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This report analyzes the performance of two methods for
maintaining object consistency in World Wide Web proxy cache
servers: the widely used Alex adaptive TTL protocol and a
proposed Distributed Object Consistency Protocol (DOCP). The
goal of this report is to evaluate these approaches to web cache
consistency using a realistic workload and trace-driven
simulation. We examine the effect of cache replacement policies
and consistency protocols on cache performance.

This analysis indicates that the DOCP outperforms the Alex
protocol while preventing access to inconsistent objects. DOCP
also improves cache response time by serving consistent objects
without communicating with the origin server to check
freshness. This improves fast hit rate and reduces request
demand on origin servers.
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Abstract header. If the object hasn't changed at the origin server,
This report analyzes the performance of two methods fothe server responds with a validation of freshness. Oth-
maintaining object consistency in World Wide Web&MWise, the updated object is returned as a regular

proxy cache servers: the widely used Alex adaptive TTLSSPONSE. The server can also addgpires ~ header to
rotocol and a proposed Distributed Object Consistency'ndlcate wher_1 the ObJeCt Sh.OU|d expire fror_n th_e_ cache
P and be re-validated. in practice this header is difficult to

Protocol (DOCP). The goal of this report is to evaluate \,se pecause it is hard to predict when an object will next
these approaches to web cache consistency using ge modified.

realistic workload and trace-driven simulation. We
examine the effect of cache replacement policies an
consistency protocols on cache performance.

a—|TTP/1.1 [12] adds mechanisms to allow clients, proxy
Caches, and origin servers to control caching policy.
These headers can identify the maximum “staleness”
This analysis indicates that the DOCP outperforms theallowed for an object (how old an object can be served
Alex protocol while preventing access to inconsistenfrom cache without validation), the minimum freshness
objects. DOCP also improves cache response time b{2gain, how old), the maximum age (how old); or they
serving consistent objects without communicating withc@? force revalidation of the object with the origin
the origin server to check freshness. This improves fas erver. These mechanisms are described in over 30 (of

hit rate and reduces request demand on ofidin serve 60) pages in the HTTP protocol definition (RFC 2616
It rate and reduces reques figin serv rs‘[4]). These headers are complex and difficult for users

. and origin servers to use effectively. The DOCP aims to
1 Introduction replace many of these complex mechanisms with a sim-

To improve service to web clients web proxy cachePl€r, more robust one.

servers have been deployed throughout the networkthe most common consistency mechanism currently in
These cache servers store copies of objects requested Q¥e in the web uses an adaptation of the heuristic devel-
web users and subsequently serve those objects to usejged in the Alex protocol [6], in which each object is

if requested again. By serving cached objects, the prox®ssigned a time-to-live (TTL) in the cache as a percent-
reduces network and origin server demand. HOWEVGI’age of the age of the Object when accessed. The age is
the objects they serve are not necessarily current withhe difference between the current time and the object's
the origin server. Thisveak consistencleads content age as determined by theast-Modified date
providers to disable caching for some objects and usergeported in the server headers when the object was
to reload pages when they suspect inconsistency. Thigccessed. (Not all servers return this value; the cache

increases server load, especially durifigsh crowds  can only apply this protocol successfully when the mod-
when many users visit the site at the same time. ification date is supplied.)

Web consistency and the Alex consistency protocol arerhis age-based approach is effective in practice since
discussed in detail in [9]. The Distributed Object Con- the probability that an object will change is proportional
sistency Protocol (DOCP) is defined in [10]. This reportto the age of the object: new objects tend to change
presents the results of a trace-driven simulation of thesooner than old objects. More formally, the probability
DOCP and Alex consistency protocols. The simulationof object modification follows a Zipf (power-law) distri-

establishes that DOCP provides strong web consistencyution based upon the time since last modificatitn (
without adding network traffic or origin server load. and a constant alpha)(

1.1 HTTP Web Cache Consistency P@t) ~t?2 (EQ1)

HTTP/1.0 provides an approach to maintain consistencyyhile the Alex protocol has good synergy with Web
of cached objects based on validation. Using this mechcontent modification probability there is still a possibil-
anism a client or proxy cache queries an origin serveiity of inconsistent access. This prevents content provid-
with an object's last known modification date using aners from being able to trust that objects in the cache are
HTTP GET request with anf-Modified-Since consistent with what they intended, and thus limits use

sim.fm September 28, 1999 1:54 pm
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of caching by providers who want greater control overeffect of various cache replacement policies [2] to simu-
the distribution of their objects. late the proposed DOCP consistency protocol.

