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This report analyzes the performance of two methods for
maintaining object consistency in World Wide Web proxy cache
servers: the widely used Alex adaptive TTL protocol and a
proposed Distributed Object Consistency Protocol (DOCP). The
goal of this report is to evaluate these approaches to web cache
consistency using a realistic workload and trace-driven
simulation. We examine the effect of cache replacement policies
and consistency protocols on cache performance.

This analysis indicates that the DOCP outperforms the Alex
protocol while preventing access to inconsistent objects. DOCP
also improves cache response time by serving consistent objects
without communicating with the origin server to check
freshness. This improves fast hit rate and reduces request
demand on origin servers.
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Abstract

This report analyzes the performance of two methods for
maintaining object consistency in World Wide Web
proxy cache servers: the widely used Alex adaptive TTL
protocol and a proposed Distributed Object Consistency
Protocol (DOCP). The goal of this report is to evaluate
these approaches to web cache consistency using a
realistic workload and trace-driven simulation. We
examine the effect of cache replacement policies and
consistency protocols on cache performance.

This analysis indicates that the DOCP outperforms the
Alex protocol while preventing access to inconsistent
objects. DOCP also improves cache response time by
serving consistent objects without communicating with
the origin server to check freshness. This improves fast
hit rate and reduces request demand on origin servers.

1 Introduction
To improve service to web clients web proxy cache
servers have been deployed throughout the network.
These cache servers store copies of objects requested by
web users and subsequently serve those objects to users
if requested again. By serving cached objects, the proxy
reduces network and origin server demand. However,
the objects they serve are not necessarily current with
the origin server. Thisweak consistencyleads content
providers to disable caching for some objects and users
to reload pages when they suspect inconsistency. This
increases server load, especially duringflash crowds
when many users visit the site at the same time.

Web consistency and the Alex consistency protocol are
discussed in detail in [9]. The Distributed Object Con-
sistency Protocol (DOCP) is defined in [10]. This report
presents the results of a trace-driven simulation of the
DOCP and Alex consistency protocols. The simulation
establishes that DOCP provides strong web consistency
without adding network traffic or origin server load.

1.1 HTTP Web Cache Consistency

HTTP/1.0 provides an approach to maintain consistency
of cached objects based on validation. Using this mech-
anism a client or proxy cache queries an origin server
with an object's last known modification date using an
HTTP GET request with anIf-Modified-Since

header. If the object hasn't changed at the origin serv
the server responds with a validation of freshness. O
erwise, the updated object is returned as a regu
response. The server can also add anExpires header to
indicate when the object should expire from the cac
and be re-validated. in practice this header is difficult
use because it is hard to predict when an object will ne
be modified.

HTTP/1.1 [12] adds mechanisms to allow clients, prox
caches, and origin servers to control caching polic
These headers can identify the maximum “stalenes
allowed for an object (how old an object can be serve
from cache without validation), the minimum freshnes
(again, how old), the maximum age (how old); or the
can force revalidation of the object with the origin
server. These mechanisms are described in over 30
160) pages in the HTTP protocol definition (RFC 261
[4]). These headers are complex and difficult for use
and origin servers to use effectively. The DOCP aims
replace many of these complex mechanisms with a si
pler, more robust one.

The most common consistency mechanism currently
use in the web uses an adaptation of the heuristic dev
oped in the Alex protocol [6], in which each object is
assigned a time-to-live (TTL) in the cache as a perce
age of the age of the object when accessed. The ag
the difference between the current time and the objec
age as determined by theLast-Modified date
reported in the server headers when the object w
accessed. (Not all servers return this value; the cac
can only apply this protocol successfully when the mo
ification date is supplied.)

This age-based approach is effective in practice sin
the probability that an object will change is proportiona
to the age of the object: new objects tend to chan
sooner than old objects. More formally, the probabilit
of object modification follows a Zipf (power-law) distri-
bution based upon the time since last modificationt)
and a constant alpha (a).

P(t) ~ t-a (EQ 1)

While the Alex protocol has good synergy with We
content modification probability there is still a possibil
ity of inconsistent access. This prevents content prov
ers from being able to trust that objects in the cache a
consistent with what they intended, and thus limits u
sim.fm September 28, 1999 1:54 pm
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of caching by providers who want greater control over
the distribution of their objects.

