

System Factory: Integrating Tools
for System Integration

Vadim Kotov
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-118
October, 1999

E-mail: kotov@hpl.hp.com

system
integration,
system
modeling,
system analysis,
customization,
simulation,
analytic
modeling, Petri
Nets,
Communicating
Structures,
System Factory

Large highly distributed systems such as multi-tier server
farms, global enterprise systems, E-commerce and E-service
systems are both critical for businesses and complex and
expensive to build and run. Their design requires an advanced
technology of system integration that guarantees satisfaction of
various customer requirements such as cost/performance, high
availability, recoverability, security, etc. This report advocates
a shift from uncoordinated tools, which are developed
independently to address specific tasks, to integrated
environments that incorporate various system analysis
techniques and tools and may be customized for the design of
such IT systems that fully satisfies the whole spectrum of
customer requirements.

The functionality and structure of a System Factory prototype
is described in the report. The center of the factory is a
Repository that accumulates system solutions, patterns, and
templates for specific business segments. Specialized Shops
with a common modeling and analysis base provide convenient
means to find customized solutions. Communicating Structures,
a uniform and systematic representation of large systems as
hierarchical, distributed, and communicating subsystems and
components, provides this common base.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

2

CONTENTS

1. Introduction ..3

2. Consolidation and Mass Customization...4

3. System Factory Functionality...6

4. System Factory Structure ...9

4.1. Repository...9

4.2. Modeling Tool Kit..10

4.3. Specialized Shops ...10

4.4. Factory Framework ...11

5. Communicating Structures Library (CSL)..13

5.1. Simulation ..14

5.2. Analytic Modeling ..15

5.3. Petri Nets ...16

6. Domain Libraries ..16

6.1. Systems of Servers..17

6.2. Multi-Tiered Systems...17

6.3. Template Models ..19

7. Conclusion...21

8. Acknowledgements..22

9. References ...22

3

1. INTRODUCTION

Rapidly converging computer and communication technologies and, specifically, explosive
growth of net-enabled technologies bring us to a new IT landscape. It is mainly formed by
complex systems that integrate hardware, software, networks, middleware, applications and data
into multi-tiered systems, ranging from clusters of servers up to enterprise-wide computing
infrastructures and global massively distributed internet-based systems. These systems, or rather
Systems of Systems, consist of large number of components of a vast variety: from high-end
servers and huge databases to laptops, handholds, personal appliances, and mobile devices. They
have sophisticated connectivity and high traffic densities, implement newest technologies of
storing, manipulating, and delivering of various types of data, including complex texts, voice,
graphics, and video. As a result, the variety of feasible system architectures and their complexity
are rapidly increasing. The main problem of these systems is that though even they are built of
highly reliable and efficient components they may exhibit bad global behavior and performance
due to bad application and data partitioning, wrong traffic organization, inappropriate security
policies, etc.

Systems of Systems represent a challenge for the design and integration. On one hand, the
solution space is huge and complex. On the other hand, these systems are increasingly critical for
businesses. The cost of their deployment and management amounts to a quite substantial part of
corporate budgets. It is very difficult to pick good solutions that are adequate to growing
customers’ requirements.

To meet the new level of system complexity and to deliver much better tailored systems and E-
services than the competition, system and service providers need an advanced system integration
technology that should be focused at mass customization as an important market differentiator.
Mass customization in system integration will produce and deliver systems that are designed to
fit specifications of individual customers, are state-of-art of IT, and are, simultaneously, cheaper
than "manually" integrated systems.

Such a technology should be a breakthrough in system design, integration, reengineering, and
management. It should not only radically speed up system delivery, increase cost/performance,
reliability and security of delivered systems, but also reduce cost of ownership and improve
system manageability and reactivity to business.

