj instead of S’i  and S’j. The 4th line follows from |x- m’i|2 = |(x- mi) +( mi -
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m’i)| 2 = |x- mi|2  + 2*( x- mi )(mi - m’i )T + |mi - m’i|2.  The first one cancels out with the third term
and the middle one sum to zero.  The same thing is done for the term indexed by j.  The last line
uses the following:

Based on the above derivation, the criterion for moving x0 is

 or

and the target cluster where x0 is moved to is

Algorithm: LKM_One_Cycle:
Step 1: Start with an initial partition P = (S1,… , SK ); Set a = 1; Mark all neighborhoods (=data
items) unused.
Step 2: If all data items in Sa are used then  a++; endif

If  a > K then STOP.
Get an unused data item, x0, in Sa.

Step 3a: Set A = na*(x0-ma)*(x0-ma)/(na-1);
Step 3b: for ( j = 1; j ≠ a, j ≤ K; j ++ ) do

δjMSE(P) ≡ MSE(P’) -MSE(P)= nj*(x0 -mj)*(x0 -mj)/(nj+1) – A,
where P’ is derived from P by moving x0 from Sa to Sj;

Step 3c: Let b = argmin{δjMSE(P) < 0| all j != a};  // the best cluster for x0 to move to.
Step 4:  Mark x0 as used.

If such b exists then
Move x0  from Sa to Sb;
- -na;  ++nb ;
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ma = (na*ma-x0)/(na-1),
mb = (nb*mb-x0)/(nb-1).

Endif   //else do nothing.
goto Step 2

Since S is finite, the algorithm will stop after a finite number of steps.

Algorithm: LKM
Run LKM_One_Cycle
If Check(Stopping_Rule) = true then STOP

End

The Stopping_Rule can be either
1. The value of the performance function decreased less than ε in the previous run of

LKM_One_Cycle; or
2. No data item is moved in the previous run of LKM_One_Cycle, which is more strict than

Stopping_Rule #1.

We presented the LKM algorithm in multiple cycles primarily for comparing with the original K-
means algorithm, as will be discussed in the next section.  The cycles and order in which the data
items in each cluster are processed is unimportant to the correctness of the algorithm.  The only
thing important is to check every data item to make sure that not a single data item can be moved
before stopping the algorithm.  A randomized version of LKM can be developed based on this
observation.  The data items can even be sampled randomly according to certain distribution, for
example, a uniform distribution or a distribution based on importance sampling.

If we use Stopping_Rule #2, the converged partition has to be a “local” optimum, which means
that no single data item can be moved to lower the value of the total within cluster variance.  It is
interesting to point out that the original K-means algorithm does not guarantee a local optimum
under this neighborhood definition.  An example is given later in Figure 1.

3.0 KM AND LKM: A C OMPARISON

3.1 Review of the K-Means Algorithm

To prepare for the comparison of LKM with K-Means, we briefly review the K-means algorithm
in this section. MacQueen [M67] is considered by many people to be the first one defined K-
Means.

Starting with an initial set of points, mi, i=1, … ,K,  K-means algorithm has the following two
phases:
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1. For each data item, find the closest mi and assign the data item to the cluster i.  The current
mi’s are not updated until the next phase.  It is proved ([GG91]) that this phase gives the
optimal partition for the given centers.

2. Recalculate, mi , as the centroid of the ith cluster of the new partition.  It is proved ([GG91])
that this phase gives the optimal center locations for the given partition of data.

3. Loop through 1 & 2 until the clusters no longer change.

After each phase, the total within cluster variance never increases (this is called the monotone
convergence property of the algorithm) and the algorithm converges to a local optimum of the
performance function.  More precisely, the algorithm will reach a stable partition in finite
number of steps because there is only a finite number of partitions of a finite data set.  The cost
per cycle (one run of phase 1 + one run of phase 2) is O(K*N*D).

More results can be found in  [GG91], [SI84] and the references there on K-Means type of
algorithms with more general performance functions and their convergence properties.

