
The Distributed Object Consistency
Protocol Version 1.0

John Dilley, Martin Arlitt, Stephane Perret, Tai Jin
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto
HPL-1999-109
September, 1999

World Wide Web,
cache consistency,
cache
invalidation,
publish/subscribe
protocol, proxy
cache, HTTP
cache control,
strong
consistency, delta
consistency

This report describes a protocol for improving content consistency in web
proxy cache servers, which leads to reduced response time and server load.
The Distributed Object Consistency Protocol (DOCP) is an extension to
HTTP, replacing some of HTTP’s current cache control mechanism. It
supports incremental evolution: proxy servers that implement the protocol
can interoperate with non-DOCP proxy servers and gradually learn about
peers as they are deployed in the network.

The DOCP uses a publish/subscribe mechanism with server invalidation
when objects change instead of client validation to test for changes.
Stronger semantic consistency assures content providers that pages served
from cache are the same as are on the master origin server, and assures end
users that the information they are getting is fresh, limiting the need to
“Reload”.

Strong consistency is difficult to achieve in wide area networks, so the
DOCP provides “delta consistency”, where an object is consistent for all but
a short, bounded time after a modification. This allows the DOCP to meet
web user expectations for content availability and responsiveness.

Protocol simulation shows that DOCP consumes fewer network and server
resources than the current HTTP cache consistency protocol does, while
providing greatly improved consistency. DOCP eliminates the need for users
and content providers to guess at correct values for HTTP cache control
headers by providing a clean framework for wide area web object replication.

 Copyright Hewlett-Packard Company 1999

he
k-
the
h
sts
o
er,

li-
-
b.
rve
nd
ale
o
r-

the
f

ent
y

nd
-

c-
nd
n.
eb
of
es
on
ec-
a-
n

me

ce,
er
-

n
ce

rms
al,
t is

The Distributed Object Consistency Protocol
Version 1.0

John Dilley, Martin Arlitt, Stéphane Perret, Tai Jin

Hewlett-Packard Laboratories
Palo Alto, CA
Abstract

This report describes a protocol for improving content
consistency in web proxy cache servers, which leads to
reduced response time and server load. The Distributed
Object Consistency Protocol (DOCP) is an extension to
HTTP, replacing some of HTTP’s current cache control
mechanism. It supports incremental evolution: proxy
servers that implement the protocol can interoperate
with non-DOCP proxy servers and gradually learn
about peers as they are deployed in the network.

The DOCP uses a publish/subscribe mechanism with
server invalidation when objects change instead of
client validation to test for changes. Stronger semantic
consistency assures content providers that pages served
from cache are the same as are on the master origin
server, and assures end users that the information they
are getting is fresh, limiting the need to “Reload”.

Strong consistency is difficult to achieve in wide area
networks, so the DOCP provides “delta consistency”,
where an object is consistent for all but a short, bounded
time after a modification. This allows the DOCP to meet
web user expectations for content availability and
responsiveness.

Protocol simulation shows that DOCP consumes fewer
network and server resources than the current HTTP
cache consistency protocol does, while providing
greatly improved consistency. DOCP eliminates the
need for users and content providers to guess at correct
values for HTTP cache control headers by providing a
clean framework for wide area web object replication.

1 Introduction
To improve service to web clients, web proxy cache
servers have been deployed throughout the network.
These cache servers store copies of objects requested by
web users and subsequently serve that object to those
users if requested again. By serving cached objects, the
proxy reduces network and origin server demand. How-
ever, the objects they serve are not necessarily current
with the origin server. Thisweak consistencyleads con-
tent providers to disable caching for some objects and
forces users to reload pages when they suspect inconsis-
tency. This increases server load, especially duringflash
crowds when many users visit a site at the same time.

Cache servers can not know whether an object in cac
is consistent without querying the origin server. Chec
ing consistency every time assures consistency at
cost of additional connections to origin servers, whic
adds considerable delay to the servicing of user reque
[8]. Use of polling to achieve strong consistency als
increases demand on the network and origin serv
which reduces the benefit of caching.

Weak consistency is currently accepted for most app
cations of the web. Client-driven polling is the only cur
rent alternative to provide strong consistency in the we
When consistency is needed, origin servers must se
every request, which requires sufficient hardware a
network resources. However this scheme does not sc
well; implementing strong consistency by polling is to
expensive for all but a few content providers. Furthe
more these solutions can not improve response time.

Stronger consistency is important for business use of
web such as for interaction with customers, viewing o
supplies from vendors, and access to time-depend
information. Greater commercial use of web technolog
will lead to increased expectations of performance a
predictability. The Distributed Object Consistency Pro
tocol is designed to address these needs.

The remainder of the paper is organized as follows. Se
tion 2 presents an overview of cache consistency a
some issues with today’s web cache implementatio
Section 3 discusses requirements for a wide area w
consistency protocol. Section 4 presents an overview
the DOCP consistency model and Section 5 describ
the protocol in detail. Section 6 discusses the interacti
between DOCP and HTTP cache control headers. S
tion 7 analyzes the protocol’s performance and summ
rizes the results of a simulation of the protocol. Sectio
8 discusses related work. Section 9 concludes with so
observations and suggestions for future work.

2 Web Cache Consistency
Caching enhances system scalability and performan
particularly where remote communication has high
cost (in latency or resource utilization) than local com
munication with the cache. With caching or replicatio
comes the issue of maintaining consistency or coheren
among the copies. Caches can be characterized in te
of the coherence they provide to their users. In gener
the weaker the consistency requirement, the easier i
to build a scalable distributed system.
DOCP.fm September 28, 1999 2:50 pm

The Distributed Object Consistency Protocol Web Cache Consistency

he
y
nd
k
es-
sed

ak
.

n
a

e
r-
es

e
5]

of
t
d)

li-

t

se
of
i-
P
re
of

st
n-
the

r
A
)
L
L
ver
-
d
e
is
g
he
2.1 Strong Consistency Models
Under a strong consistency model a cache guarantees
not to serve data that is different from a request for the
original data to the origin server. This requirement is
frequently seen in operating systems (such as in a mem-
ory or disk cache) and transaction-processing systems.
Mosberger [22] provides an overview of the following
types of strong consistency.

• Atomic. Any read on a shared item returns the most
recent write of that item. In a distributed system each
participant has an independent notion of event order;
there is no global “most recent”. Atomic action is
only defined locally.

• Sequential. The result of any set of operations is the
same as if the operations were executed in some
sequential order [16]. In other words, there is some
total ordering for all operations taken together. Any
execution must obey this total ordering to be sequen-
tial.

• Causal. Writes that are potentially causally related
must be seen by all processes in the same order, but
concurrent writes that are not related may be seen in
a different order by different processes [15].

• Pipelined RAM(PRAM). Writes by a single process
are received by all other processes in the order they
were issued, but writes from different processes may
be seen in a different order by different processes
[18].

Strong consistency in a distributed system can be client-
driven or server-driven: either clients query the server to
validate the object on each request, or servers invalidate
cached copies when an object changes.

In the client-driven case the load on the origin server can
be nearly as high as it would be without caching since
the server has to handle each request (perhaps not with
full object data). If communication latency between the
client and server is great, the cache can not reduce
response time significantly.

In the server-driven case the server must maintain state
about all cached replicas, and notify each replica before
a change to the data is committed. In general, read
access is not permitted while the data is changing (after
invalidations begin to be delivered but before they are
acknowledged by all replicas). A write can not complete
until all replicas have been notified to flush the previous
copy of the object. This will prevent a replica serving
inconsistent data relative to its peers, and supports
sequential consistency. In wide area distributed systems,
communication delay between peers can be quite high,
so this protocol may require a long time to complete.

In any strong consistency implementation, network or
replica delay or failure will either delay or prevent read
and write requests from completing.

2.2 Weak Consistency Models
Relaxing the consistency requirement can improve t
availability, fault resilience, and performance of widel
distributed systems, such as the Grapevine [5] a
LOCUS [25] distributed systems; [28] discusses wea
consistency and suggests a mechanism to provide s
sion guarantees to reduce the potential confusion cau
by weak consistency on users and applications.

To describe web cache consistency we classify we
consistency models for information access as follows

• Delta consistency. The result of any read operation is
consistent with a read on the original copy of a
object except for a (short) bounded interval after
modification.

• Eventual consistency. The result of any read opera-
tion is consistent with the last known update, but th
propagation time of updates is not prescribed. Info
mation about updates is distributed to replica sit
and if updates cease replicas will eventually becom
consistent. This is the model used in Grapevine [
by the Clearinghouse directory service.

• Loose. There is no guarantee about consistency
any read with the original copy of an object, bu
there are systematic (possibly manually invoke
mechanisms to validate and restore consistency.

• Periodic. Replicas are periodically synchronized
with their original copy, after which they may again
diverge. There is no systematic mechanism to va
date object consistency on demand.

• Offline. The state of the original copy of an objec
can not be determined on demand.

Most current web cache implementations provide loo
consistency. They serve object data for some period
time without contacting (or being contacted by) the or
gin server. Loose consistency is inherent in the HTT
protocol: there is no protocol mechanism to assu
stronger consistency other than to prevent caching
objects. HTTP does provide for validation and mo
caches implement occasional validation of object co
sistency. One widely used mechanism is described in
next section.

2.3 The Alex Protocol
Avoiding contact with the origin server improves use
response time [8] and reduces network utilization.
cache does this by determining a time to live (TTL
value for each object in the cache. During the TT
period the cache will serve the object locally. The TT
value could be chosen as some constant value, howe
web objects have widely varying lifetimes and modifica
tion rates. The Alex file system protocol [6] develope
an adaptive TTLmechanism to address this need. Th
Harvest cache [7] employed this mechanism, which
fairly widely used by Harvest-derived caches, includin
the Squid open-source proxy cache [27]. We use t
Squid implementation to illustrate the protocol.
2

The Distributed Object Consistency Protocol DOCP Requirements

n-
nd
m
e
tly

d
yn-
ot
nd
re-
he
n
uld
ir

ri-
a

nds
n
ay
rs

n
le
ol
ng

st
e,
f
e

om
i-
s

an
er-
il-
ore
he
sts

r-
y

ct-

by
rs
ey
In the Squid adaptive TTL implementation, the TTL is
determined to be the time indicated in theExpires
header, if one is present; if not it uses the time in the
Last-Modified header, computes a percentage of the
age of the object in the cache at each new request and
uses that value as the TTL ([8] has an illustration and
description of this protocol). After the TTL period
expires the cache will make an HTTPGETrequest with
an If-Modified-Since (IMS) header field indicating
the last modification time of the object as previously
reported by the origin server. If the object has changed
the origin server will respond with a fresh copy of the
object and the HTTP200 OK response status; otherwise
it will return the response status304 Not Modified ,
indicating that the cached copy is still current.