1.2 Proposed Consistency Protocol

Strong consistency in the web can be achieved by forc-
ing a validation with the origin server on every request,
effectively tunneling through the cache. This increases
the request load at the origin server and the response
time of user requests [10]. The time to validate an object
with the origin is about the same as that of returning a
2 KB object, and is much longer than serving an object
directly from the cache.

To improve user response time and object consistency in
the web we designed a protocol that delivers strong con-
sistency in the web. The Distributed Object Consistency
Protocol (DOCP [9]) uses invalidation after an object is
modified rather than occasional validation after an
object is requested.

Section 2 explains the methodology used to build the
simulator and Section 3 gives some details about its
implementation. Section 4 characterizes the workload,
and Section 5 describes the simulation we performed
given this workload. Finally, Section 6 presents the
results and our findings about this new approach of
caching in the World Wide Web.

2 Methodology
This analysis uses using trace-driven simulation to
examine consistency protocol behavior Trace-driven
simulation consists of replaying logs (traces) collected
from real users through a simulator that is as similar to
the protocol and underlying network as is feasible.

2.1 Trace-Driven Simulation

We chose trace-driven simulation because the variability
in Internet traffic makes it difficult to model accurately.
Using a trace of actual activity guarantees a valid model
of user activity. A disadvantage of trace-driven simula-
tion is that as real workloads change, the trace can not
capture that effect. For example, a move to higher speed
access networks may affect user demand and therefore
the cache workload. Furthermore, many traces openly
available in the Internet community are for a short dura-
tion or small user base. To be realistic a trace needs to be
able to describe real user workload over a sufficiently
diverse set of requests. This is particularly important
when studying caching, as repeated access to objects
over a time period is essential to measure actual cache
behavior.

Fortunately, we had access to a large data set from a
busy proxy server [3]. Data were gathered by tracing
every request made by a population of thousands of
home users connected to the web via cable modem tech-
nology over a five-month period (for a total of 117 mil-
lion requests). This user demand should be similar to
that of other high-speed home users. In this study we
augmented the simulator previously used to explore the

effect of various cache replacement policies [2] to sim
late the proposed DOCP consistency protocol.

One difficulty with such a simulation is modification
information is not available in proxy logs nor in origin
server logs. The origin server logs can provide an es
mate of the modification rate for popular objects, bu
can not identify when an object changes more than on
between accesses. We examined origin server logs
related research [11] to gain an understanding of t
modification profile for web objects. In Section 3.2 w
present this analysis in detail.

Using the modification profile we created a statistic
model to simulate object modification. The model dis
tributes object modifications across the set of objec
observed in the trace. We adjusted the modification ra
to test the sensitivity of the protocol to the assumption
about object modification rate.

2.2 Proxy Simulation Model

FIGURE 1. Simulation Model

Figure 1 describes the simulation model and lists th
metrics collected during this study.

• Hit rate: the percent of all object GET requests tha
were served with data from the cache (includin
those that required validation with the origin server)

• Fast hit rate: the percent of GET requests that wer
served directly from the cache without validatio
from the origin server (i.e., without external commu
nication).

• Slow hit rate: the percent of GET requests that wer
served by the cache after contacting the origin serv
to validate object consistency.

• Byte hit rate: the percent of all bytes served to client
that came from the cache (including those that we
served following object validation with the origin
server).

• Request demand: the number of requests from the
proxy cache to all external origin servers.

• Bandwidth demand: the number of outgoing and
incoming bytes between the proxy cache and a
external origin servers.

Update
Model

Proxy

Content
Modifications

Request Demand
Bandwidth

Users
Hit Rate
Fast Hit Rate
Byte Hit Rate
2
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Separation of cache hit rate intofast and slow hits
allows us to estimate cache response time based upon
the cache consistency model.

3 Implementation
The simulated system includes origin servers served by
DOCP masters and one DOCP slave cache serving a
population of users. Origin servers maintain web objects
and handle object requests and modifications. DOCP
slave caches maintain copies of requested objects, han-
dle object requests from users and invalidation requests
from DOCP masters. The system simulates consistency
protocols and cache replacement policies. It does not
attempt to simulate wide area network delays or errors.