System Factory is a metaphor that being implemented provides such a technology in the form of
an efficient working environment for system designers and integrators. It includes various
modeling and analysis tools for addressing various aspects of system design, a repository for
accumulating system patterns, templates, and solutions as well as specialized shops supporting
different stages of the system analysis, modeling, synthesis, and management.

4

Why a factory is better than just a tool set? The factory

• moves the system integration from craftsmanship to industrial setting,

• emphasizes priority of systematic quantitative methods of analysis and taking decisions,

• promotes standards and well-defined interfaces for data exchange between different tools,

• supports the usage of patterns, templates, and prefabricated solutions and, as a result,
speeds-up (time-to-market!) the system integration process and makes it more reliable,

• provides a common frame to incorporate quickly new tools,

• builds-up a common logistics for user interface, visualization, and documenting.

The evaluation of solutions is done at the factory using multiple criteria and requirements
(performance, reliability, high-availability, …) and optimization may be made in one (but multi-
dimensional) metrics.

The center of the factory is Repository that accumulates system solutions, patterns, and templates
for specific business segments. Specialized Shops with a common modeling and analysis base
provide convenient means to find customized solutions. Communicating Structures, a uniform
and systematic representation of large systems as hierarchical, distributed, and communicating
subsystems and components, currently provide this common base.

2. CONSOLIDATION AND MASS CUSTOMIZATION

The spectrum of IT-enabled businesses and variety of corporate IT infrastructures are growing.
Customers are interested in system consolidation to avoid complexity and cost of proprietary
system deployment and management. System integrators are also interested in consolidation, as
integration from scratch has many disadvantages: long time-to-market, significant cost of design,
and not well-tested Quality of Solutions.

To maximize the return from investment into IT, customers expect that systems, while satisfying
traditional cost/performance and Quality of Service requirements (low response time, high-
availability, security…), will additionally be:

- "ready-made" integrated systems customized and tuned for their business processes,

5

- scalable and modifiable enough to respond to changes in businesses, and

- reactive to special (critical) workload situations.

As special orders and made-to-order systems cost more, the customers look for systems that
tailored to their needs – at the lowest possible price. In other words, they look for customized
systems.

Business processes in different industries have both common and specific features. The whole
space of business processes may be partitioned into business segments of related business
models. In the same way, the space of IT infrastructures that support different business models
may be ramified into correspondent IT models, or patterns. Finally, implementation of the IT
patterns results into a branching structure of typical system solutions (see Figure 1). Such a
ramification may have several layers, each layer being a refinement of the previous one.

Figure 1.

After we have structured businesses and IT patterns, we can, for each business segment and
correspondent IT model:

• identify a typical generic system configuration, or a template system,

• identify the main parameters that influence cost/performance, availability and other QoS,

• identify the segment’s workload patterns,

• analyze the solution space for the template system,

Business
Segment

IT
Model

System
Solution

6

• find the best (generic) solution(s) for the segment,

• accumulate these solutions for the further usage,

• identify typical sub-segments satisfying specific system QoS requirements and
accumulate correspondent template systems and solutions for the further usage,

• continue the process to satisfactory granularity of segments.

Having a hierarchy of solutions accumulated in a solution repository, a system integrator can
start his design with identifying an IT segment in the repository that may contain solutions close
to the desired ones. The next phase is the customization of the template architecture. It requires a
new analysis of the solution space under specific constrains or modifications of IT processes and
requirements, but this time the space is much smaller and chance to make a serious design
mistake is smaller.

3. SYSTEM FACTORY FUNCTIONALITY

System Factory is a working environment for system designers and integrators that should help
them quickly deliver quality systems. System integrators can tailor their "virtual systems" using
customer requirements and the System Factory as a smart configurator. They can experiment
with "virtual systems", analyze them, and elaborate the best solutions, which then will be
implemented in the real world systems.

In its advanced form, System Factory supports three phases in the system life cycle, as shown in
Figure 2:

• design and integration;

• updating and reengineering;

• management and maintenance.

7

Figure 2.