In most cases theseGET IMSrequests are unnecessary,
since web objects change much less frequently than they
are accessed. In a study of five months of web access
from a group of users with cable modems we observed
15% of total requests resulted in304 Not Modified
responses [2]. In another study of the World Cup web
site we observed as high as 37% of responses from the
server were these “positive validations” [4]. These per-
centages are of total requests, including first time
requests and requests for objects evicted from caches.
We can not determine how many requests wereGET
IMS requests from the logs.

Eliminating theseGET IMS requests would seriously
compromise object consistency. It is not possible to
assess how many stale objects were served by caches;
that requires global state, which is not available. The
rate and distribution of object modification and object
accesses both affect the stale hit ratio.

The TTL mechanism creates a trade-off between object
consistency on the one hand, and network utilization
and response time on the other. By choosing a large TTL
value, a cache will make fewer external requests and
service data more quickly, but it will serve more incon-
sistent copies of information to end users. By choosing a
small value, the cache will make more unnecessaryGET
IMS requests but achieve higher consistency. Cache
administrators are sometimes able to make this trade-off
through cache configuration based upon local system
and user requirements. Note that this decision may not
reflect content provider or user preferences.

3 DOCP Requirements
The broad goals of the DOCP are to improve the user
response time, predictability, accountability, scalability,
and fault tolerance of HTTP access to web objects. This
section presents some key requirements for a protocol
designed to meet these goals.

3.1 Incremental Evolution
Servers in the Internet are not owned by any central
organization nor do they obey any common set of rules.
Proxy cache servers can come and go at any time; origin
servers may be here one day but gone the next. Any sys-

tem to improve web consistency and performance ca
not alter the fundamental independent ownership a
operation model inherent in the Internet. The syste
must work with, not against, Internet philosophy. Th
protocol must be able to be run between independen
owned and operated caches and origin servers.

The web is a large-scale, widely deployed distribute
system. Such systems are impossible to update in a s
chronized manner due to their size and complexity, n
to mention that servers are independently owned a
managed. The consistency protocol must be an inc
mental addition to the system. Implementations of cac
servers running the new protocol must work with origi
servers and caches that do not support it. They sho
automatically discover the protocol capability in the
peers if possible, and use it where possible.

3.2 Internet Scale
A user may access dozens to hundreds of individual o
gin servers and hundreds to thousands of objects in
day. Web servers may receive requests from thousa
to millions of users in a day. Proxy servers are i
between, often serving thousands of users who m
access millions of objects on thousands of origin serve
throughout the Internet.

The protocol should reduce network traffic and load o
origin servers; implementations must be able to hand
current web workloads better than the current protoc
can; and should demonstrate the potential of handli
future workloads better than the current protocol.

3.3 Fault Tolerance
Any large-scale, wide-area distributed system mu
accommodate component or infrastructure failur
because failureswill happen. Since any component o
the system may fail or disappear from the network, th
parties sharing system state must be able to recover fr
such failure. When failures occur there should be min
mal disruption to the operation of the non-failing part
of the network.

3.4 Web Consistency and Performance
The protocol should support stronger consistency th
current cache servers can provide and improve user p
formance. Objects in cache should be more highly ava
able than in today’s caches and should be served m
quickly to end users. Communication between a cac
and origin server that is synchronous to user reque
should be eliminated where possible.

The protocol should support high service quality, in pa
ticular low delay since the object is close, and low dela
variance since the end network is usually more predi
able than the wide area Internet.

3.5 Accounting and Content Distribution
Most cache solutions mask user requests served
caches from content providers. When content provide
want control for consistency or accounting reasons th
3

The Distributed Object Consistency Protocol DOCP Overview

o-

er-

ro-
rs
the
a
-

ted

e
d

e.

on
ir
d

h

es
nt

nt

r’s
e
er

ion
b-
ent
n
ibed
have few options. They can attach HTTP cache control
headers, such as theExpires header, so user requests
will be sent to the origin server each time. Attaching
such headers is generally referred to ascache-busting.

To limit cache-busting, caches should assure content
providers that their content is consistent with what is
currently published, and should deliver access account-
ing information to the provider.

Proxies that can serve objects authoritatively at the edge
of the network must provide accounting information
about user requests to the content provider. They also
allow more flexible content distribution and hosting
across wide area networks.

4 DOCP Overview
The DOCP improves consistency and accountability
through a publish/subscribe mechanism in conjunction
with soft state and other optimizations. This helps to
accommodate the scale of the Internet and to limit the
damage caused by unanticipated failures or changes in
network configuration. DOCP is similar to the HTTP
cache control mechanism, and allows incremental evo-
lution of that mechanism. The DOCP relies on informa-
tion push between cooperating proxies to achieve better
performance when objects change.

The protocol operates between a publisher (master) and
subscriber (slave). Since most web objects are requested
only once [2], the slave will only attempt to subscribe to
an object that has been requested before. If the slave is
granted a subscription it does not have to validate the
object’s freshness with the master, but can serve that
object directly from cache. The master will send a notifi-
cation to the slave if the object changes. If the slave gets
another request for that object it will request a fresh
copy of the object (and maybe a renewed subscription)
from the master. This provides improved consistency of
content; in a simulation of over 40 M user requests not a
single object was served inconsistently.

Objects can be subscribed to only after they have been
re-referenced without an intervening modification. This
limits subscriptions to uninteresting or very rapidly
changing objects.

Serving objects directly from cache speeds the delivery
of web objects to end users and reduces the demand on
origin servers and networks. In addition to the stronger
consistency, content is served faster and cheaper.

Strong consistency is difficult to achieve in large, widely
distributed systems, due to latency, coordination and
object availability requirements. Instead of strong con-
sistency the protocol allowsdelta consistency, where
each object returned by the cache is consistent to within
some bounded time, delta, since its last modification.
The period of potential inconsistency is roughly the
propagation time of a notification from the server to the
cache after an object is modified. Note that this period is
on the same order as the propagation time of aGET IMS
response from a server to a cache, currently used to

check object consistency. Broadly speaking this prot
col replaces severalGET IMSrequests with zero or one
invalidation message (one if there was a change; oth
wise no communication).

The DOCP defines a new set of HTTP headers to p
vide object consistency between content origin serve
and edge proxy cache servers. The DOCP distributes
ability to serve objects authoritatively on behalf of
content provider throughout the network. The key com
ponents and roles in the DOCP architecture are depic
in Figure 1 and described in the sections below.

4.1 Web Objects
Web objects are identified using a Uniform Resourc
Locator (URL, defined in RFC 1738) and accesse
using HTTP (RFC 2616 [9]), usually with a web
browser application, which may use a web proxy cach
The DOCP does not change any of these definitions.

4.2 Content Provider
A content provider develops objects to be published
the web. A content provider should be able to use the
choice of web publishing and preparation tools, an
publish to any supported web server platform.

A content provider must provide the DOCP service wit
object modification notification. This is done via a
mechanism external to the DOCP. The DOCP mak
access accounting information available to the conte
provider as described in Section 5.9.

4.3 DOCP Master
A DOCP master serves content for one or more conte
providers. It behaves like areverse proxy server: it
responds to HTTP requests for the content provide
objects. If the content is not currently in its cache th
DOCP master accesses it from an origin web serv
affiliated with the content provider.

The DOCP master serves objects as well as subscript
requests for the objects. When a content provider pu
lishes new content a consistency manager compon
detects object modifications and delivers invalidatio
messages to the subscribed DOCP slaves, as descr
in Section 5.7.

FIGURE 1. DOCP Architecture

Content
Provider

DOCP
Master

DOCP
Slave

End
User

Web
Server

HTTP GETUpdate:
FTP, HTTP

Accounting:
HTTP GET

Access:
HTTP GET

Consistency:
DOCP Inv
4

The Distributed Object Consistency Protocol DOCP Protocol Operation

t
by
e

es a
s
P

tent

ct

d-

r an
t
n
e.

no
ed

ing
e

ng
rst
a-
xt
ve
e

as
b-
d

ld
e
ly

i-
n-
l
s

4.4 Web Server
The DOCP master communicates with content on a web
server. This allows a content provider to select the pub-
lishing tools they wish, while improving the content ser-
vice. The DOCP master accesses content on the web
server via HTTP, caching a copy of the response. All
new information published to the web server must pass
through the DOCP master so that it can generate change
notifications to subscribed slaves.

4.5 DOCP Slave
A DOCP slave serves requests for one or more clients. It
behaves like a regular web proxy cache: it accepts
HTTP GETrequests, checks its cache for a current copy
of a requested object. If it has a current copy that is
returned to the client; otherwise the DOCP slave makes
an HTTPGETor GET IMSrequest to retrieve or validate
the object. If the object is served by a DOCP master, the
slave may also request to subscribe to the object.

DOCP proxies can be arranged in a hierarchy, and may
be a master for some slaves and a slave to others. The
master and slave terms describe roles in the protocol.

4.6 Client
Clients issue HTTP requests to DOCP proxies as usual.
The fact that they are using a DOCP enabled cache is
transparent to them except for improved consistency and
performance. No modification is required to browsers.

5 DOCP Protocol Operation
This section presents the operation of the Distributed
Object Consistency Protocol.

5.1 Protocol Overview
The DOCP uses a publish/subscribe replication model
for popular web objects. When an object becomes suffi-
ciently popular in a DOCP slave cache the slave will
request to subscribe to that object with the origin
server’s DOCP subscription manager. If the object
changes during the subscription interval assigned by the
subscription manager, the DOCP master will send a
notification of the change to all current subscribers.
Until then a slave can serve subscribed objects authori-
tatively without contacting the origin server.

Figure 2illustrates the operation of the protocol. Clien
requests for an object arrive from the top to be served
a DOCP slave. On the first request for the object th
slave makes aGET request to load the object into its
cache. On subsequent client requests the slave mak
GET IMS Sub request to determine if the object ha
been modified and request to subscribe to it. The DOC
slave guarantees that every object it serves is consis
with what the content provider has published. TheGET
IMS Sub request can return a fresh copy of the obje
(and HTTP status200 OK), or a positive validation
(HTTP status304 Not Modified) with no object data.

The slave requests to subscribe to the object by inclu
ing a new HTTPDOCP-Subscribe header with the
request on the second and subsequent requests fo
object. It will not request to subscribe to an objec
retrieved only once. In earlier workload characterizatio
[2] we found 60% of objects were requested only onc
There is no value to subscribing to these objects.

If the object was modified, as in the firstGET Sub
request, a fresh version of the object is returned but
subscription lease. If the object has not been modifi
since the prior access, as in the secondGET Sub
request, the master grants a subscription lease. Dur
the lease interval (shaded intervals in Figure 2). th
slave serves client requests directly without contacti
the master. The lease can either expire, as in the fi
lease in the figure, or be terminated through invalid
tion, as in the second lease in the figure. On the ne
request after a lease expires or is invalidated, the sla
must contact the master. The slave will refresh th
object and request a fresh lease for the object. If it w
modified only once, as depicted in the figure, the su
scription request will be granted. If it had been modifie
again before the finalGET Subdepicted in the figure the
lease would not have been renewed. A client must ho
an unmodified object to receive a lease. This limits th
need for masters to send invalidations for frequent
changing objects.