3.1 Overview

The content used for the simulation is the set of objects
requested within a given time period from arequest log.
An update model assigned modifications to the objects
within the simulated time period. The simulator replays
the requests and updates and records the results. These
steps are depicted in Figure 2 and explained below.

FIGURE 2. Simulation Platform

The generator produces the update events according
to the update model and the indicated time segment to
be simulated from a proxy cache request log. Thegen-
erator builds a table of all unique objects in the
request log and distributes updates among them. The
updates are sorted by timestamp and stored in the
update eventfile. This gives consistent, repeatable mod-
ification behavior.

Thesimulator replays both therequest logandupdate
eventfiles and simulates protocol operation. Thesimu-
lator collects simulation results after a configurable
warm up period.

We faced several issues in the development of this simu-
lation platform. The following sections summarize the
issues and how we resolved them. The most important
was the assignment of modifications to objects.

3.2 Object modification

Arlitt et al developed a method to detect possible mod
fications from a log [3]. This method assumes that a fi
modification will result in a relatively small change in
reported file size. By contrast an aborted transfer w
generally result in a much smaller transfer size. Th
heuristic allows estimation of the number of aborte
transfers and object modifications.

This method was not adequate to assign modifications
object for this simulation because a precise modificati
time is required. The modification time should not b
the same as the access time, since this is known not to
consistent with actual object modifications. Furthermo
multiple modifications may occur between accesse
which may influence the behavior of a consistency pr
tocol. Instead, we used a statistical model for updates

To create the model we analyzed logs from th
www.hp.com web server to detect possible object mod
fications. The detection method described above is m
accurate when considering popular objects on busy se
ers: higher request frequency gives a better estimate
object modifications by reducing the window betwee
successive requests. This validation considered the
15% of cacheable objects on the site, which receiv
90% of the requests. The analysis used one week da

Table 1 shows that HTML objects are modified mor
frequently than images and other objects, as others h
observed [11]. This indicated that updates to HTM
objects should be modeled independently from oth
objects. The other types were modeled together.

Most objects are not modified frequently, but a few we
updated very frequently. Earlier studies [8][1][5] hav
observed a Zipf (power-law) distribution for objec
modification and object popularity. Under a Zipf distri
bution, popular objects are very popular, but the dist
bution has a heavy tail: as popularity decreases there
still a significant probability that the object is accesse
By comparison, an exponential distribution decay
much more rapidly, so unpopular objects under an exp
nential distribution would receive few to no request
Looked at another way, the area under an exponen
curve is finite, but the area under a power-law curve
infinite. Based on the data fromwww.hp.com and the
prior research we chose a Zipf distribution to mod
modifications.

On this server the average frequency of modificatio
for popular objects is about 4 orders of magnitud
smaller than for the requests (9 hours versus 3 secon
While this does not have bearing on the object modific

Time Segment
Update Model

Generator
Request

Log

Time Segment
Consistency Protocol
Replacement Policy

Cache Size

Simulator

Results

Update
Event

TABLE 1. Cacheable Object Modification Rate

HTML Other Total

Requests 6,067,086 47,174,278 53,241,364

Objects 9,898 4,381 14,279

Modified 5,299 4,381 9,680

Updates 230,844 47,241 278,085
3
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tion distribution it is encouraging, and illustrates signifi-
cant potential for performance improvement from
consistent caching.

To test the sensitivity of the simulation to assumptions
about update frequency, we generated a family of heavy-
tailed distributions. The following function is a distribu-
tion generator for Zipf-like distributions.

updist(x,a) = 1/(ax+1) (EQ 2)

wherea is the shape parameter andx a uniform random
variable in [0,1). Figure 3 illustrates three such distribu-
tions from the family.

FIGURE 3. Update Frequency Distribution

We implemented thegenerator to produce update
events for each of the two classes of objects: HTML and
others as follows.

• First, it assigned the total number of modifications
during the interval to all objects using theupdist
function multiplied by a scale factor. The scale factor
determines the how often an object can possibly
change. This factor is based upon estimated update
frequency from the logs. At the conclusion of this
step, each object has some number of modifications
assigned to it.

• Second, it assigned modification times for each
object. This assignment used a Poisson process to
determine the interval between modifications. This
process used the exponential functionexp , described
in EQ. 3 to distribute the updates within the simula-
tion interval. In EQ. 3mu is the object update fre-
quency from the previous step andx a uniform
random variable in [0,1).

exp(x,mu) = -mu*ln(x) (EQ 3)

• Finally, it sorted all the update events by timestamp.