The Design and Integration phase is the first and the main phase at which the future system
emerges. The phase consists, in its turn, of several stages:

Qualifying and Evaluation

• an information on goals and objectives of the design is obtained, QoS requirements, the
system scale and budget are studied,

• business and IT processes to be supported by the designed system are analyzed,

• applications characterization and profiling of a potential workload are made,

• components characterization and users special requirements are analyzed.

8

Modeling and Analysis

• an appropriate system segment is chosen,

• the architecture of the template system of the chosen segment is modified, refined, and
scaled,

• the system components (hardware, software, … , applications) are selected,

• models of the selected components and the designed system model(s) are built or
retrieved from the Factory Repository (see below),

• the designed system model(s) is (are) constructed form the component models and
template system model(s) stored in Factory Repository,

• if it is possible, workload measurements are made and analyzed; workload is synthesized,
otherwise,

• the model(s) is (are) used to make capacity planning, to analyze performance under
various projected workloads, to identify potential bottlenecks,

• the model(s) is (are) used to study scalability, availability and other requirements,

• measurements and experiments are made to validate and calibrate the models,

• search for best solutions is made using the validated model(s),

• proof of the concept, benchmarking, testing and verifying complete the stage.

At the "Updating and Reengineering" phase, the models built at the previous stage are used to
find the best way to upgrade the designed system if the IT requirements or capabilities have been
changed due to substantial changes in business processes or/and in technology. System Factory
may be used to check how the system QoS may change as a result of

• significant increase in the number of system subsystems and components,

• significant increase of the permanent workload,

• addition of new types of system components,

• porting and migration of new applications or databases,

• changes in data and application partitioning among the system’s subsystems,

• planned phased conversion from an old system to some newer system.

9

Then System Factory uses the obtained information to find what changes in the original design
should be made to tune the system performance and other Quality of Solutions parameters.

The "Management and Maintenance" phase uses the model(s) built at the Design and Integration
stage to manage dynamic system features, such as load analysis, prediction, and balancing.
Distributed agents can be used to trace changes in the system (new nodes, retired nodes, some
topology and parameters changes, new applications, etc.) and to monitor workload. The model
parameters are automatically updated when the agent’s report changes. The updated model is
analyzed, and the results are forwarded to the system manager (or managers) for taking some
appropriate actions to redistribute workload, add resources, etc.

4. SYSTEM FACTORY STRUCTURE

The System Factory consists of the following shops:

• Repository,

• Modeling Tool Kit,

• Specialized Shops.

4.1. Repository

Repository is an intelligent database (or a product management system for systems) that stores
information obtained and used in the system design and integration, namely information about

• basic system components (hardware, software, networks, middleware, applications) used
in the design,

• typical template models,

• typical solutions,

• typical workload patterns, traces,

• benchmarks.

The whole information in Repository is structured into (a hierarchy of) segments, related to
different business patterns and correspondent IT infrastructures. The segments may also differ by
levels of detail. XML [Har99] is an appropriate specification language for Repository as it
provides standard and contemporary technology to work with complex structured data. It is an
unambiguous, extensible, platform independent language.

10

4.2. Modeling Tool Kit

Modeling Tool Kit is collection of tools and libraries for

• simulation of large and complex systems,

• analytical modeling (capacity planning, simulation validation, …) ,

• high-availability and recoverability tools,

• security analysis tools.

To make System Factory not just mere a collection of tools, but an interactive synergetic
federation of problem solvers, it is necessary to provide (1) a common system specification basis
for different shops and tools, and (2) standardized interfaces for interaction between its shops,
tools, and repository.

Communicating Structures Library (CSL) developed at HP Labs for the high-level
representation, modeling and analysis of large communicating systems form a basis for Modeling
Tool Kit. It provides both simulation and analytical capabilities and is able to emulate other
modeling paradigms, such as Petri Nets. The whole diversity of system components and
structures is represented in CSL as a uniform and systematic composition of a small number of
simple basic concepts that describe data traffic and data placement in systems.