The following sections describe the subscription dec
sion and some high level details of the protocol. Appe
dix A contains further detail about the protoco
including the syntax of the HTTP protocol extension
and the specific responses from master to slave.

FIGURE 2. DOCP Consistency Protocol Operation

Client requests

Slave

Content updates

Master

G
E

T

2
0

0
 O

K

G
E

T
 S

u
b

2
0

0
 O

K

G
E

T
 S

u
b

3
0

4
/le

a
se

G
E

T
 S

u
b

3
0

4
/le

a
se

D
O

C
P

 I
n

v

G
E

T
 S

u
b

2
0

0
/le

a
se
5

The Distributed Object Consistency Protocol DOCP Protocol Operation

wn
er

ter
ib-
d

s
o-
s
e

se
se
’s
ter

he
es
-

ve
er
u-

e
es
At
a-
ew
rk

the

the
t

ip-
-
ess
he

ge
n
e
t

l
ns
-
g

,
l

5.2 Subscription Decision - Slave
The request for a subscription is a local decision made
by a DOCP slave. The slave does not need to coordinate
with the DOCP master or any other client to make a sub-
scription decision.

The slave may use the object’s local popularity (refer-
ence count), size, last modification time and last access
time to make a decision whether to request to subscribe
to the object. To request a subscription, the slave makes
an HTTPGETrequest with an extra header field,DOCP-
Subscribe .

The slave must include anIf-Modified-Since
header indicating the slave’s last known modification
time of the object. A slave should not request validation
with an IMS request without requesting a subscription,
since a subscription is more efficient than polling for the
slave and the network.

5.3 Subscription Decision - Master
A subscription request must be acknowledged by the
DOCP master in its HTTP reply. The master decides
whether to grant a subscription based upon local policy,
which may include an estimate of the object’s global
popularity, its size, modification history, and the number
of existing subscriptions to that object.

The master’s HTTP reply indicates if the subscription
was granted, and if so for how long, using aDOCP-
Lease response header. The choices of the lease value
are described in Appendix A, in particular in Table 2,
“DOCP-Lease Header Values,” on page 19.

Upon granting a subscription, the DOCP master must
record the subscribing slave’s return (notification)
address in case the object changes.

5.4 Subscription Decision - Lease Interval
Each subscription is bounded by a lease interval calcu-
lated by the master. Each object may have zero or one
lease associated with it; all subscriptions to a single
object share the same lease value (expiration time) at the
DOCP master. This prevents the need for the master to
maintain different expiration times for different slaves.

If an object is not modified when its lease expires, the
master simply clears the subscriber list. No communica-
tion takes place between master and slaves.

The lease provides a simple, robust method for limiting
the amount of state that must be kept by the master. It
provides a network-efficient mechanism for subscriber
list clean-up, since no communication is required to
release a lease (no unsubscribe exchange is required
between master and slave). The lease also provides a
bound on the amount of time a master will attempt to
deliver an invalidation to a slave that is unreachable, and
therefore the maximum period of object inconsistency.
A lease interval will typically be days to weeks long.

The master should set leases to expire at quiet periods in
the day if possible. This helps to avoid bursts of requests

when object leases expire. At most sites the pre-da
period between 2-5 AM receives the fewest requests p
hour. Frequently changing content may require shor
lease intervals. Lease expiration times should be distr
uted (for example randomly) during an interval to avoi
may object leases expiring together.

5.5 Leases and Clock Skew
Clock synchronization in wide area distributed system
has long been studied [15]. Protocols exist to synchr
nize time across the Internet [20][26]. However, clock
may still not be synchronized for many reasons. Th
DOCP must be resilient to unsynchronized clocks.

A DOCP master accommodates this by returning a lea
as an absolute time in the slave’s time domain as clo
as possible to the expiration time in the master
domain. To support this the slave must send the mas
its notion of the current time. The master assigns t
lease expiration time for every object. The master us
the expiration time and the slave’s current time to com
pute the lease expiration time at the slave. The sla
expiration time is set to expire at or before the mast
lease expiration time. This prevents slaves serving doc
ments that have expired at the master.

5.6 Modification of Subscribed Objects
If an object is modified during the lease interval th
DOCP master must attempt to notify any DOCP slav
currently subscribed to the object that it has changed.
that time the lease is canceled and no further invalid
tion messages will be sent for that object unless a n
subscription is begun. Note that the cost to the netwo
and origin server of deliveringn invalidation messages
for a changed object is approximately the same as
cost of serving oneIMS request fromn proxies checking
the freshness of that object, orn IMS requests from one
proxy.

5.7 Change Notification
When a change to a subscribed object is detected
DOCP master will transfer the current subscription lis
to a notification agent. This transfer resets the subscr
tion list for that object so no further invalidation mes
sages will be sent upon subsequent modifications, unl
a DOCP slave re-subscribes to (the new version of) t
object.

The notification agent attempts to deliver the chan
notification to each slave indicated on the subscriptio
list. Each notification must be acknowledged by th
slave. If delivery fails (is not acknowledged) the agen
will attempt to re-deliver the notification after an initia
timeout interval. The interval between retransmissio
should employ a backoff mechanism if delivery contin
ues to fail. The notification agent must stop attemptin
to deliver the notification when the lease expires.

Delivery is accomplished using one of two protocols
under the DOCP notification agent’s control (it wil
attempt both if the first choice fails):
6

The Distributed Object Consistency Protocol DOCP Protocol Operation

eed
m-

st
i-

r
. If
ng
est
e
is-
ion

n.
d
-
ill
ld
n
at

e
-
lute

to-
al
is
ter
ly

L
w
ld
for
ed

rs
P
on
er
ns-
et
nd
ter
rt-

er
er

see
A

a
er
are
n

• DOCP/UDP. The DOCP master sends a notification
message to the slave’s UDP notification port. There
is an issue with such UDP traffic traversing firewalls,
so other alternatives must also be supported.

• HTTP/TCP. The DOCP master makes an HTTP
POSTrequest to the DOCP slave’s HTTP notification
port. The HTTP channel should be persistent while
the slave and master are actively communicating; the
same channel may be used for notifications from
master to slave, acknowledgments from slave to
master, and subscribe requests from slave to master.

• Remote Procedure Call (RPC). The DOCP master
makes a direct RPC call to the slave’s notification
port (address). An interface has not been defined for
any specific RPC mechanism, but the DOCP should
support direct client/server communication. RPC
can also have issues with traversing firewalls, but has
other benefits such as efficient message encoding,
well defined security mechanism, development tool
support, and procedure call/return semantics.

The slave communicates its notification port (or binding
handle) to the master prior to the first subscription
request. Each notification message body identifies all
modified objects at that master to which the slave is
believed to be subscribed. This follows from the obser-
vation that many objects can change at or near the same
time, as in the case of a tree update operation by a con-
tent publisher. The invalidation indicates the former and
current modification time of the changed objects and an
object digital signature (for example a checksum). Each
invalidation message carries a sequence number to allow
the slave to detect a missing notification.

The slave must acknowledge each notification; it may
negatively acknowledge a notification if it detects a gap
in sequence numbers. The slave may send one acknowl-
edgment message for multiple notifications.

When the slave receives an invalidation notification it
must annotate the object’s metadata such that it will not
serve the object again from its cache. After an invalida-
tion the object must not be served to clients, even if
communication with the master for a fresh copy fails,
since the object may have been removed by the content
provider. The slave may remove the object data from
disk although removal does not have to be synchronous
with the request; it can be done at a quiet time or when
disk space is next needed.

The slave could keep object data on disk and use a delta
encoding to update the data when it is next requested, as
proposed by Mogul et al [21].

5.8 Optimistic Discovery
The web is a large-scale, widely deployed distributed
system. Such systems are impossible to update in a syn-
chronized manner due to their size and complexity, not
to mention that the origin and proxy servers in the web
are independently owned and managed. Therefore
DOCP technology must be incrementally added to the

system. To accommodate this, DOCP slave servers n
to be able to discover DOCP masters. This is acco
plished throughoptimistic discovery.

To enable optimistic discovery, a DOCP master mu
include aDOCP-Lease header in each response in add
tion to standard HTTP headers (e.g.,Expires) for the
object. Non-DOCP proxies will ignore the extra heade
field and use standard HTTP cache consistency rules
desired, this can enforce strong consistency by maki
proxy cache servers validate consistency every requ
using GET IMS requests. DOCP slaves will recogniz
that the object should be served with the DOCP cons
tency guarantee, and that they can make subscript
requests to that server and receive a valid lease.

This approach provides another potential optimizatio
Many objects on the web are written only once, but rea
many times, for example all the little colored dots, com
pany logos, and so on. Since a read-only object w
never change (by definition), a DOCP master cou
always include an “infinite” lease for these objects upo
every access. The “infinite” lease can be interpreted
the slave as “a very long time from now”, for exampl
the end of time of the local system’s clock. It is not nec
essary that all slaves treat this value as the same abso
time; any time in the distant future will do. A DOCP
slave receiving such an unsolicited lease should au
matically mark the object as subscribed for that interv
and never request to validate the object (unless it
evicted from the cache and re-referenced). The mas
does not need to maintain a subscriber list for read-on
objects since an invalidation will never be sent.

If such an object needed to change, a new object UR
must be created and links updated to point to the ne
object. Using this technique, many more objects cou
be made to be read-only. There is no mechanism
deleting these read-only objects, so they must be us
with care.

5.9 Access Logging
When content is served from caches content provide
do not see as many hits at their site. The DOC
addresses this by transmitting access log informati
from DOCP slaves to the DOCP master for each serv
for which it served content. These access logs are tra
mitted periodically and should be transmitted at qui
times (e.g., pre-dawn), as negotiated by the master a
the slave. Logs should be made available by the mas
in one of the accepted standard formats for log repo
ing, for example the Common Log Format (CLF). A
DOCP slave may log all requests by DOCP mast
instead of using a single log file for all requests and lat
extracting them.

Content providers can use the access information to
greater detail of user access patterns on their site.
server log today may contain only a single hit from
proxy for the first request of an object. Subsequent us
requests to the proxy result in a cached response and
therefore not seen by the origin server until a validatio
7

The Distributed Object Consistency Protocol DOCP Protocol Operation

a

x-
a

t-
is
a-
al-
ve
al
to

of
s-

es

or-

es.

n
he
he
me

e
b-

an

at
To
ay
o
ust
to
i-

or

a
r
-

ing

hil-
nd
rd-
ta

rip-
request (If-Modified-Since) is made. Furthermore,
access by all users of a proxy appears to the origin
server as coming from the same source (the IP address
of the proxy server). Therefore log analysis on servers
provides only an approximation of user activity.

By having full proxy logs at the origin server the content
provider is able to see all user requests that arrived at the
proxy and use that information to better understand tra-
versal patterns and optimize their site’s layout. A web
hosting provider can supply detailed analysis of the
access patterns at all DOCP slaves as a value added ser-
vice to a content provider.