3.3 Cache validation

We had to distinguish cache validations requests from
regular requests in order to replay a realistic situation.
Most browsers use a private cache and send out valida-
tions when the user requests an object more than once. It

is important to take into account this hierarchical beha
ior when simulating a cache consistency protocol.

Unfortunately, the logs do not include client reque
headers. The HTTP status code indicates whethe
response was a validation, but not whether the requ
was for a validation. When a server receives a cond
tional request (with anIf-Modified-Since header) it
responds with a304 Not Modified status code if the
requested object was not updated since the last retrie
If the object was modified the server responds with
200 OK status code. The number of304 Not Modi-
fied responses therefore provides a lower bound on t
number of validation requests. 15% of responses in t
logs used in this simulation resulted in304 Not Modi-
fied  responses.

3.4 Simulated Consistency Protocols

The goal of this study was to analyze the behavior
DOCP as compared with the following approaches
handle cache consistency in the World Wide Web.

3.4.1 Polling for Strong Consistency

Object validation with the origin server is the only alter
native for strong consistency using today’s HTTP prot
col. This mechanism results in relative high respon
time and server load when compared with the oth
alternative, weak consistency. When used judicious
this mechanism can allow a content provider to deliv
their content consistently and measure user access.

For the simulation we model the strong policy by coun
ing each request as a slow hit or a miss, depending on
the object was in the cache or not.

3.4.2 Alex Consistency Protocol

The Alex consistency protocol [6] is used by the Squ
open source cache server and other Harvest [7] deriv
works. It is probably the most widely deployed we
cache consistency protocol.

The Alex protocol assigns each object a time to liv
(TTL) in the cache. The TTL value is computed usin
three values: the percentage of the object’s age, a m
mum limit, and a maximum limit on the TTL. See [10]
for a detailed description of this protocol.

We developed a simulation module for the Alex protoc
as it is implemented in Squid using these paramete
We also identified a trick for handling cache validation
While reading Squid source we noticed that it does n
always propagate user validation requests to the orig
server. Squid permits the cache administrator to chan
any Pragma: no-cache request (specified by a client
to request not to use a cache) into a cache validatio
This can negatively impact object consistency if th
cache is in a hierarchy: At the first level, the “no-cache
request becomes a validation request, which is valida
by the second level cache directly, rather than with th
origin server. We analyzed the behavior of the Alex pro
tocol with and without this feature, which is referred t
as theweak validations feature.
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To summarize, the parameters for the Alex protocol are:

• Min: minimum TTL in the cache,

• Pct: percentage of the age used to set the TTL,

• Max: maximum TTL in the cache,

• Ims: weak validation feature switch on or off.

3.4.3 Distributed Object Consistency Protocol

The simulation also examined the performance of the
proposed Distributed Object Consistency Protocol,
DOCP [9]. With this protocol a DOCP slave proxy
cache guarantees object consistency to the client. The
DOCP cache implements strong consistency using vali-
dation until an object becomes sufficiently popular.
When an object becomes popular, the slave cache asks
for a subscription to that object with a DOCP master
agent for the origin server. If a subscription is granted
the slave receives a lease interval for the object. If a sub-
scribed object changes during the lease interval the
DOCP master’s notification agent sends an invalidation
notification message to each subscribed slave proxy
cache. The lease represents a time-bounded agreement
to receive an invalidation message if the original copy is
updated or deleted. After the lease expires the cache
may renew the lease on a subsequent client request; oth-
erwise it uses polling to achieve strong consistency.

The simulator assisted during protocol development to
help define what is “sufficiently popular”, and to estab-
lish an appropriate lease interval. Popularity is the fre-
quency of access: the number of requests within a given
time interval. An invalidation has about the same cost as
a validation, so the protocol strives to subscribe early. If
an object has been requested in the previous 24 hours a
subscription will be requested. Other values for the pop-
ularity threshold were simulated, which confirmed our
assumption. The threshold was made a protocol constant
based upon early simulation, rather than a parameter.