4.3. Specialized Shops

These shops specialize on different aspects of system design and integration. Figure 3
exemplifies the basic set of shops.

Workload Engine provides capability to analyze traces, received from Repository or from
Measureware Shop, or synthesize artificial workload and feed it into Model Runner.

Model Builder provides the possibility to conveniently describe system topologies, system
parameters, as well as variations in topologies and parameters in both textual and GUI form.

Measureware collects resource and performance data from components and subsystems
(applications, databases, middleware, networks, and OS. The collected data are stored either in
Repository or fed directly into models.

Model Runner actually prepares and runs modeling experiments specific for system integrator’s
objectives and to used tools.

Solution Analyzer analyzes modeling results and presents them in forms convenient either for
human perception or for Solution Synthesizer. Visualization of a solution space is extremely

11

Figure 3.

important for the analysis of the modeling results. Due to the necessity to provide multi-variant
optimization of solutions, n-dimensional visualization may be needed.

Solution Synthesizer looks for better solutions in the Sea of Solutions typically available after
modeling of complex systems with multiple optimization criteria.

Testing/Validation Shop uses benchmarks and results of experiments and measurements with
template systems stored in Repository to test and validate the delivered customized systems.
Alternative configurations may be finally delivered for further considerations.

4.4. Factory Framework

All Factory shops are put together in the framework of an object-oriented environment that
allows user to visit separate components, work within them, exchange data among shops and
between Factory and external world. The environment is implemented in Java, is platform

12

independent and provides GUI for navigation in Factory. Figure 4 shows Factory when the
Model Builder shop is visited. The left panel contains the textual (XML) specification of a (E-
service) model, which is constructed by a user from scratch or is customized (using a template
model from Repository). The right panel displays a fragment of the model communication
structure for visual control and graphical editing.

Figure 4.

.

The Figure 5 shows an example of the visual analysis of “hot spots” provided by the Solution
Analyzer.

13

Figure 5

5. COMMUNICATING STRUCTURES LIBRARY (CSL)

Communicating Structure [Kot98] is a hierarchical distributed structure that represents the
system components and the communications between them in a uniform and systematic way.
The system components are represented simply as nodes. Each node has memory that may
contain items. Nets are sets of links that connect the nodes. The items are generated at some
nodes and move from node to node along links, with some delay. Nodes may modify items. The
item traffic models the data traffic in a system, which is represented as a communicating
structure. (Communicating Structures were proposed to model systems with traffic-sensitive
performance in the first place.)

14

Items, nodes, memories, and nets may be elementary or may be aggregate and have some
structure. For example, an item may represent simple data such as a word, a frame, a packet, as
well as a complex message with large chunks of data or even a transaction consisting of many
messages. The nodes may represent “atomic” units or larger aggregate system components. Nets
may represent simple point-to-point links as well as busses, crossbars, interconnects, cascaded
switches, LANs, communication lines and WANs.

Communicating Structures are high-level, template-style representations of systems in the same
sense as template vectors represent vectors of anything. They do not fix behavioral or
implementation semantics of basic objects, attributes, functions and process, but rather provide
default semantics for them. That makes the possible to “emulate” other conceptual models such
as queuing networks or Petri nets. Thus, Communicating Structures may serve as a common base
for the implementation of higher-level tools as shown in Figure 6.

Communicating Structure Library (CSL) [KotRok Cher98] is an object-oriented implementation
of Communicating Structures. The CSL objects may be assigned different attributes (numbers,
variables, functions, and processes) that serve to refine these objects, customize them, supply
them with external data, change their behavior and navigate among different levels of modeling
detail.

5.1. Simulation

 In the case of simulation, the CSL uses the main structures of C++/CSIM, a process-oriented
discrete-event simulation package [Sch95].