5.10 Predictive Subscription Renewal
If an object is deemed to be extremely popular, a DOCP
slave may request a subscription prior to the next user
request. In general it is hard to predict both the time of
the next request and the time of the next modification.
We have observed that modifications to our own web
pages tend to occur in clusters where a single page will
receive several updates in a relatively short time, some-
times without intervening reads.

For this reasons, the DOCP uses a passive model that
achieves the best use of the network while providing
better average retrieval latency than the TTL-based
model. However, renewal of a subscription after expira-
tion is allowed by the protocol. This is particularly use-
ful to support high availability of content at the slave or
assurance of fast response time.

Pushing copies of modified objects is also being consid-
ered, for example to support dynamic mirror mainte-
nance. This is not currently defined by the protocol
pending definition of an economic model for push cach-
ing in the DOCP.

5.11 Content Provider Updates
The mechanism for content provider updates is external
to the DOCP protocol. Various methods may be used to
communicate changes to the DOCP master.

• A content publishing system can transmit informa-
tion about published objects as they are changed.

• An application can scan the content for changes.

• Manual notification can be sent to a DOCP master.

The most effective and efficient mechanism is to inte-
grate with the content publishing system. In any case a
consistency manager must check each published object.
It computes the object’s modification date and check-
sum, compares these with the previous state of the
object, and notifies the subscription manager if the
object differs. The subscription manager determines if
any of the changed objects had current subscriptions and
generates change notifications for them.

5.12 Hierarchy for Scalability
In order to scale to very large networks DOCP proxies
can be configured into a hierarchy. The hierarchy should

reflect network topology with parent proxies serving
set of child proxies logically farther from the origin
servers they are attempting to contact; for example pro
ies within an ISP should route their requests through
regional parent proxy for that ISP.

Many organizations implement security firewalls, crea
ing few places in the network where the organization
connected to the external network. Caching at this loc
tion is natural, and satisfies the goal of increasing sc
ability through hierarchy. Each organization should ha
one or a few DOCP proxies connected to the extern
network, and possibly internal proxies connected
those “parent” proxies.

A DOCP parent will serve as a master for some set
DOCP child proxies, and as a slave to other DOCP ma
ters. The intermediate parent proxy’s role is

• to aggregate HTTPGETand DOCP subscribe mes-
sages for the child slave proxies it serves

• to manage subscription lists on behalf of these slav
and the DOCP masters to which they subscribe

• to aggregate access information from slaves and f
ward logs to parent DOCP masters

• to redistribute DOCP invalidation messages from
external masters to the slaves when content chang

If there are many DOCP child proxies interested in a
object, only one subscription needs to be made to t
origin’s DOCP master; the others can be served by t
DOCP parent. All subscribed slaves share the sa
lease value granted by the master.

Not all DOCP proxies need to maintain a copy of th
object data. A DOCP parent may maintain only a su
scription list for its child proxies. The children would
manage object data and receive notification when
object changes, purging it from their caches.

A data-less parent will have knowledge of the slaves th
are subscribed to popular objects but not object data.
serve a request for a subscribed object the parent m
request a copy of the data from one of its children; if n
child has a copy of the subscribed object the parent m
obtain a copy from the origin. A slave can subscribe
an object with a DOCP parent without further commun
cation with the origin. When anIMS request arrives for a
subscribed object (whether the parent has the data
not), the parent may respond with an HTTP304 Not
Modified (if it has not been invalidated) and include
DOCP-Lease header with the lease expiration time fo
the object. The request is handled locally, while provid
ing the consistency guarantee.

A DOCP parent also aggregates access account
information from its children. It periodically receives
updates on subscribed objects it has served to its c
dren, aggregates them with data from direct access a
other children, separates the access information acco
ing to DOCP master, and forwards the appropriate da
to each of the DOCP masters that have granted subsc
tions to the DOCP parent.
8

The Distributed Object Consistency Protocol HTTP Cache Control

til

n-

rt
es.
ut
e
.
as
r-
nt
the

for

om
g

cy
are
ng
st
of
se
ure
y.

is-
b-
nt
in
ot

A
a-
on
to
at-
,
s-
rns
e

in-
or
n
rm

al-
o
, as
6 HTTP Cache Control
The DOCP makes several HTTP cache control headers
unnecessary. In a DOCP slave the HTTP cache control
headers are subordinate to DOCP headers. Note that a
DOCP slave may communicate both with DOCP mas-
ters and ordinary web servers and other non-DOCP
proxies. A DOCP slave must still implement HTTP
cache control headers.

6.1 Pragma: No-Cache
This HTTP/1.0 header can be attached to a clientGET
request or a server response. It indicates that the proxy
should not serve a copy from the cache but rather a cur-
rent copy from the origin server. In practice, some cache
implementations modify this into aGET IMSrequest so
they do not have to retrieve the whole object if it has not
changed since the last modification time. This is the
mechanism by which users can check object consistency
if they believe their cache to be out of date.

With DOCP, subscribed objects are served authorita-
tively from the DOCP slave cache. Therefore the slave
may respond with a304 Not Modified response
without communicating with the DOCP master. If an
object is modified the DOCP slave will be informed and
will serve a consistent object on the next request.

6.2 Expires
The Expires header on a returned object includes a
timestamp that identifies how long an object may remain
in cache before it is validated. Prior to the object’s expi-
ration a cache may serve the object without checking its
validity. After expiration the cache must request a new
version from the origin server. Some cache servers inter-
pret this as allowing a validation with the origin server.

It is difficult for content providers to use this feature
effectively because it is hard to predict when an object
will be modified. Even for objects with regular publica-
tion schedules, there are cases where a retraction is nec-
essary to correct factual or other errors. If the content
provider uses theExpires header to prevent unneces-
sary IMS requests, the incorrect object will remain in
caches until it expires. An HTTPPURGEmethod has
been proposed to address this (as an IETF work in
progress report; no published version exists yet).

This header is also used to prevent a cache from holding
an object too long before checking its consistency. This
is the de-facto mechanism to assure consistency in the
web today. However, this polling mechanism leads to
increased request traffic at origin servers and response
time for end users, with little benefit since most objects
rarely change.

With DOCP, this header becomes unnecessary. Instead
of expiring, objects are either modified or deleted, in
which case a DOCP Inv message is sent to all DOCP
slave servers holding a copy of the object. Upon subse-
quent requests for the object the slave will retrieve a

fresh copy or get an error if the object was deleted. Un
that time the cache may serve the object directly.

6.3 Cache-Control: Headers
The HTTP/1.1 specification defines explicit cache co
trol headers, which are handled as follows.

6.3.1 max-stale, min-fresh, min-stale,...

It is not clear whether or how web browsers will suppo
these headers, nor how end users will choose the valu
There is little reason for end users to set anything b
“always give me the most current version” since th
latency trade-off is difficult to quantify to end users
Practical experience also indicates end users will do
little as possible, and that they have minimal unde
standing of the operation of the web service. Conte
providers and server operators also improperly use
existing headers.

DOCP will ignore these headers the same as it does
Pragma: No-Cache : it will serve objects authorita-
tively, and await notification of change from the DOCP
master.

6.3.2 Do-Not-Cache, Private,...

These headers are intended to prevent a cache fr
holding a copy of an object. The reason for preventin
caching of objects is often for accounting or consisten
reasons, which DOCP addresses. However there
other reasons to prevent caching of an object includi
for intellectual property protection. DOCP caches mu
honor these HTTP/1.1 headers and not hold a copy
objects so marked. Content providers should not u
these headers just to obtain hit accounting or to ass
consistency since DOCP provides that function alread

7 Protocol Analysis and Simulation
During the design of DOCP we explored several cons
tency models from per-server to per-object (and per-su
tree in between). A per-server model limits the amou
of state that must be maintained by proxy and orig
servers, however it is imprecise: the server does n
know specifically which of its objects are subscribed.
per-object model carries the most precise state inform
tion about subscriptions, but requires the most state
the origin and proxy servers. In the end we chose
maintain consistency on a per-object basis after evalu
ing the object popularity distribution within a server
and therefore the number of imprecise invalidation me
sages that would have been sent. To address conce
about servers being able to maintain all that state, w
observed that currently web proxy cache servers ma
tain per-object state; in fact they require more state f
the TTL value and to perform positive validations tha
DOCP requires to manage subscriptions and perfo
invalidations.

Next we wanted to validate the assumptions about sc
ability and efficiency (that this protocol was at least n
worse than the current weak consistency mechanism)
9

The Distributed Object Consistency Protocol Protocol Analysis and Simulation

lts.

pon
of
an
as
s
the

.

of
rs

ing
or
is-
d

,
s-
a

28
e

tes

a
ks.
the

nd
be

ce-
st
m

nd
e

well as explore various trade-offs in protocol design,
such as the computation of the lease interval and the
determination of when an object was sufficiently popu-
lar. In order to accomplish this we extended a simulator
previously used to measure the performance of various
replacement policies [3] such that it could also simulate
the consistency protocol.

The method we used to analyze the characteristics and
performance of the new protocol is trace-driven simula-
tion. This method consists of replaying logs (traces)
from real users through a simulator that is as similar to
the protocol and underlying network as is feasible. We
chose trace-driven simulation because Internet traffic
has been shown to be difficult to model accurately. By
using a trace of actual activity we are assured of having
a valid model of the activity, although only at a single
location and for a limited time. Fortunately, we had
access to a large data set from a busy proxy server used
earlier to perform a workload characterization [2]. The
data were gathered by logging every request made by a
population of thousands of home users connected to the
web via cable modem technology over a five-month
period (a total of 117 million requests). Using this log,
we were able to simulate protocol behavior for a set of
web objects accessed through a cache by a large group
of users representative of other high-speed home users.

We also built a statistical model of object updates, since
that information is not present in the logs. We did this by
studying busy web server logs and the existing litera-
ture. Based upon this we used a power-law function to
distribute updates among objects within a site, and an
exponential distribution (Poisson process) to distribute
the updates for an object within the simulation period.
We simulated two modification levels:regular and
heavy. The regular workload corresponds to our best
estimate of object modification profiles for web objects.
We are aware that the modification rate varies greatly
among sites, so we also simulated a heavy modification
workload, in which objects change much more fre-
quently. This provides a worst-case scenario for the
DOCP. We used the same access workload (and popu-
larity distribution) for both modification rates.

The simulation examined the following characteristics
of the protocols under study.

• Network demand. We measured the number of
requests by type: misses (cold and capacity), slow
hits (where the data was in cache but validation with
the origin server was required), fast hits (the data
was in cache but no communication with the origin
server was required), and invalidations.

• Server demand. We measured the number of
inbound object requests and outbound DOCP invali-
dation requests between origin servers and proxies
that were all either DOCP or non-DOCP.

• Protocol performance. We examined performance of
the DOCP under varying modification levels and
lease intervals to optimize the protocol.

The subsections below present a summary of our resu
Details about the simulation can be found in [24].