3.2 Comparison of LKM and KM

3.2.1 Computation costs:

The computation cost of LKM and KM per cycle are both O(K*N*D).  The constant factor is
also very close. Especially for high dimensional data, the difference in the constant factor is
negligible.  It is the convergence speed that determines the real cost in applications.  (All
experimental results we did show that LKM converges faster and to a lower total within cluster
variance than KM, which will be discussed in the next subsection. For low dimensional data, if
the number of iterations of KM and LKM are close, LKM could cost more due to a slightly
bigger constant factor.  For higher dimensional data, the time costs of KM and LKM are more
proportional to the number of iterations they use.)

3.2.2 Quality of the optimums:

We first show that all the local optimal partitions that trap LKM also trap KM.  A data item can be
moved by the LKM if δP’ MSE(P) is smaller than zero, which gives

 Condition A:  (ni /( ni –1)) |x0 – mI| 2  > MIN( (nj /( nj + 1)) |x0 – mj| 2| j=1,… ,K)

KM moves a data item if the following is true:

 Condition B:  |x0 – mi| 2  > MIN( |x0 – mj| 2| j = 1,… ,K)

The left side of Condition A is “boosted” and the right is “discounted” in comparison with those
of Condition B.  Therefore “Condition B is true” implies “Condition A is true”, which implies
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that a partition converged to by the LKM is stable under KM.  If the LKM is trapped by (i.e.
become stable under) a partition, KM will not be able to get out of it.

The example in Figure 1 shows that there does exist a partition that traps KM but not LKM.
Considering a data set in the one-dimensional Euclidean space, R, let S = {0, 1.8, 3}, a set of
three data points.  Partition {{0, 1.8}, {3}} is stable under KM but it is not stable under LKM.
LKM will converge to a better partition, {{0}, {1.8,3}}.

Figure 1.  A KM’ stable partition can be improved by moving one data item.
This will never happen to LKM.

Combining the two arguments above, we have shown that all the local optimal partitions that trap
LKM also trap KM.  This conclusion is shown in Figure 2.

Figure 2.  The relationship between the stable partitions of the KM and that of LKM.

Comparing how KM’ Condition B and the LKM’s Condition A will classify a new data item is
also interesting.  It reveals that there is a narrow region between two neighboring clusters and a
data item falls in this regions can go to either cluster under KM.

All partitions

Partitions that trap KM

Partitions that trap LKM

Global
Optimums

0 1. 3
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Figure 3.  The indecisive region of KM.

Let A and B be two clusters with their centroids at mA and mB, and with nA and nB data items in
them.  Let A’ and B’ be the new clusters by adding a new data item x into A or B, and m’A and
m’B, n’A and n’B defined accordingly.  There are two cases:

1. A’ = A ∪  {x} , B’ = B is stable under KM, i.e. |x- m’A|2 < |x - mB|2.
2. A’ = A, B’ = B ∪  {x} is stable under KM, i.e. |x- mA|2 > |x – m’B |2.

If we ask for both 1. and 2. to be true, we will find a non-empty region between the two clusters
where x can fall.  The details can be carried out easily and the two hyperplanes given by the
inequalities are drawn in Figure 3.  Any data item that falls in the region between the two
hyperplanes can join either A or B with the result of a stable partition under KM.  We call this
region indecisive region of KM.  The indecisive region is given by the following formula:

((nA + 1)/nA) |x – mB| > |x – mA| > (nB/(nB+1)) |x – mB|

This indecisive region degenerates to a single hyperplane (a tie) for the LKM by design.

The analysis above can be extended to multiple clusters. Indecisive regions exist between any
pair of neighboring clusters for KM.  The larger the sizes of each cluster the narrower the
indecisive region.

Due to the existence of indecisive regions, a single data item in this region separates (creates)
two local optimums (two stable partitions) under KM.  This gives an explanation why KM has
more stable partitions than LKM.

3.2.3 Convergence speed:

Comparing with the KM, the LKM looks at the after effect of a move to decide if it should move
(a data item).  The centroids that are affected by moving a data item is updated right after the
move.  Therefore, each data item is processed based on the most updated information, from
which we expect LKM to converge faster than KM.  This expectation is supported by all
experimental results we have.  LKM merges the two separate phases in the original KM.  As
soon as a data item is moved from one cluster to another, the centroids, mi  and mj , of the
changed clusters are updated.

A Bx

Case 1 is

Case 2 is
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3.2.4 Empty Clusters vs Outlier Detection:

Two more conclusions can be drawn from Condition A for the LKM:

1. No clusters will ever become empty under the LKM because the left of Condition A becomes
zero when Si ={x0 }, a single data item.