CSL nodes can be assigned processes that are invoked to generate items, receive/send items
from/to other nodes, and to transform the items, if necessary. Such a node becomes a simulation
node and is able to model active components of systems.

Any CSL object is also a facility, a resource with servers, which can be reserved, used (seized),
and released by processes.

Processes exchange information with other process via mailboxes. Processes can send messages
to a mailbox and can receive messages from mailboxes. A mailbox has a queue of messages
waiting to be received and a queue of processes waiting to receive the messages.

Synchronization and control of interactions between processes is supported by the mechanism of
events. A process that encounters a wait statement with a given event as an argument either
continues, if the event is in the occurred state, or queues on the event if that is in the not
occurred state.

15

Figure 6.

5.2. Analytic Modeling

CSL allow us to construct also queuing networks [Tan95]. A CSL node and a CSL net (more
often, a link) can be presented as a ``service center'' or as a ``queue node''. Such a queue node
executes a queuing model that is associated with it. The type of the model is defined by the
arrival time distribution and by the service time distribution, plus by the number of servers in the
node. The input data for the queuing model are an interarrival rate and a mean service time. The
model returns the average waiting time (different approximations), the average time spent in a
queue node, the average number of items in the node, the average number of waiting items, and
their standard deviations.

Given

- the number of the queue nodes and,

- for each queue node,

16

- the arrival rate from outside the network,

- the probability that an item goes from this node to another given node,

- the service time,

- the number of servers,

the CSL-based queuing net returns for each node:

- the average time spent in a queue node,

- the average number of items in the node,

- the average number of waiting items, and

- their standard deviations.

5.3. Petri Nets
The CSL nodes represent both places and transitions of Petri nets. In case of a transition, it is an
“active” simulation node. In case of a place, it is a "passive" node with no processes associated
with it. The current number of servers at the facility of a node-place shows the current number
of tokens in this place.

Petri net arcs are represented by the CSL links. The multiplicity of an arc is transformed into the
number of the servers at the correspondent link.

To implement the firing conditions at transitions, each node-transition waits to reserve its input
nodes-places with the number of requested servers at each node-place equal to the multiplicity of
the link-arc connecting this transition with this place. When the transition fires, it decreases the
number of servers at its input nodes-places and increases the number of servers at its output
nodes-places.

In a similar way, CSL can simulate Colored Petri Nets. To express token colors, Colored
Facility is introduced as an associative array of facilities with colors serving as array's keys. In
other words, the facilities and their servers are assigned colors. The regular facility reserve and
release operations are extended to discriminate the colors of servers.

6. DOMAIN LIBRARIES

CSL inherits all object-oriented mechanisms of C++. They allow us to introduce user-defined
classes of nodes, memories, nets, items, and other constructs and to accumulate them in a

17

hierarchy of libraries with increasing specialization. Examples of such libraries are Systems of
Servers and Multi-Tiered Systems. Examples of such libraries are described in this section.

 6.1. Systems of Servers

One of such "domain" libraries called Systems of Servers has been constructed on the top of CSL
to model distributed server systems and was used to model enterprise-wide IT infrastructures of
large corporations. Main objects of Systems of Servers are:

• services,

• servers,

• clusters of servers (and of clusters of servers),

• clients (proxies),

• messages,

• transactions (or sessions).

Servers, clusters and proxies are refined CSL nodes; messages and transactions are refined CSL
items.

Examples of problems that can be addressed in Systems of Servers are:

• comparison of topologies of distributed servers,

• partitioning of services among servers in clusters of servers,

• cashing strategies,

• queuing and scheduling policies,

• load balancing,

• admission control.

The Systems of Servers library provides a choice of algorithms for partitioning, load balancing
and caching that might be appropriated for different traffic patterns.

6.2. Multi-Tiered Systems

The Systems of Servers library serves as a platform for the next level library called Multi-Tiered
Systems and used to model E-commerce and E-service architectures. A typical generic system in
the Multi-Tiered Systems library consists of up to 4 tiers (Figure 7):

18

Figure 7.