We have also explored cache response time based u
cache consistency [8]. Proxy logs indicate an order
magnitude improvement in response time when
object is served directly from cache (as a fast hit)
compared with a positive validation. Positive validation
are again much faster than misses. This establishes
benefit of cache object consistency on response time

7.1 Network and Server Demand
External network demand includes the total number
external requests made by a proxy to all origin serve
and the total number of bytes transferred.

Figure 3 presents the request demand a proxy runn
the DOCP, Alex, or strong consistency protocol, and f
a range of cache replacement policies. Strong cons
tency is achieved through polling. This simulation use
thenormalmodification workload, as explained in [24]
and includes DOCP invalidations and subscription me
sages, and Alex validations. The simulation examined
range of cache sizes (along the x axis) from 1 GB to 1
GB. A 128 GB cache was sufficient to hold the entir
working set for the simulation interval (104 GB of
unique content was requested), and therefore simula
an “infinite cache”.

The simulation of the Alex consistency protocol used
20% age factor and a max stay in cache of three wee
These are the default consistency parameters used by
popular Squid proxy cache [27].

FIGURE 3. Request Demand

As cache size grows the external request dema
decreases because objects in cache do not need to
transferred again. For smaller cache sizes the repla
ment policy plays a significant role in the total reque
demand. The cache replacement policy is the algorith
that determines which objects remain in cache a
which are evicted to make room for new objects. W
explored the following replacement policies [1]:

• The classical Least Recently Used (LRU) policy.

24

26

28

30

32

34

36

38

40

42

44

1 2 4 8 16 32 64 128

Se
rv

er
 r

eq
ue

st
s

(m
ill

io
n)

Cache size (GB)

Alex/STRONG
Alex/LRU

Alex/GDSF
Alex/LFUDA

DOCP/LRU
DOCP/GDSF

DOCP/LFUDA
10

The Distributed Object Consistency Protocol Protocol Analysis and Simulation

of
nd

n
wo

n
ent
e
n
ers
th

be

se
e
the
o
e.
:
te
ore

e
d,

rk
do
It

e
ws
the
l-

ce
not
ize

o-
e
st
• The Greedy Dual-Size with Frequency (GDSF) pol-
icy, which is designed to maximize object hit rate by
keeping more of the popular objects in cache.

• The Least Frequently Used with Dynamic Aging
(LFUDA) policy, which is designed to maximize
byte hit rate by keeping more popular bytes in cache.

LFUDA ignores object size in makin its replacement deci-
sion. GDSF keeps more objects in cache by evicting
larger objects before smaller ones (assuming they have
the same popularity or reference count).

As cache size grows to the size of the working set
(effectively an “infinite” cache), the replacement policy
does not affect the request demand. In an infinite cache
all objects that are cachable will be in cache after the
first request. At this point only the consistency policy
plays a role in determining request demand. The DOCP
reduces the number of external requests by approxi-
mately 19% as compared with the Alex protocol; and by
42% when compared with strong consistency. It does
this while delivering object consistency equivalent to the
strong policy (polling every time).

At smaller cache sizes, the consistency policy reduces
external demand for each of the replacement policies by
approximately the same ratio as at larger cache sizes.

Figure 4 presents the total bandwidth demand under the
same configuration of proxies.

FIGURE 4. Bandwidth Demand

The consistency protocol does not play a significant role
in the reduction of bandwidth demand between proxies
and origin servers. Bandwidth demand is dominated by
the cost of transferring object data across the network.
The consistency protocol reduces the number of consis-
tency validation messages required between proxy and
origin servers, but these are small messages, as are the
invalidation messages that take their place.

In Figure 4 the lines for the Alex protocol with theGDSF
and LFUDA policies have been left off for clarity. They
fall exactly on theDOCP/GDSF and DOCP/LFUDA lines,
just as Alex/LRU andDOCP/LRU are overlaid.

7.2 Protocol Performance
During the simulation we explored the performance
the DOCP with various cache replacement policies a
choices of lease interval.

To quantify the performance of the DOCP subscriptio
mechanism under varying lease durations we added t
sensors to our simulator. The sensors measure theinval-
idation miss rateandsubscription miss rate. The invali-
dation miss rate is the ratio of object invalidatio
requests for an object that the slave’s cache replacem
policy had already removed to total invalidations. Th
subscription miss rate is the ratio of subscriptio
requests at a master for an object the master consid
the slave already subscribed to total subscriptions. Bo
of these types of misses are inefficient and should
minimized.

During protocol development we explored various lea
intervals including static intervals of one day, thre
days, and one week; and a lease interval based on
last modification time of an object, which attempted t
expire at or near the next predicted modification tim
Predicting next modification time proved to be difficult
the decision was often wrong, resulting in inappropria
lease durations. In the end we chose not to use the m
complex dynamic lease computation mechanism.

Figure 5 shows the invalidation miss rate for the thre
lease intervals we explored using the normal workloa
a 4 GB cache, and theGDSF replacement policy.

FIGURE 5. Invalidation Miss Rate by Lease

Extending the lease interval does not affect netwo
bandwidth demand because renewals and validations
not carry much content relative to object data transfer.
only alters the length of time a popular object will b
served during a subscription. Increasing the lease allo
a slave to deliver more fast hits, and also increases
chance of eviction of a subscribed object. Sending inva
idations increases DOCP master workload, but sin
they occur asynchronously to user requests they do
affect response time. A long lease also increases the s
of the master’s subscriber list. We did not study the pr
tocol’s effect on master sate in this simulation. Th
impact of the lease interval on fast hit rate, reque

180

200

220

240

260

280

300

320

340

1 2 4 8 16 32 64 128

B
an

dw
id

th
 d

em
an

d
(G

B
)

Cache size (GB)

Alex/LRU
DOCP/LRU

DOCP/GDSF
DOCP/LFUDA

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128

In
va

lid
at

io
n

m
is

s
(%

 o
f

in
va

lid
at

io
ns

)

Cache size (GB)

DOCP/1 day
DOCP/3 days

DOCP/1 week
11

The Distributed Object Consistency Protocol Protocol Analysis and Simulation

ct
re
n-
g
er

nt

l
tic
s.
d

P

ve
n

t
ts.

lso
demand, and bandwidth demand is summarized in
Table 1.

7.3 Hit and Miss Rates
The next two figures present the fast hit rate and total hit
rate of the two consistency protocols, three replacement
policies, and six cache sizes we studied. These are all
based upon the normal workload, default Alex consis-
tency parameters, and a static three day DOCP lease.

FIGURE 6. Fast Hit Rate

Figure 6 shows an improvement in fast hit rate when
using the DOCP protocol as compared with the Alex
protocol regardless of cache size. In large caches the
replacement policy is not a factor; the consistency proto-
col alone determines the fast hit rate.

FIGURE 7. Hit Rate

The consistency protocol does not significantly affe
the overall cache hit rate nor the byte hit rate. These a
determined by the cache replacement policy. The co
sistency protocol improves the fast hit rate by allowin
the cache to serve objects directly from cache rath
than wait for a consistency validation.

We also explored the impact of the cache replaceme
policy on the subscription and invalidation miss rate.

The following two figures illustrate that for a smal
cache the choice of replacement policy has a drama
effect on the subscription and invalidation miss rate
When the cache is a large enough to hold all modifie
objects the miss rate drops to zero.

FIGURE 8. Subscription Miss Rate

FIGURE 9. Invalidation Miss Rate

Note the synergy between theGDSF replacement policy
and the DOCP consistency protocol. TheGDSF policy
tries to keep more popular objects in cache. The DOC
subscribes based upon object popularity.

By keeping more popular objects in cache, a 1 GB sla
using theGDSFpolicy generates 95% fewer subscriptio
misses masters than when using theLRU policy.

The LFUDA policy also keeps popular objects, but i
ignores size and therefore keeps fewer, larger objec
This increased the overall miss rate and therefore a
the subscription and invalidation miss rate.

Table 1 Lease Impact - 4 GB cache,DOCP/GDSF

Lease 1 day 3 days 1 week

Fast hits 36.78% 41.78% 44.79%

Bandwidth (GB) 283.337 283.354 283.719

Requests (million) 26.696 24.582 23.312

Invalidation miss
(% invalidations)

0.38% 1.92% 6.05%

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128

Fa
st

 h
it

ra
te

 (
pe

rc
en

t)

Cache size (GB)

Alex/LRU
Alex/GDSF

Alex/LFUDA
DOCP/LRU

DOCP/GDSF
DOCP/LFUDA

30

35

40

45

50

55

60

65

1 2 4 8 16 32 64 128

H
it

ra
te

 (
pe

rc
en

t)

Cache size (GB)

Alex/LRU
DOCP/LRU

DOCP/GDSF
DOCP/LFUDA

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Su
bs

cr
ip

tio
n

m
is

s
(%

 o
f

su
bs

cr
ip

tio
ns

)

Cache size (GB)

DOCP/LRU
DOCP/GDSF

DOCP/LFUDA

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128

In
va

lid
at

io
n

m
is

s
(%

 o
f

in
va

lid
at

io
ns

)

Cache size (GB)

DOCP/LRU
DOCP/GDSF

DOCP/LFUDA
12

The Distributed Object Consistency Protocol Related Work

ll-
In
ed
ig-
e
to

eb

r
is-
de

ch-
es-

rt
he
].
ing
d
s
th
ch
ng
n
t
s
if
to
st

ed
ent
).

as
en
-

ed
e.
r
es

is-
rs
t
rs

the
t.

is-
er
r-
-

n:

m
y
ot
xy
7.4 Simulation Summary
In summary, the simulation of the DOCP in a wide area
network showed an overall reduction in connection
demand while serving zero stale hits. The eliminated
requests were positive validations for cached objects:
instead of a slow hit, where a cache must make a wide
area round trip, the DOCP slave achieves a fast hit by
serving subscribed objects immediately from its cache.
This reduces client response time and server demand.

We simulated the three replacement policies defined in
[1] using the DOCP and Alex adaptive TTL consistency
protocols. The replacement policy was the dominant
factor in bandwidth reduction; the consistency protocol
had little effect on bandwidth demand since the connec-
tions eliminated are validations, which only exchange
header information. The new replacement policies show
a significant improvement in bandwidth demand and
total in hit rate, as reported in the earlier work.

The choice of replacement policy affects the perfor-
mance of the DOCP for smaller cache sizes. Frequency
based policies show better synergy with the frequency
based subscription mechanism, and cause less wasted
effort on the part of DOCP masters and slaves.

8 Related Work
The DOCP is based upon a significant body of work,
most notably in the area of scalability, caching and repli-
cation in wide area distributed systems. The focus of the
work presented here is to bring together a number of
previous results in order to construct an efficient proto-
col for object consistency in the world-wide web.

Neuman [23] presents an overview of scale in distrib-
uted systems, motivating the need for scaling on the
basis of improved reliability and performance, and
observing the complexity of multiple administrative
domains in large-scale widely distributed systems. Neu-
man discusses distributed naming systems, which are
often used to locate system components. Neuman also
discusses replication, caching, and consistency, provides
a set of guidelines for designing scalable systems, and
examples of several such systems. Another useful set of
guidelines can be found in Lampson [17].