We also explored setting the lease interval based upon
object modification profile observed by the DOCP mas-
ter. We used the modification history to estimate the
most likely time of next update and configured the lease
to end prior to that. From simulation we learned that it is
difficult to accurately determine both the next update
and access times. This method led to leases that were
too short, causing extra network traffic. We concluded
that a simple constant lease interval was more efficient
than a complicated lease function based upon metadata
whose ability to predict the future cannot be assured.

We do not present a further analysis of the popularity
function or the dynamic lease algorithm. The only the
parameter we considered for the DOCP was:

• Lease: the maximum period of subscription for an
object

4 Workload
This section presents details about therequest logand
theupdate event files used for the simulations.

4.1 Time Segment

The full log period covers five months with 117 millions
requests. This simulation extracted the first 10 wee
(6048000s) and analyzed only cacheable HTTP traf
(the dominant traffic component). 92% of HTTP
requests had cacheable responses, which accounted
95% of the total HTTP content transferred. The follow
ing tables show the breakdown for the HTTP traffic.

4.2 Update Model

Given the cacheable objects identified from the log, w
built two update models using the heavy tail distributio
as discussed previously. The goal was to build a wor
load to compare protocols without introducing sid
effects that can favor one of them. We created tw
update models, one for HTML objects and one for a
others. The models have an average modification per
of one hour (3600s) for HTML objects and one da
(86400s) for other objects.

We produced a normal modification workload (a=104)
for the first distribution and a heavy workload (a=103)
for the second (see Figure 3). We simulated the pro

TABLE 2. Simulation Trace Characteristics

Total Time Segment 10 weeks

Total HTTP Requests 46,263,216

    Cacheable 42,733,169

    Not Cacheable 3,530,047

Total Content Transferred 460.61 GB

   Cacheable 442.06 GB

   Not Cacheable 28.55 GB

This workload consists of 42.7 million requests for 7.
million unique cacheable objects. These objects rep
sent 104 GB of content, which would require 442 GB o
traffic if none of it was cached and 104 GB of externa
traffic if it was all cached.

TABLE 3. HTTP Request Characteristics

HTML Other Total

Requests (million) 6.546 36.186 42.733

Unique Objects
(million)

1.617 6.082 7.699

Unique Content
Size (GB)

8.81 95.26 104.07

Total Content
Transferred (GB)

29.59 412.47 442.06
5
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cols using each of the models. The following tables
summarize the distribution of modifications.

For the normal distribution, 8.14% of the objects were
modified during the period of 10 weeks with a global
average update frequency of one object modified every
2.43 seconds.

For the heavy distribution, 31.84% of the objects were
modified during the period with a global average update
frequency of one object modified every 0.32 seconds.
Note that all HTML objects were modified at least once.

5 Simulation
The simulator collects statistics after a warm up
period. During the warm up period many cache misses
occur because the cache is empty. We warmed up the
cache using the first week of the 10 weeks (10% of all
requests).

This gave thesimulator about two months of busy
traffic during which to collect statistics. Table 6 shows a
breakdown of the requests, validations and modifica-
tions during the simulation period.

5.1 Replacement Policy

We simulated the least recently used (LRU) replaceme
policy used by most of the current cache products, a
two new policies described in detail in [2]. GDS-Fre
quency (GDSF) is a variant of the Greedy Dual-Siz
policy optimized for popular, smaller objects. LFU with
Dynamic Aging (LFUDA) is a variant of LFU that uses
a dynamic aging policy to accommodate shifts in the s
of popular objects. We ran the simulation with the fo
lowing cache sizes: 1, 2, 4, 8, 32, and 128 GB. A cac
of 128 GB will hold all cachable objects (104 GB) an
models an infinite cache for the simulation period. W
ran the simulator with all combinations of replaceme
policy, consistency protocol, and cache size. We al
simulated some special cases as described below.

5.2 Alex Protocol

The simulation of the Alex protocol used Squid defau
parameters (min=0, pct=20%, max=3days, ims=of
The simulator includes a sensor to measure inconsist
responses delivered from the cache (fast hits for obje
that had been modified at the origin server).

We conducted an additional experiment to measure
impact of weaker consistency policies in the Alex/LRU
protocol on consistency. In addition to the Squid defau
policies we simulated the following.

• Strong consistency (validate every time),

• Weaker consistency using parameters (min=1ho
pct=100%, max=1week, ims=off). We have see
Squid proxy caches configured this way.