2. If a single data item cluster, Sj ={x0 }, remains that way for a full cycle, x0  is an outlier in the
following sense: Condition A is faults for all x,  |x – mi| 2  ≤ (( ni –1)/ ni) * |x – x0| 2/2 < |x –
x0| 2/2.  Every data item is at least twice of the distance away from x0 than from its own
cluster’s centroid.  x0 is well isolated from all other clusters.

When this happens, we mark x0 as an outlier and dropped the single data item cluster.  Many
ways of creating new clusters have been suggested for KM in history, which also apply to the
LKM.  We recommend splitting the cluster with the largest variance.

The comparisons are summarized in the following Table 1.

Table 1.  Comparison of LKM with KM.

3.3 Experimental Results on Comparison of LKM and KM

The LKM and KM algorithms have been implemented in C++. The experiments are run on HP
UNIX C360.  We have used three different sets of data:

1. UC Irvine data set,
2. BIRCH data set,
3. Hier2 – a synthetic data set.

The BIRCH data set has 100,000 points in 2 dimensions clustered around 100 (10x10) centers in
a grid.  Each cluster has 1000 points generated according to a normal distribution with radius
sqrt(2).  The distance between neighboring centers of the clusters are 4*sqrt(2).  The UC Irving

KM                                                   LKM

Empty cluster
problem

Cost per cycle

Stable Partitions

Yes

O(N*K*D)

Stable partitions of KM

“No”, it becomes a single point
problem.  Outlier detection.

O(N*K*D)

Stable partitions of LKM⊃
Indecisive region. Yes No
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data set has 20,000 points and 16 dimensions.  Each point represents a rectangular pixel display
of one of the 26 capital letters in the English alphabet.  The Hier2 data set is generated by a
hierarchical random data generator described in the next paragraph.

The design of the hierarchical random data generator is inspired by the type of clustering
displayed in the Universe.  Each galaxy remotely looks like a single dot in the Universe, but
when you are inside of it, it has a structure with each individual “sun” like a dot; but when you
are near each sun, it has satellites.  The hierarchical random data generator starts with a few
given points and converts each point into a local cluster of points.  Then its output is used as its
new input to generate more and tighter clusters.  Hier2 started with four points, each one is
turned into 100 points with uniform distribution and then each of the 400 points is turned into 50
points with uniform distribution.

The data sets and the number of clusters to be found are summarized in Table 2.

Expr# Data Set Number
of items

Number of
dimensions

Number of
Clusters

1 UC Irvine 20,000 16 200
2 BIRCH 100,000 2 100
3 BIRCH 100,000 2 2000
4 Hier2 20,000 2 400

*The shorter run amount the two.

Table 2.  The Setup of the Experiments.

A common random partition is used to initialize both LKM and KM.  After the initialization, the
total with-in cluster variance is high for each data set. In all the experiments we ran, the
convergence speed and the quality of the local minimum LKM converges to are consistently
better than KM.  We also timed all the experiments.  The machine we used is a standalone HP
UNIX C360 workstation.  All experiments are run long enough for the convergence to reach a
local optimum. In all cases, there is a significant convergence speedup being observed.  (See
Table 3 and Figure 5-8).

Expr
#

Number of
Iterations

Conver-
gence
Speed
Up

Reached
Local
Optimal?

Local Optimal
Value

Start
Perfor
mance
Value

Total run
time in
seconds.

KM LK
M

KM LK
M

KM LKM KM LK
M

1 6 4 33% Yes Yes 2394 2385 5385 140 103
2 109 82 25% Yes Yes 208602 202899 482046 319 341
3 74 30 59% Yes Yes 11928 11678 24380 4178 2456
4 44 20 55% Yes Yes 17979 17707 41265 101 66
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Table 3.  The Summary of the Experimental Results.

4.0 AGGREGATED LKM

4.1 Derivation of Aggregated LKM

Let U ⊂  Si, U ≠ Si, be a true non-empty subset of the ith cluster.  A new partition P’  is derived
from P  by moving the subset U  to the jth cluster of P,  i.e. S’i =Si - U,   S’j = Sj ∪ U, and S’k = Sk

, for k ≠ i, j.  Let nu = |U|,  mu = ( ∑ U x ) / nu , su, = ∑ U (x - u)2  be the size, mean and total squared
error of the elements in U.  The means of the ith and the jth cluster after moving U from Si to Sj
(in P’) are:

m’i=( ni mi – numu)/(ni-nu) and  m’j=( nj mj + numu)/(nj+nu).