Kermarrec et al [11] have defined a framework for con-
sistent, replicated web objects. Their framework is part
of the Globe wide-area distributed systems research
project. In their paper they define a hierarchy of coher-
ence models and a framework to allow clients and stores
to negotiate the coherence they wish according to a set
of implementation parameters. Their framework is more
general than what we propose. No HTTP implementa-
tion was proposed as part of this work.

Liu and Cao [19] demonstrated that strong consistency
could be achieved at about the same cost as the current
weak consistency approach implemented by proxy
caches. In their paper, every object that changes caused
an invalidation message to be sent to the caches that
accessed that object. They demonstrated that with this

model they could support consistency equivalent to po
ing every time without increased network demand.
the proxy workloads we have studied we have observ
that most objects are never re-referenced even over s
nificant durations [2], so sending notifications for thes
objects should be avoided. Their report encouraged us
explore ways to provide stronger consistency in the w
more efficiently and with better scalability.

Krishnamurthy and Wills [13] demonstrated that cleve
use of existing HTTP requests can improve the cons
tency of web objects. However, no guarantees are ma
of the degree of object consistency; the proposed me
anism also may cause a significant number of unnec
sary invalidation messages to be exchanged.

Yin et al [29] propose using volume leases to suppo
consistency in large-scale systems. This builds on t
earlier notion of leases from Gray and Cheriton [10
Volume leases allow a server to make progress updat
objects even if clients (proxies) fail. The server nee
only wait until a relatively short volume lease expire
before modifying an object. Each proxy must have bo
a short volume lease and a longer object lease for ea
consistent object. This approach supports true stro
consistency since no object will be served without a
active lease, and no object will be modified withou
revoking or waiting for termination of a lease. There i
still the possibility of a delayed read or write response
a server can not be contacted. This is fundamental
strong consistency. Their algorithm also supports a “be
effort” consistency level similar to our notion of delta
consistency, which allows some content to be serv
with a strong consistency guarantee and other cont
with best effort (with corresponding update semantics

Version 1.0 of the DOCP uses only object leases and h
a relaxed consistency requirement, with a delta betwe
modification and eventual consistency. This delta is sim
ilar to the normal lag between when an object is creat
and when it is made available through a hosting servic
We believe there is an opportunity to integrate ou
approach with theirs to take advantage of volume leas
to provide improved consistency.

Sandpiper and Akamai have developed services that d
tribute content over the Internet from content provide
into the geographic locality of clients, to reduce clien
response time and server load. Their work and ou
share the same goals; our approach is to improve
core HTTP protocol while they layer a service above i

WebSpective and others also have products to cons
tently replicate content. They focus on a data cent
under common administrative control. We allow owne
ship of proxies and content providers to differ and pro
pose a standard protocol for wide area consistency.

There is some other related work worth a brief mentio

• The IETF hit metering RFC proposed a mechanis
for proxy caches to inform origin servers how man
hits they received for cached objects. This has n
been widely adopted, possibly because the pro
13

The Distributed Object Consistency Protocol Conclusions

er

e-

.

e
.

l
rk
-
r-

the
o-
he
n
-
e
ss

it
or-
s
o
h
to

e
to
sts
he
ic
re,
key-
nd
nt

a)
this
vy-

c
o
.

e
or
er
e

m-

-
ct
caches cannot be audited and therefore the informa-
tion is suspect. Our approach is auditable and
accountable, and furthermore log aggregation pro-
vides the opportunity to see specific user browsing
patterns in proxy caches.

• The SkyCache service populates its subscribing
caches with data that has been found to be popular
elsewhere. The service uses an out-of-band satellite
path. Cache misses from subscribing caches are
relayed to SkyCache Central where a set of rules
determine if an object is sufficiently popular to be
sent “up to the bird.” If so the object is sent up once
and broadcast to all participating caches.

• Multicast and other push technologies have been
suggested, although the asynchronous web model
has been shown not to match well with the synchro-
nous multicast model. Multicast and push may be
viable for simultaneous popular media or objects,
but the infrastructure has yet to mature.

There are several proposals and much work in progress
aimed at improving web performance. Some, like ours,
require modification to core infrastructure. This type of
modification is an expensive, long-term effort. We
believe that when such modifications are being made,
they should yield the broadest possible improvement to
the overall system.

9 Conclusions
We have designed and simulated a distributed consis-
tency protocol for web objects in the current Internet
environment. We have confirmed earlier research find-
ings that stronger consistency can be achieved in the
web at lower cost than weak consistency. Through pro-
tocol simulation we have demonstrated a reasonable
reduction in origin server load and improvement in page
load times as a result of the elimination of unnecessary
consistency validation requests in the current system.

Providing consistency along with access accounting can
eliminate the need for cache-busting techniques on the
part of content providers. Since objects are served con-
sistently with what the provider intended, and since
access information is returned to the provider by the
DOCP service, there should be no need for cache-bust-
ing. Furthermore, inappropriate use of headers such as
Expires and Last-Modified (accidentally, through
ignorance, or intentionally) will not cause the DOCP
system to behave improperly, since only actual modifi-
cation will cause object invalidation and subsequent net-
work demand.

We believe this service can enable accelerated growth of
caching and provide for new service opportunities. For
example, improved consistency can increase confidence
in web information and lead to greater business use of
the web.

As bandwidth continues to grow and bandwidth cost
falls we believe the primary benefits proxy cache servers

will provide are to reduce response time and serv
demand. This protocol is focused on those two goals.

In summary, we believe the benefits of the protocol pr
sented here are as follows.

• Better consistency for content providers and users

• Faster response times for popular objects.

• Cheaper for the origin server to serve fewer hits.

• Simpler for everyone by replacing confusing cach
control headers with a cleaner, simpler mechanism

9.1 Future Work
Work is currently in progress to integrate this protoco
definition with the volume lease and consistency wo
done by Dahlin, Alvisi, and their colleagues at UT Aus
tin. We believe our approaches are complimentary. Ve
sion 1.1 of the DOCP will incorporate volume leases.

Further research work needs to be done to define
security trust model and a combination of security pr
tocols and services identified and incorporated into t
DOCP architecture. We believe this work will focus o
protecting the integrity of content provider objects, pro
tecting the DOCP infrastructure from intentional abus
of cached objects, and on providing auditable acce
accounting information back to content providers from
the edge of the network. In order to accomplish this
may be necessary to define a DOCP certification auth
ity in order for DOCP masters to trust DOCP slave
without expensive manual configuration. We must als
formally define and describe the mechanism by whic
access accounting information will be conveyed back
the DOCP master from DOCP slaves.

In addition to providing access to hot static objects w
are looking at how to enable consistent access
dynamic and personalized data. Many dynamic reque
are data-driven, however the underlying data and t
applications that access it to create the dynam
response do not change with every request. Therefo
some of these requests (such as searches on popular
words, or price or availability quotes) can be cached a
even subscribed, provided an invalidation can be se
when the data (or the relevant portion of the dat
changes. Distributed databases can also address
issue, however some of those mechanisms are hea
weight for a web workload.

Multicast may help to reduce the burstiness of traffi
from a DOCP master. Multicast may be well suited t
synchronous distribution of invalidations to slaves
Future work will explore using (reliable) multicast to
distribute update notifications. Creating a multicast tre
is an expensive task relative to retrieval of a web page
subscription, so the protocol must minimize the numb
of multicast trees. We envision a multicast tree could b
set up by a DOCP master for the busiest slaves it is co
municating with.

Other future work may include optimization of the sub
scription and lease mechanism to account for the fa
14

The Distributed Object Consistency Protocol Acknowledgments

lop-
s-
ed
e
o
li-
on,

h
ch-
ey
s,
d

y
d
d
a
h
ture
that objects are distributed together. For example a web
page and all of its inline images can be thought of as a
single “package”. Additional web pages may be logi-
cally contained within a single package, such as for a
home page, its images, and the most popular destina-
tions off the home page (many of which share a set of
images). By distributing packages instead of individual
objects, efficiency could be improved. This also would
help reduce the burstiness of change notifications.

In addition to researching multicast, packaging, and
other techniques, we are working to characterize server
demand under a standard, unicast model.

Finally, we would like to pursue an open standards-
based approach to the formal definition and adoption of
this technology. Only through broad adoption will this
mechanism deliver its full value in improving web
response time and reducing network and server load.

10 Acknowledgments
This work was motivated by the desire to improve the
currently inefficient object replication in the web. It is

based upon a substantial body of research and deve
ment in wide area distributed systems, in particular di
tributed file systems like xfs and afs. Some of the relat
work is referenced, but other is part of our “collectiv
consciousness.” We would like to be the first t
acknowledge that we did not invent consistency, inva
dations, leases, or the Internet. To paraphrase Newt
we are standing on the shoulders of giants...

The authors are specifically grateful to Rich Friedric
who has provided guidance and feedback on the te
nology and the business aspects of this work, to Godfr
Tan who assisted in early protocol design discussion
and to John Barton, Nina Bhatti, Mark Nottingham, an
Craig Wills, for their helpful review comments.

This version of the protocol was also significantl
improved through discussions with Michael Dahlin an
his research group at UT Austin. Their team contribute
the method to handle clock skew in particular, and
wide variety of other useful comments - some of whic
have been addressed, others will be addressed in a fu
version of this technical report.
15

The Distributed Object Consistency Protocol References

d

y

h

-

.

s

,

f

11 References
[1] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, T. Jin,

“Evaluating Content Management Techniques for Web
Proxy Caches”, in Proceedings of the 2nd Workshop on
Internet Server Performance, Atlanta GA, May 1999.

[2] M. Arlitt, R. Friedrich, T. Jin, “Workload
Characterization of a Web Proxy in a Cable Modem
Environment”, in ACM SIGMETRICS Performance
Evaluation Review, vol 27 no 2, pp25-36, August 1998.

[3] M. Arlitt, R. Friedrich, T. Jin, “Performance Evaluation
of Web Proxy Cache Replacement Policies”, to appear in
Performance Evaluation, 1999.

[4] M. Arlitt, T. Jin, “Workload Characterization of the 1998
World Cup Web Site”, Technical Report HPL-1999-35,
February 1999.

[5] A. Birrell, R. Levin, R. Needham, M. Schroeder.
“Grapevine: An exercise in distributed computing.”
Communications of the ACM, April 1982.

[6] V. Cate. “Alex -- A Global Filesystem”. In Proceedings of
the USENIX File System Workshop, pages 1--12, May
1992. USENIX Association.

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz,
K. Worrell. “A Hierarchical Internet Object Cache”. In
Proceedings of the 1996 USENIX Annual Technical
Conference, January 1996.

[8] J. Dilley, “The Effect of Consistency on Cache Response
Latency”, Technical Report HPL-1999-107, HP
Laboratories, September 1999.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, “Hypertext Transfer Protocol -
- HTTP/1.1”, IETF RFC 2616, June 1999. The Internet
Society.

[10] C. Gray, D. Cheriton, “Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency”. In
Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pp 202-210, Dec 1989.