• Weak consistency with theweak validationsfeature
turned on (min=1hour, pct=100%, max=1week
ims=on).

Table 7 shows the fast hit rate, bandwidth demand, a
inconsistent hit rate when using an infinite cache, th
normal workload, and each of the consistency levels.

Figure 4 shows the percent of fast hits that return inco
sistent object data under the four consistency polici
using the normal workload.

TABLE 4. Update Distribution: normal

HTML Other

Period 1 hour 1 day

Modified Objects 543,693 83,163

Total Updates 2,270,084 217,509

TABLE 5. Update Distribution: heavy

HTML Other

Period 1 hour 1 day

Modified Objects 1,617,877 834,489

Total Updates 18,812,729 2,185,555

TABLE 6. Simulation Results Workload

Statistics Period 9 weeks

Total HTTP Requests 42,227,728

   Completed 42,224,590

   Cacheable 38,971,702

   Validation (304) 7,194,224

Total Content Transferred 417.26 GB

Modifications (normal) 4,488,916

Modifications (heavy) 42,515,677

TABLE 7. Summary Results by Refresh Policy

Strong Default Weak WkVal

Fast hits 0.00% 29.31% 30.05% 46.44

Bandwidth
(GB)

185.891 185.850 185.835 185.84

Requests
(million)

42.224 29.850 29.537 22.61

Stale hits (%
of fast hits)

0.00% 0.17% 0.25% 0.38%
6
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FIGURE 4. Inconsistency, normal workload

Relaxing the consistency level does not affect network
bandwidth demand; it alters the ratio of fast and slow
hits. Increasing the ratio of fast hits reduces the number
of external requests made by the cache to validate object
freshness and therefore improves average response time.

Inconsistent accesses under the normal workload
occurred well less than 1% of the total fast hits. With the
heavy workload inconsistent accesses occur about five
times as often.

The remaining simulations use the default policy to
achieve a good level of consistency to compare to the
DOCP approach.

5.3 Distributed Object Consistency Protocol

For the simulation of the DOCP we explored how to
configure and tune the subscription mechanism. A sub-
scription has costs to the DOCP master to maintain state
and send out the invalidation in case of modification.
These costs can be prohibitive if the subscription mech-
anism is not well tuned. For example, a subscription
becomes useless when the object is evicted by the
DOCP slave’s cache replacement policy.

To study this effect we developed sensors to measure
subscription efficiency. The invalidation miss rate is the
ratio of invalidations for objects that are no longer in the
cache to total invalidations. We conducted experiments
to understand the impact of various lease intervals on
the invalidation and subscription miss rate.

Table 8 shows the results of a simulation using the nor-
mal workload, a 4 GB cache, and the GDSF policy.

Figure 5 shows the percentage of invalidation misses
subscribed objects for the three lease intervals using
normal workload, 4 GB cache, and the GDSF policy.

FIGURE 5. Invalidation Miss Rate by Lease

Extending the lease interval does not affect netwo
bandwidth demand because renewals and validations
not carry much content relative to object data transfer.
alters the length of time a popular object will be serve
during a subscription. Increasing the duration allows th
cache to serve more fast hits, and also increases
chance of eviction of a subscribed object. Sending inva
idations increases DOCP master workload, but sin
they occur asynchronously to user requests they do
directly affect response time. A long lease also has
impact on server state since it increases the size of
subscriber list, but we did not study this in our simula
tion.

With an infinite cache the fast hit rates are slightl
higher (about 1 percent each) and the invalidation m
rate is zero, since no subscribed objects are evicted.

The lease parameter does not significantly alter t
number of subscribed objects, which depends primar
on object popularity. It does not significantly affect th
network bandwidth demand.

We chose a value of three days for the lease period
the remainder of our simulation. This is the same valu
as the Alexmax parameter, but there is a differenc
between the interpretation of the two values. The Ale
refresh policy is set up by the cache administrator
optimize the client resources. The DOCP lease period
determined by the DOCP master administrator to op
mize its resources. Both control an object’s maximu
stay in the cache without validation.

6 Results
This section presents the overall results for the norm
workload and examines the impact on the protoco
when using the heavy modification workload.