The incremental change to the performance function, δP’ MSE(P) = MSE(P’) - MSE(P), due to
the move is

δP’ MSE(P) = MSE(P’) - MSE(P) = ∑ i=1..K∑ x ∈  S’i  |x-m’i|2  -  ∑ i=1..K∑ x ∈  Si |x-mi| 2

= ∑ x ∈  S’i  |x-m’i| 2  +  ∑ x ∈  S’j  |x-m’j|2 -  ∑ x ∈  Si |x-mi| 2  -  ∑ x ∈  Sj |x-mj| 2

= [∑ x ∈  Si  |x-m’i| 2 –∑ x ∈  U |x – m’i| 2  - ∑ x ∈  Si |x-mi| 2] + [∑ x ∈  Sj  |x-m’j| 2 + ∑ x ∈  U |x – m’j|2 - ∑ x ∈  Sj
|x-mj| 2]
= [∑ x ∈  Si  |mi  - m’i|2 –∑ x ∈  U |x – m’i| 2]   +  [∑ x ∈  Sj  |mj -m’j|2 + ∑ x ∈  U |x– m’j| 2]
= [ni |mi  -m’i| 2 – ∑ x ∈  U |x – m’i| 2]   +  [ nj  |mj -m’j|2 + ∑ x ∈  U |x – m’j| 2]
=[ - (ni nu /( ni – nu)) |mu– mI| 2  - su ] +  [ (nj nu /( nj + nu)) |mu– mj| 2 + su]
= nu [(- ni/( ni – nu)) |mu– mi| 2  +   (nj/( nj + nu)) |mu– mj| 2 ]

It is interesting to look at the terms separately:  (ni nu /( ni – nu)) |mu– mi| 2  - su   is the amount by
the variance of the ith cluster will decrease after taking out the subset U.  (nj nu /( nj + nu)) |mu–
mj| 2 + su  is the amount by the variance of the jth cluster will increase after adding the subset U
to it.  (ni/( ni – nu)) |mu – mI| 2, the first term in the brackets, measures the fitness of U in Si.  (nj/(
nj + nu)) |mu – mj| 2, the second term in the brackets, measures the attractiveness of Sj to U.

Moving subset U will result in a decrease in value of the performance function if δP’ MSE(P) < 0,
which is equivalent to

 Condition A’:  (ni/( ni – nu)) |mu – mI| 2  >  MIN( (nj /( nj + nu)) |mu – mj| 2 | j=1,… ,K)

If nu = 1, Condition A’ is the same as Condition A.   A subset behaves just like a BIG data item
with the number of elements in it as the weight and the centroid as its location.  The coefficients,
(ni/( ni – nu)) and (nj /( nj + nu)) are more significant (boost or discount more) when nu > 1.
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The importance of working with subsets instead of individual data items is on clustering very
large databases.  Condition A’ provides the theoretical criteria for an aggregated subset to be
moved from one cluster to another.

When KM is applied to aggregated data, the criteria for moving a subset from one cluster to
another is the same as KM applied to individual data items except that the centroid of the subset
is used as the location of the subset.  The subset is moved to the cluster if:

Condition B’:  |mu – mi |2  > MIN( |mu – mj| 2 | j=1,… ,K).

We refer to the aggregated version of the LKM algorithm as A-LKM, and that of KM as A-KM.

Comparing Condition A’ and Condition B’, the same statement we made for moving single data
items is still true: A-LKM converges to a subset of the local optimums A-KM converges to.  A-
LKM is less likely to be trapped by the local optimums than A-KM, as shown in Figure 8.  The
proof is similar to that of the KM and LKM algorithm.  To show that Partitions that trap A-KM
and a superset of those trap A-LKM, we only need to compare Conditions A’ and b’.  To show
that there exists at least one partition that traps A-KM but does not trap A-LKM, we change each
data item in Figure 1 to two very close data items, we have an example to show that not every
local optimum that trap A-KM will trap A-LKM:  let S ={ -0.01, 0.01, 1.79, 1.81, 2.99, 3.01},
U1={-0.01, 0.01}, U2={1.79, 1.81}, and U1={2.99, 3.01}.  Applying A-LKM and A-KM on {U1,
U2, U3 }.  {{U1 ,U2}, {U3}} traps A-KM but not A-LKM.