[11] A.M. Kermarrec, I. Kuz, M. van Steen, A. S. Tanenbaum,
“A Framework for Consistent, Replicated Web Objects”.
In Proceedings of the 18th International Conference on
Distributed Computing Systems, May 1998.

[12] M. Korupolu, M. Dahlin. “Coordinated Placement and
Replacement for Large-Scale Distributed Caches”, IEEE
Workshop on Internet Applications, pp 62-71, July 1999.

[13] B. Krishnamurthy, C. Wills. “Study of piggyback cache
validation for proxy caches in the world wide web”,
USENIX Symposium on Internet Technology and
Systems, pp 1-12, Monterey CA, December 1997.

[14] B. Krishnamurthy, C. Wills. “Proxy Cache Coherency
and Replacement - Towards a More Complete Picture”.
In Proceedings of the 19th International Conference on

Distributed Systems, Austin, TX, June 1999.

[15] L. Lamport, “Time, Clocks, and the ordering of events in
a distributed system.” Communications of the ACM, v 21
no 7, pp 558-565, July 1978.

[16] L. Lamport. “How to make a multiprocessor computer
that correctly executes multiprocess programs”. IEEE
Transactions on Computers, September 1979.

[17] B. Lampson, “Hints for Computer System Design”, In
Operating Systems Review, v 15 nr 5, pp 33-48, Oct
1983.

[18] R. J. Lipton, J. S. Sandberg. “PRAM: A Scalable Share
Memory.” Technical Report CS-TR-180-88, Princeton
University, September 1988.

[19] C. Liu, P. Cao, “Maintaining Strong Cache Consistenc
in the World-Wide Web”, Proceedings of the 17th IEEE
International Conference on Distributed Computing
Systems, May 1997.

[20] D. Mills, “Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI”, Internet RFC 2030,
October 1996.

[21] J. Mogul, F. Douglis, A. Feldmann, B. Krishnamurthy.
“Potential benefits of delta encoding and data
compression for HTTP”. In Proc. ACM SIGCOMM,
pages 181-194, September 1997. AT&T Labs Researc
TR 97.22.1.

[22] D. Mosberger. “Memory Consistency Models”.
Operating Systems Reviews, 27(1):18--26, Jan. 1993.

[23] B. C. Neuman, “Scale in Distributed Systems”, In
Readings in Distributed Computing Systems, IEEE
Computer Society Press, 1994.

[24] S. Perret, J. Dilley, M. Arlitt, “Performance Evaluation of
the Distributed Object Consistency Protocol In a Web
Proxy Cache”. Technical Report HPL-99-108, Hewlett
Packard Laboratories, September 1999.

[25] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G
Rudisin, G. Thiel. “LOCUS: A Network Transparent,
High Reliability Distributed System”. In Proceedings of
the Eights Symposium on Operating Systems Principle
(SOSP), pp 169-177, December 1981.

[26] J. Postel, K. Harrenstien, “Time Protocol”, Internet RFC
868, May 1983, Internet Society.

[27] Squid Internet Object Cache, http://squid.nlanr.net/

[28] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer
M. M. Theimer, B. B. Welsh. “Session Guarantees for
Weakly Consistent Replicated Data”. In Proceedings o
the 1994 Symposium on Parallel and Distributed
Information Systems, pp. 140-149, Austin, TX,
September 1994.

[29] J. Yin, L. Alvisi, M. Dahlin, C. Lin. “Using Leases to
Support Server-Driven Consistency in Large-Scale
Systems”. IEEE Transactions on Knowledge and Data
16

The Distributed Object Consistency Protocol References

t
be
r
e
n
the

s
the
t
a

t
as

r)
s-

ally
ve

a

t it
The

t,

.

e
m
m-
he

to
e
.

Appendix A: Protocol Details
This section presents the protocol interactions between a
DOCP slave and master using DOCP atop HTTP. The
syntax of HTTP requests is described in RFC 1945,
“Hypertext Transfer Protocol -- HTTP/1.0” and updated
in RFC 2616, “Hypertext Transfer Protocol -- HTTP/
1.1”. We do not describe the core HTTP protocol here
but rather its use by and interaction with DOCP

HTTP GET
An HTTPGETrequest is used to retrieve an object when
it is not in cache or when itsLast-Modified date is
unknown. It always retrieves object data and should also
retrieve the modification date for later object validation.

The response to an HTTPGET request is either HTTP
status200 OK and an object body, a redirection, or an
HTTP error. A redirection is a response that refers the
requestor to another URL. Most browsers will then fetch
the new object.

DOCP compliant slaves and masters must implement
these requests according to the specification. A DOCP
master will include an additional header in its response:

DOCP-Lease: Granted 0

This supports optimistic discovery. See section 5.8,
Optimistic Discovery on page 7 for a discussion of this
mechanism and Table 2, “DOCP-Lease Header Values,”
on page 19 for a complete discussion of lease values.

HTTP GET IMS
An HTTP GET If-Modified-Since request is used
to validate an object and retrieve a fresh copy if it has
been modified since itsLast-Modified date. A slave
can only use this request type if the modification date is
known.

The response to an HTTPGET IMSrequest is either an
HTTP 304 Not Modified indication with no object
data or an HTTP200 OK response with a new copy of
the object, which had been modified since theLast-
Modified date supplied by the requestor. The200 OK
response should also include aLast-Modified time
for future validation.

A DOCP master should include theDOCP-Lease:
Granted 0 response the same as with aGET response.

DOCP-Inv
A DOCP Invalidation message is sent from a master to
invalidate one or more subscribed objects on a slave.
TheDOCP-Inv message carried over HTTP contains the
following headers.

DOCP-Master: Master-Ident
DOCP-Host: Master-Host TxnId
DOCP-Inv: URI Last-mod Mod-time

Master-Ident is the identity of the DOCP master as
described below.Master-Hostis the host whose object
has changed (the host part of the URL).URI is the Uni-
form Resource Identifier for the changed object.

Last-modis the previous modification time of the objec
at the master. When received by the slave this should
the last modified time of the object. If this time is earlie
than the slave’s notion of the modification time th
DOCP-Inv message is ignored; this is a late invalidatio
message arrival, after the client has already refreshed
object. If theLast-modtime is greater than the slave’s
notion of the object modification time the object i
invalidated as usual and the new value marked as
object’s more recent known modification time. Any ge
or subscribe response from the master must include
Mod-timeat or after this time or it will not be honored.
This is the case if aDOCP-Inv arrives early.

Mod-timeis the new modification time of the object a
the DOCP master. It is used in the lease calculation
described in the DOCP-Lease section below.

TxnId is a transaction identifier (sequence numbe
assigned by the DOCP master. Each notification me
sage sent from a master to a slave has a monotonic
increasing sequence number. This allows a DOCP sla
to detect that it has missed aDOCP-Inv message and
request a retransmission.

There may be multipleDOCP-Inv lines for eachDOCP-
Host line. There may be multipleDOCP-Host lines for
each DOCP-Master . There may be multipleDOCP-
Master header lines sent on a single connection.

A master notification agent must keep invalidations for
slave until theTxnId (or a laterTxnId) is acknowledged
by the slave. A slave may request anyTxnId after the
last acknowledgedTxnId

DOCP-Inv-Ack
The slave must respond with an acknowledgment tha
has received and processed each DOCP-Inv request.
slave should not acknowledge aTxnId until it has
received and acknowledged all previousTxnIds. The
slave’s response may acknowledge multipleTxnIds. It
must apply each invalidation immediately upon receip
even if waiting for a missing invalidation.

DOCP-Inv-Ack: TxnId mInv nInv

TxnId is the identifier from the previousDOCP-Inv .

mInv is the number of invalidations made by the slave

nInv is the number of invalidations requested in th
Invalidation message. This allows the master to confir
that all invalidations were processed, and also to co
pute the number of invalidation messages for which t
cache no longer had data.

A cache may replace a subscribed object at any time
make room for other objects as per local policy. Th
invalidation miss rate helps to tune the lease duration
17

The Distributed Object Consistency Protocol References

ed
ds

-
ve
re

ary.

-
rs

as

it
If

t it

s-
d
he

d

re
l to
e

ed,

nd
an
ve

l-
DOCP-Inv-Nack
The slave may indicate negative acknowledgment for a
range of missingTxnId sequence numbers.

DOCP-Inv-Nack: TxnMin TxnMax

TxnMin and TxnMaxare the minimum and maximum
sequence numbers that have been seen by the slave. The
sequence numbers between were missed (and not
acknowledged) by the slave.

Upon receipt of aDOCP-Inv-Nack the master must
retransmit the notifications betweenTxnMin and Txn-
Max to the slave in aDOCP-Inv message. The master
notification agent should cache these messages until
they have been acknowledged.

DOCP-Subscribe Request
If a slave learns that a remote master supports the DOCP
protocol through optimistic discovery (DOCP-Lease:
Granted 0 in a response), it may request to subscribe
to objects from that server. To subscribe a slave includes
the following additional headers in a subsequent HTTP
GET IMS Sub request.

GET URI HTTP/1.1
If-Modified-Since: IMS-time
DOCP-Subscribe: Slave-Ident Slave-time [Mod-time]

URI is the Uniform Resource Identifier for the request.

IMS-time is the value of the most recentLast-Modi-
fied header for that object, as usually used with anIf-
Modified-Since request.

Slave-Ident is the identity of the slave.

Slave-timeis the current clock time at the slave in sec-
onds and microseconds, expressed assec.usec . This
allows the master to estimate the slave’s current time
and to assign a lease expiration time in the client’s time
frame.

Mod-time is the value of the most recent modify time
returned by the master in aDOCP-Inv message. It is
optional and can only be included if the object has been
previously subscribed and invalidated.Mod-time must
be less than or equal to IMS-time.

DOCP-Lease Response
A lease header has the following syntax.

DOCP-Lease: Resp-code Slave-time Lease-time

Resp-codeindicates whether the response was grant
or if not why. The response code and lease time fiel
can take on the values proposed in Table 2.

Slave-timeis the slave’s time reference from the sub
scribe request. If desired this may be used by the sla
to identify the request. If so used the slave must assu
each request occurs on a unique microsecond bound

Lease-timeis the expiration time of the lease in the cli
ent’s local time frame. It is an absolute time and occu
on a second boundary.

The lease expiration time is computed by the master
described below and depicted in Figure 10.

• When the slave receives a request for an object
checks whether that object can be served locally.
not it records the current time,Slave-time(ts), makes
a subscribe (GET Sub) request to the master.

• When the master receives the subscribe reques
recordsSlave-time(ts) and records its value of the
current time,Master-time (tm).

• If no lease is currently active for the object, the ma
ter calculates the local lease expiration time an
saves that value in object metadata. This is called t
Master-expiration-time, (tx).

• The lease expiration at the slave,Lease-time(tl), is
computed according to the following equations an
returned to the slave.