6.1 Subscription Efficiency

In the previous section the invalidation miss rate wa
used under a single replacement policy to determine

TABLE 8. Impact of Lease Interval on
Invalidation Miss Rate

Lease 1 day 3 days 1 week

Fast hits 36.78% 41.78% 44.79%

Bandwidth (GB) 283.337 283.354 283.719

Requests (million) 26.696 24.582 23.312

Invalidation miss
(% invalidations)

0.38% 1.92% 6.05%
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DOCP lease interval to be used for the remainder of the
simulation. Figure 6 presents the subscription miss rate
for all the replacement policies studied.

FIGURE 6. Invalidation Miss Rate

Another measure of subscription efficiency is the num-
ber of subscription requests a DOCP slave makes to a
DOCP master for objects that the master considers the
slave already to be subscribed. This is the subscription
miss rate. Figure 7 presents the subscription miss rate
under the normal workload and the three replacement
policies.

FIGURE 7. Subscription Miss Rate

The cache replacement policy determines the objects
that are left in cache when more space is needed. The
GDSF policy attempts to maximize cache hit rate by
keeping more objects in cache. Therefore it evicts large
or unpopular objects. The LFUDA policy attempts to
maximize cache byte hit rate by keeping more popular
bytes in cache; it does not consider object size when
making replacement decisions, only popularity. The
LRU policy keeps recently referenced objects regardless
of popularity. Since the subscription decision is based
on object popularity the frequency-based policies
achieve better invalidation and subscription miss rates.

The following sections present the results of simulation
of the DOCP protocol and the Alex protocol under three
replacement policies and a range of cache sizes.

The consistency protocol does affect the hit rate or by
hit rate of a cache. Those factors are controlled by t
replacement policy. The curves for Alex with the GDS
and LFUDA policies are left off the curves for readabil
ity. They line up exactly with the corresponding DOCP
curve.

6.2 Hit Rate and External Bandwidth Demand

Figure 8 shows the external network bandwidth dema
under simulated consistency protocol and replacem
policies. External network bandwidth demand is th
total number of bytes transferred between the cache a
origin servers including the headers and the object d
of all HTTP requests between the cache and origin se
ers. Validations and invalidations contain only headers

FIGURE 8. Bandwidth Demand

The total byte traffic without a cache would have bee
417 GB. The curves above illustrate the number of byt
saved by the different configurations of consistency pr
tocol and replacement policy.

Figure 9 shows the cache hit rate under the simulat
consistency protocol and replacement policies.

FIGURE 9. Hit Rate

The consistency protocol does not influence netwo
bandwidth demand nor cache hit rate. They are det
mined by the cache replacement policy. The consisten
protocol adds validations and invalidations which do n
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generate a significant amount of traffic compared to the
data carried by regular requests. More detailed conclu-
sions can be found in the study about these replacement
policies [2].

6.3 Fast Hit Rate and External Requests

Figure 10 shows the fast hit rate at the DOCP slave
cache; this is also the total number of external requests
handled by origin servers. Those requests include object
retrievals and validations made by the cache and DOCP
invalidations sent by the DOCP master to the DOCP
slave cache upon updates.

FIGURE 10. Fast Hit Rate

The DOCP improves the fast hit rate and reduces the
number of total requests. Recall that when using polling
to achieve strong consistency the fast hit rate is zero.

Figure 11 shows the aggregate server request demand. It
includes the strong policy, which illustrates the benefit
of strong consistency via invalidation.

FIGURE 11. Request Demand

The DOCP protocol outperforms the Alex protocol, and
the GDSF policy outperforms the other policies. This is
due in part to the synergy between the frequency based
replacement policy and subscription mechanism.

6.4 Consistency

The response time (fast hit rate) and resource utilizati
(bandwidth, requests) between the normal and hea
workload were similar for both protocols. The Alex pro
tocol implements weak consistency, which leads
potential access to a inconsistent objects. DOCP p
vides stronger consistency using invalidations when t
objects are updated.

Table 9 presents a comparison of these results for
Alex and DOCP protocols with an infinite cache and th
LRU policy.

The heavy workload produced ten times more obje
updates than the normal workload. With DOCP, th
cache received four times more invalidations on su
scribed objects. For Alex the cache delivered four tim
more inconsistent objects.