• Tier 1: Thin clients. They are external Internet, ATM, and phone/fax clients accessing the
banking system for services via transactions handled by these services.

• Tier 2: Front-end (Web) services and servers. It provides a secure foundation for the
applications that Internet-enable an enterprise. It connects outside clients to the "inside"
servers via an internal secure boundary.

• Tier 3: Application services and servers. It provides self-service solutions deployed at
several application and DB servers. Transactions are packaged into modules that access
the services.

• Tier 4: Back-end services and servers.

Generic template model, built around this sort of architectures with the help of System Factory,
may be easily customized for specific electronic delivery services in banking or retail businesses.

19

Each tier contains relatively small number of services and servers. Thus, the service-server
matrix in Repository may be not too large. Similarly, the security and availability requirements
do not vary significantly for different customers. The main variable parameters are partitioning
services among servers (primarily inside tiers) and request traffic patterns and traffic density that
may challenge scalability.

6.3. Template Models

Most cases, in which the CSL–based libraries were used for the validation of distributed system
architectures, have one thing in common. Before solving a specific system design or integration
problem, a generic, template-like model has been built. This model represented a wider class of
systems (and potential solutions) than it was required. Then, this generic model was customized
for the analysis of a particular case under consideration. That allowed us to extend the range of
the system analysis and extend the solution space. The customization was typically carried on
"manually". It is assumed that it will be made "more automatically" in System Factory. There is
no sharp distinction between a library and a template model; this is a matter of emphasis on
generality.

6.3.1. Distributed Shared Memory Multiprocessors. For example, a class of distributed shared
memory multiprocessors has been modeled using a template model. Each of these systems
represented some number of aggregated nodes interconnected by some switch fabric. Each node
includes either some number aggregated subnodes or it consists of processors with caches. Some
type of bus interconnects the processors each with others and with a shared memory of the node.
The problem was to investigate different distributed memory coherence policies for different
system configurations, different interconnect topologies and their parameters. The template
model represents a hierarchy of processing nodes with some given total number of processors at
the bottom. The following parameters can be varied:

• the number of hierarchy levels,

• the distribution of the nodes among the hierarchy levels (e.g., 4 x 4 x 4, or 8 x 4 x 2, or 8
x 2 x 4),

• the various types of interconnects (stars, rings, buses, …) , their throughput and latency at
each level of hierarchy,

• different workload patterns.

Some smart strategies of navigating the solution space help to do this faster for larger total
number of processors. Such an approach allows to have in Repository prefabricated tables or
spreadsheets that allow a system integrator to evaluate the bottom line parameters of typical
system topologies and then to refine them for particular cases of workload.

20

6.3.2. Mission-Critical Systems. A project of a worldwide distributed system for a global
transportation company has been analyzed using a generic CSL model that may serve as a
template model for mission-critical company-wide IT infrastructure for delivery companies.

The distributed system does:

• tracing and monitoring of packages (hundreds of millions of transactions per day),

• statistics, billing data processing, and decision support ,

• customer services (including WWW),

• common enterprise business applications.

The system represents three-level hierarchical network of three-tiered computing centers:

• global Data Centers, several of them,

• regional Processing Centers, tens of them,

• local Operations Centers, tens of thousands of them,

• mission critical, ``almost real-time'' computing environment,

• cost effectiveness is the dominant requirement.

So, this is a typical System of Systems and it was modeled in CSL in a natural way.

Information is distributed and exchanged among centers according to the Publish-Subscribe
paradigm: applications publish data for potential use by other applications and are subscribers for
data published by others. Point-to-Point dispatch and Data Brokerage are two alternative models
for the implementation of the Publish-Subscribe methodology. The first case represents a spider
web of point-to-point interfaces, which are "hard-coded" with specific languages, platforms,
application and data formats. Applications maintain unique relationships between themselves. In
the second case, point-to-point links are replaced by the publication of common messages
usually in a standard format, which are sent to Data Brokers. The Brokers have the tables of
subscribers for each type of the messages and forward the messages to subscribers. The task was
to evaluate the project with the emphasis on comparison of the two Publish-Subscribe models.