∆t = t x - tm
tl = ts + ∆t

Note that the lease at the slave will expire at or befo
the lease expires at the master, by an amount equa
propagation time of the request from the slave to th
master. Note that the propagation time,tm- ts, can not be
accurately determined unless clocks are synchroniz
but this does not matter.

The skew in expiration times between the master a
slave may cause a master to send a notification for
object the slave believes is already expired. The sla
must acknowledge this invalidation request withmInv
equal to zero for that object (i.e., record this as an inva
idation miss by the master).

FIGURE 10. Clock Skew and Lease Interval

Master

Slave

ts

tm tx

tl

∆t = tx - tm

tl = ts + ∆t
18

The Distributed Object Consistency Protocol References

nd
at
w

he
ata

ct

at

nd
at

at

d
n.
s

ter

as-

The
es
ot

lly

 not

g as
th-
The skew may also cause a slave to renew a lease prior
to the master considering the lease to be expired. To
accommodate this the master must start a second sub-
scriber list prior to the expiration of the object. Requests
for subscription to an object by slaves when there is less
than a minimum lease interval remaining should be put
on the new subscriber list.

Note that the lease response is orthogonal to the HTTP
response code. ADOCP-Lease header will not accom-
pany an HTTP error response unless that error response
should be cacheable. For example, HTTP error code
404 Not Found may be cached and even be subscribed
to if it is a sufficiently popular response from a server.

HTTP/1.1 cache control headers may also be included in
a DOCP response. These cache control headers are
superseded by theDOCP-Lease, but may be passed
along to subordinate (non-DOCP) proxies.

Response Calculation and Modifications

The master responds to the request based upon theIMS-
time andMod-timecommunicated by the slave and the
object’s true modification time,True-modtimeat the
master using the following rules. Note thatIMS-time
must be less than or equal toMod-timeat the slave if
Mod-time is supplied in the request headers.

IMS = Mod-time AND IMS = True-modtime

This object was not modified at the master since the last
time it was retrieved by the slave. The object lease has
expired or there was no lease. The subscription request
should be granted.

The master will respond with the following response.

HTTP: 304 Not Modified
DOCP-Lease: Granted timestamp

<no object body>

IMS < Mod-time AND Mod-time = True-modtime

This object was previously subscribed at the slave a
an invalidation was sent when the object was modified
Mod-time. The slave does not have a copy of the ne
object (IMS-time < Mod-time). The object has not
changed at the master since its first modification. T
subscription request should be granted, but object d
needs to be sent to the slave.

The master will respond with a new copy of the obje
and a granted subscription.

HTTP: 200 OK
DOCP-Lease: Granted timestamp

<object body included in response>

Mod-time < True-modtime

The relationship betweenIMS-time and Mod-time is
irrelevant (although it should always be the case th
IMS-time < Mod-time).

This object was previously subscribed at the slave a
an invalidation was sent when the object was modified
Mod-time. The object was modified again between th
first modification and the current request, atTrue-mod-
time. The slave does not have a copy of the modifie
object nor does it know the most recent modificatio
This is a “rapidly changing object” relative to the slave’
requests; the subscription should not be granted.

Table 2 DOCP-Lease Header Values

Resp-code Lease-time Explanation of Use

Granted 0 No subscription was requested and none is granted. This (unsolicited) DOCP mas
response supports optimistic discovery. When a slave sees a lease value of zero it
knows it may request subscriptions from that master. Until it requests a subscription
the slave must use polling to validate its freshness (as if an Expires: 0 header was
used).

Granted Lease-time A lease was granted for this object and expires at this clock time at the slave. The m
ter will deliver a notification if the object changes within that time.

Granted (unsigned 32)-1

or MAXINT

Whether a subscription was requested or not it has been granted and never expires.
slave may serve it forever without validating freshness but should still report access
to this object to the master as with any other subscribed object. The master does n
need to maintain a subscription list for such read-only objects.

Was-Modified Mod-time The object was modified since the last-modified time supplied by the slave, specifica
atMod-time. The master returns the new object and HTTP code200 OK . This simi-
lar to the behavior of a traditional proxy to anIf-Modified-Since request.

Was-Modified 0 The object is dynamically generated and is considered modified each request. Do
request a subscription for this object.

Use-Parent Parent-addr Used by a master to indicate that a slave should subscribe through a parent, servin
a DOCP master in the geography of the requestor. This supports peer discovery wi
out requiring an explicit location service.
19

The Distributed Object Consistency Protocol References

tly
be

a
s-

of

to
e
a

The master will respond with a new copy of the object
and a denied subscription.

HTTP: 200 OK
DOCP-Lease: Was-Modified Mod-time

<object body included in response>

The master returns the newMod-time value for the
object. On a subsequent request the slave may be
granted a subscription if the object has not been modi-
fied again (Mod-time= True-Modtime).

In the case of an object that is modified more frequen
than it is requested, the slave will make a subscri
request each time it validates the object (an HTTPGET
IMS Sub request) and the master will respond with
fresh copy of the object and a lease denied with a Wa
modified indication. This polling assures consistency
rapidly changing objects.

A Mod-timevalue of zero may be used by the master
indicate that an object is dynamically generated. Th
slave may use this information to avoid requesting
subscription on future requests.
20

	1 Introduction
	2 Web Cache Consistency
	2.1 Strong Consistency Models
	2.2 Weak Consistency Models
	2.3 The Alex Protocol

	3 DOCP Requirements
	3.1 Incremental Evolution
	3.2 Internet Scale
	3.3 Fault Tolerance
	3.4 Web Consistency and Performance
	3.5 Accounting and Content Distribution

	4 DOCP Overview
	FIGURE 1. DOCP Architecture
	4.1 Web Objects
	4.2 Content Provider
	4.3 DOCP Master
	4.4 Web Server
	4.5 DOCP Slave
	4.6 Client

	5 DOCP Protocol Operation
	5.1 Protocol Overview
	FIGURE 2. DOCP Consistency Protocol Operation

	5.2 Subscription Decision - Slave
	5.3 Subscription Decision - Master
	5.4 Subscription Decision - Lease Interval
	5.5 Leases and Clock Skew
	5.6 Modification of Subscribed Objects
	5.7 Change Notification
	5.8 Optimistic Discovery
	5.9 Access Logging
	5.10 Predictive Subscription Renewal
	5.11 Content Provider Updates
	5.12 Hierarchy for Scalability

	6 HTTP Cache Control
	6.1 Pragma: No-Cache
	6.2 Expires
	6.3 Cache-Control: Headers
	6.3.1 max-stale, min-fresh, min-stale,...
	6.3.2 Do-Not-Cache, Private,...

	7 Protocol Analysis and Simulation
	7.1 Network and Server Demand
	FIGURE 3. Request Demand
	FIGURE 4. Bandwidth Demand

	7.2 Protocol Performance
	FIGURE 5. Invalidation Miss Rate by Lease

	Table 1 Lease Impact - 4 GB cache, docp/gdsf
	7.3 Hit and Miss Rates
	FIGURE 6. Fast Hit Rate
	FIGURE 7. Hit Rate
	FIGURE 8. Subscription Miss Rate
	FIGURE 9. Invalidation Miss Rate

	7.4 Simulation Summary
	8 Related Work
	9 Conclusions
	9.1 Future Work

	10 Acknowledgments
	11 References
	[1] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, T. Jin, “Evaluating Content Management Tec...
	[2] M. Arlitt, R. Friedrich, T. Jin, “Workload Characterization of a Web Proxy in a Cable Modem E...
	[3] M. Arlitt, R. Friedrich, T. Jin, “Performance Evaluation of Web Proxy Cache Replacement Polic...
	[4] M. Arlitt, T. Jin, “Workload Characterization of the 1998 World Cup Web Site”, Technical Repo...
	[5] A. Birrell, R. Levin, R. Needham, M. Schroeder. “Grapevine: An exercise in distributed comput...
	[6] V. Cate. “Alex -- A Global Filesystem”. In Proceedings of the USENIX File System Workshop, pa...
	[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, K. Worrell. “A Hierarchical Internet O...
	[8] J. Dilley, “The Effect of Consistency on Cache Response Latency”, Technical Report HPL-1999-1...
	[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hyperte...
	[10] C. Gray, D. Cheriton, “Leases: An efficient fault-tolerant mechanism for distributed file ca...
	[11] A.M. Kermarrec, I. Kuz, M. van Steen, A. S. Tanenbaum, “A Framework for Consistent, Replicat...
	[12] M. Korupolu, M. Dahlin. “Coordinated Placement and Replacement for Large-Scale Distributed C...
	[13] B. Krishnamurthy, C. Wills. “Study of piggyback cache validation for proxy caches in the wor...
	[14] B. Krishnamurthy, C. Wills. “Proxy Cache Coherency and Replacement - Towards a More Complete...
	[15] L. Lamport, “Time, Clocks, and the ordering of events in a distributed system.” Communicatio...
	[16] L. Lamport. “How to make a multiprocessor computer that correctly executes multiprocess prog...
	[17] B. Lampson, “Hints for Computer System Design”, In Operating Systems Review, v 15 nr 5, pp 3...
	[18] R. J. Lipton, J. S. Sandberg. “PRAM: A Scalable Shared Memory.” Technical Report CS-TR-180-8...
	[19] C. Liu, P. Cao, “Maintaining Strong Cache Consistency in the World-Wide Web”, Proceedings of...
	[20] D. Mills, “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI”, Internet R...
	[21] J. Mogul, F. Douglis, A. Feldmann, B. Krishnamurthy. “Potential benefits of delta encoding a...
	[22] D. Mosberger. “Memory Consistency Models”. Operating Systems Reviews, 27(1):18--26, Jan. 1993.
	[23] B. C. Neuman, “Scale in Distributed Systems”, In Readings in Distributed Computing Systems, ...
	[24] S. Perret, J. Dilley, M. Arlitt, “Performance Evaluation of the Distributed Object Consisten...
	[25] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, G. Thiel. “LOCUS: A Network ...
	[26] J. Postel, K. Harrenstien, “Time Protocol”, Internet RFC 868, May 1983, Internet Society.
	[27] Squid Internet Object Cache, http://squid.nlanr.net/
	[28] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, B. B. Welsh. “Sessio...
	[29] J. Yin, L. Alvisi, M. Dahlin, C. Lin. “Using Leases to Support Server-Driven Consistency in ...

	Appendix A: �Protocol Details
	HTTP GET
	HTTP GET IMS
	DOCP-Inv
	DOCP-Inv-Ack
	DOCP-Inv-Nack
	DOCP-Subscribe Request
	DOCP-Lease Response
	FIGURE 10. Clock Skew and Lease Interval

	Dt = tx - tm
	tl = ts + Dt
	Response Calculation and Modifications
	IMS = Mod-time AND IMS = True-modtime
	IMS < Mod-time AND Mod-time = True-modtime
	Mod-time < True-modtime

	Table 2 DOCP-Lease Header Values
	The Distributed Object Consistency Protocol
	Version 1.0
	John Dilley, Martin Arlitt, Stéphane Perret, Tai Jin
	Hewlett-Packard Laboratories Palo Alto, CA