7 Summary
Using invalidation for popular objects improves
response time by increasing the number of fast hi
Increasing fast hits also reduces the number of exter
requests and the demand on origin web servers with
sacrificing consistency. We simulated current techno
ogy, the Alex protocol with the LRU replacement policy
and configured it to achieve a good level of consistenc
We simulated our new approaches DOCP/GDSF a
DOCP/LFUDA, which provides assured consistenc
We compared these technologies to the strong validat
approach used to guarantee consistency. Table 10 s
marizes observed results using a cache size of 4G
which holds 4% of the cachable objects in our study.

We observed that the DOCP performs better than c
rent protocols, while bringing object consistency to th
Web. Furthermore, we point out a significant overa
improvement due to the combination of the new cons
tency protocol and the new replacement policies.
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TABLE 9. Consistency Results

Consistency Normal Heavy

Modifications 4,488,916 42,515,677

Inconsistent (Alex) 21,652 82,054

Percent of Fast Hits 0.17% 0.666%

Invalidations (DOCP) 44,247 164,264

Percent of Fast Hits 0.246% 0.918%

TABLE 10. Result Summary - 4 GB Cache

Strong/
LRU

Alex/
LRU

DOCP/
LFUDA

DOCP/
GDSF

Hit rate 42.95% 42.95% 46.09% 54.55%

Fast hit rate 0.00% 25.87% 39.00% 41.78

Bandwidth
(GB)

305.35 267.5 254.4 242.9

Requests
(million)

42.224 31.301 25.757 24.58
9



Performance Evaluation of the Distributed Object Consistency Protocol Conclusions

se
s
nt

-
al

y
t

to
-
nd

ent

”,

z,

f

e

y
l

l -
t

7.1 Limitations

We present in this subsection some limitations of our
simulation approach.

• Server subscriber list. We did not model the sub-
scriber list of DOCP in our approach. This simula-
tion focused on one proxy cache. The implication of
this on protocol performance is negligible: the data
sent over the wire is unchanged. The amount of
server state required is important to quantify though.

• Lower bound of validations. The logs did not iden-
tify all validation requests to the proxy cache, only
those with positive (slow) validation responses.
There were some validation requests that resulted in
consistency misses rather than positive validations.
The simulator made fewer validations than occurred
in practice, but the Alex and DOCP simulations were
consistent with each other.

7.2 Suggestions for improvement

We have two suggestions to improve the simulation plat-
form to better observe the behavior of DOCP.

• Optimize the generation of update events. We
observed that theupdate eventfile size becomes a
limiting factor to extend the simulation period or the
modification load. It is useless to produce update
events for objects accessed only once. 60% of the
objects in this trace were requested only once. This
optimization would be easy to implement in the
generator  and would ease the size constraint.

• Model multiple proxies. The simulation platform can
be enhanced to model a more complete environment
that will help understand DOCP behavior. The idea
is to cluster client requests and consider each cluster
of users served by a different DOCP slave. This will
also permit modeling the server subscriber list.

8 Conclusions
Our goal was to evaluate the impact of stronger consis-
tency on the Web. We built a simulator to validate and
quantify our proposed Distributed Object Consistency
Protocol for web proxy caches. Implementing this simu-
lation helped us to explore the performance and behav-
ior of current technology, and to compare and contrast
our proposed protocol.

We found that the cache replacement policy drives most
of the benefit regarding network bandwidth usage and
cache hit rate. The consistency protocol does not signifi-
cantly impact the network bandwidth usage unless the
consistency level is significantly relaxed (as in the Alex
with weak validation approach).

We believe consistency and latency will become more
important factors to differentiate services among service
providers, especially as we move towards electronic
commerce over the web. One of the biggest challenges
with this is to build a cache infrastructure that facilitates
information distribution. Up to now critical content has

not benefited from the caching infrastructure becau
the only alternative to control object consistency ha
been to bypass caching. The DOCP allows a conte
provider to have more control of the information distri
bution and to facilitate cache management with a re
benefit for users because:

• A change to a popular object will be propagated b
the network using best effort delivery. Inconsisten
objects will not remain long in proxy caches.

• Content servers and proxy caches will not have
worry about setting expiration date. DOCP will man
age that automatically based upon the request a
modification streams.

Finally, those benefits come at the same cost as curr
technology.
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