The constructed CSL model contains those and only those system features that influence the
message traffic and are important for satisfying the global system requirements. The model
helped to identify bottlenecks and the system sensitivity to changing parameters (the number of
centers, bandwidth in local and global networks, message packaging principles, publish-
subscribe mechanisms, etc.).

21

The sensitivity and utilization analysis included:

• system response on burst workload,

• system scalability,

• Data Broker overhead,

• message packaging strategy,

• utilization of Data Brokers as a function of workload,

• utilization of different levels of network.

The main result of the project validation was the reduction of the proposed three-level system
architecture to two-level architecture. The CSL analysis of the traffic in the system has shown
that if the functions of the second level are redistributed between the top level of Data Centers
and the low level of the Operation Centers, then the global traffic becomes less congested,
response time is improving, basic requirements to the system are satisfied and the overall cost is,
of course, dramatically reduced.

Such a model may serve as a prototype template model for mission-critical company-wide IT
infrastructure for global delivery companies.

6.3.3. Global Enterprise Systems. The most complex case study was the validation of the
enterprise-wide IT infrastructure of a big corporation The main task was to predict the system
scalability with the number of workstations changing in the range from several 1000s to several
10,000s.

The system has four tiers: workstations, application servers, method servers, and database
servers. (Method servers provide support for the PDM (Product Data Management) programs
that access and manage data in database servers.) The traffic of requests goes from the first tier to
the last one, and the response traffic goes back. The requests have different priorities and
responses have different length, the request-response traffic may be quite burst. Again, to deal
with such a complex system, a generic model was constructed that actually has been converted
and extended into the Systems of Servers library.

7. CONCLUSION

System Factory is not just a toolbox. This is a rigorous and systematic way to built and upgrade
systems with emphasis on objective, quantitative selection of best solutions. The Factory itself
will evolve with time, addressing yet new problems and challenges emerging in large-scale
systems that form the backbone of modern information technologies. As any factory, System
Factory will influence the way in which the system components are designed and build,

22

improving their quality, modularity, and fitness to integration.

8. ACKNOWLEDGEMENTS

Thanks to Holger Trinks, an intern from the Chemnitz University, who actively participated in
the preparing of the second release of the System of Servers Library. In particular, he analyzed
and implemented some load balancing and caching policies. He also built the multi-tiered system
template model (section 6.2).

Thanks to Igor Tatarinov, a summer intern from the North Dakota University, designed and
implemented the first prototype of the Swing GUI for System Factory.

9. REFERENCES

 [Har99] Harold, E.R. XML Bible. IDG Books Worldwide, 1999.

[Kot98] Kotov, V.E. Communicating Structures for Modeling Large-Scale Systems. In
Proceedings of the 1998 Winter Simulation Conference, Washington, D.C., ed. D.J.Medeiros,
E.F.Watson,J.S.Carson, and M.S.Manivannan, 1998, pp.1571-1578.

[KotRokCher98] Kotov, V.E., Rokicki, T.M., and Cherkasova L.A.CSL: Communicating
Structures Library for System Modeling and Analysis. HP Labs Technical Report HPL-98-
118,Palo Alto, CA, 1998.

[Sch95] Schwetman, H. Object-Oriented Simulation Modeling with C++/CSIM17. In
Proceedings of the 1995 Winter Simulation Conference, Washington, D.C., ed. C. Alexopoulos,
K. Kang, W. Lilegdon, and D. Goldsman, 1995, pp. 529 – 533.

 [Tan95] Tanner, M. Practical Queueing Analysis. McGraw-Hill, 1995.