Due to aggregation of data points, the global optimums of the original performance function
(defined on non-aggregated data partitions) may not be reachable after aggregation.  But if some
of them are reachable, they will be contained by the local optimums that trap A-LKM.
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Figure 4.  The relationship between the stable partitions of the A-LKM and that of A-KM.

When data is aggregated, like in A-KM, the performance function is still faithfully calculated as
the same performance function before aggregation by keeping the sufficient statistics vector of
each aggregated subset, which is (count, sum, sum of squares) (See [BRL96] and [BRF98]).  The
centroids of the clusters are still the true centroids of the non-aggregated data (also calculated
from the sufficient statistics).  Therefore the phase 2 of the convergence proof in [GG91] (p352,
on Centroid Condition) is still true, the centers are still optimums for the given partition.  But for
the phase 1, the partition is no longer the optimal partition of the given centroids for the original
(non-aggregated) data.  The monotone convergence property of A-KM is, therefore, not proved.
For A-LKM, the monotone convergence property still holds from our proof given at the
beginning of this section.

4.2 Experimental Results on Aggregated Local Search Based KM (A-LKM)

We ran A-LKM and A-KM in two experiments. Both experiments are run long enough for the
convergence to reach a local optimal.   The first experiment takes the 2000 centers we got by
running LKM on the BIRCH Data Set, we aggregated the clusters into 2000 aggregated subsets.
A-KM and A-LKM are run on this 2000 aggregated subsets looking for 100 clusters.  The
convergence is given in Figure 9.  The second experiment is performed on the 400 centers from
the Hier2 data set looking for 40 clusters.  The convergence of A-KM and A-LKM for this
experiment is  plotted in Figure 10. The convergence behavior is summarized in the table below.
In both experiments, we see an improvement in convergence speed when LKM is used, one of
which is very significant and the other less. We also see some incremental improvement in the
quality of the optimum reached.  (See Table 4.)

Expr. Number of
Iterations

Convergenc
e Speed Up

Reached Local
Optimal?

Local Optimal
Value

Start
Performan
ce Value

A-
KM

A-
LKM

A-
KM

A-
LKM

A-
KM

A-
LKM

BIRCH 16 15 6% Yes Yes 4628 4106 9048
Hier2 13 6 54% Yes Yes 7310 6893 14025

All partitions

Partitions that trap A-KM

Partitions that trap A-LKM
Global
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Table 4.  The Summary of the Experimental Results of A-KM and A-LKM.

5. CONCLUSION

In this paper, we presented a K-clustering algorithm called LKM derived from the Local Search
algorithm. LKM has several analytical advantages over the popular K-Means clustering algorithm
(KM), and thus can be considered a refinement of the KM algorithm. LKM can offer a significant
improvement in convergence speed, and some improvement in quality of the local optimum
achieved.  The aggregated version of LKM, which we call A-LKM, has a proven monotone
convergence property; while the aggregated version of KM, which we call A-KM, does not share
the original proof of monotone convergence property of KM.  A-LKM, combined with an
aggregation algorithm, such as the first phase of the BIRCH algorithm, is a better candidate for
clustering very large data sets than such a combination with A-KM in both theoretical
understanding and convergence quality and speed.
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Figure 5. Convergence of  KM vs. LKM on UC Irving Data Set.  200 Centers.

Figure 6. Convergence of  KM vs. LKM on BIRCH Data Set.  100 Centers.
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Figure 7.  Comparing the Convergence of  KM and LKM on BIRCH Data Set with 2000 Centers.

Figure 8.  Comparing the Convergence of  KM and LKM on Hier2 Data Set with 400 Centers.
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Figure 9.  Comparing the Convergence of  A-KM and A-LKM on the 2000 Subsets (Aggregation) from Figure 7.
100 Clusters are Generated by Both A-KM and A-LKM.

Figure 10.  Comparing the Convergence of A-KM and A-LKM on the 400 Subsets (Aggregation) from Figure 8.
40 Clusters are Generated by Both A-KM and A-LKM.
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