One difficulty with such a simulation is modification
information is not available in proxy logs nor in origin
Server logs. The origin server logs can provide an esti-

'mate of the modification rate for popular objects, but

effectively tunneling throug_h_the cache. This increaseg.gn not identify when an object changes more than once
the request load at the origin server and the responsgayyeen accesses. We examined origin server logs and
time of user requests [10]. The time to validate an objectg|ated research [11] to gain an understanding of the

with the origin is about the same as that of retuming ayqification profile for web objects. In Section 3.2 we
2 KB object, and is much longer than serving an objectIoresent this analysis in detail.

directly from the cache.

1.2 Proposed Consistency Protocol

Strong consistency in the web can be achieved by forc
ing a validation with the origin server on every request

. . _ . .Using the modification profile we created a statistical
To improve user response time and object consistency ify)qge| o simulate object modification. The model dis-

the web we designed a protocol that delivers strong congiy, tes object modifications across the set of objects
sistency in the web. The Distributed Object Consistency,psearyed in the trace. We adjusted the modification rate

Protocol (DOCP [9]) uses invalidation after an object is
modified rather than occasional validation after an
object is requested.

Section 2 explains the methodology used to build th

to test the sensitivity of the protocol to the assumptions
about object modification rate.

2

2 Proxy Simulation Model

simulator and Section 3 gives some details about itSFIGURE 1. Simulation Model

implementation. Section 4 characterizes the workload,

and Section 5 describes the simulation we performed
given this workload. Finally, Section 6 presents the
results and our findings about this new approach of

Update
Model

Content

Modifications

caching in the World Wide Web.

2 Methodology

This analysis uses using trace-driven simulation to
examine consistency protocol behavior Trace-driven
simulation consists of replaying logs (traces) collected
from real users through a simulator that is as similar to
the protocol and underlying network as is feasible.

2.1 Trace-Driven Simulation

We chose trace-driven simulation because the variabilitf '
in Internet traffic makes it difficult to model accurately. ™
Using a trace of actual activity guarantees a valid modeb
of user activity. A disadvantage of trace-driven simula-
tion is that as real workloads change, the trace can not
capture that effect. For example, a move to higher speed
access networks may affect user demand and therefore
the cache workload. Furthermore, many traces openly
available in the Internet community are for a short dura-
tion or small user base. To be realistic a trace needs to be
able to describe real user workload over a sufficiently®
diverse set of requests. This is particularly important
when studying caching, as repeated access to objects
over a time period is essential to measure actual cachg
behavior.

Fortunately, we had access to a large data set from a
busy proxy server [3]. Data were gathered by tracing
every request made by a population of thousands of
home users connected to the web via cable modem tech-
nology over a five-month period (for a total of 117 mil-
lion requests). This user demand should be similar t®
that of other high-speed home users. In this study we
augmented the simulator previously used to explore the

N

Request Demand
Bandwidth

>‘, Proxy }

gure 1 describes the simulation model and lists the
etrics collected during this study.

Hit Rate

Fast Hit Rate
Byte Hit Rate

Hit rate: the percent of all object GET requests that
were served with data from the cache (including
those that required validation with the origin server).

Fast hit rate the percent of GET requests that were
served directly from the cache without validation
from the origin server (i.e., without external commu-
nication).

Slow hit rate the percent of GET requests that were
served by the cache after contacting the origin server
to validate object consistency.

Byte hit rate the percent of all bytes served to clients
that came from the cache (including those that were
served following object validation with the origin
server).

Request demandhe number of requests from the
proxy cache to all external origin servers.

Bandwidth demandthe number of outgoing and
incoming bytes between the proxy cache and all
external origin servers.
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Separation of cache hit rate infast and slow hits 3.2 Object modification
allows us to estimate cache response time based up

on . . .
the cache consistency model. Khitt et al developed a method to detect possible modi-

fications from a log [3]. This method assumes that a file

i modification will result in a relatively small change in
3 Implementatlon reported file size. By contrast an aborted transfer will
The simulated system includes origin servers served bgenerally result in a much smaller transfer size. This
DOCP masters and one DOCP slave cache serving Beuristic allows estimation of the number of aborted
population of users. Origin servers maintain web objectgransfers and object modifications.

and handle object requests and modifications. DOCR-js method was not adequate to assign modifications to

slave caches maintain copies of requested objects, hagpat for this simulation because a precise modification

dle object requests from users and invalidation requestg o is required. The modification time should not be

- Ghe same as the access time, since this is known not to be
protocols and cache replacement policies. It does notqngistent with actual object modifications. Furthermore
attempt to simulate wide area network delays or eITors.multiple modifications may occur between accesses,
3.1 Overview which may influence the behavior of a consistency pro-

] o . tocol. Instead, we used a statistical model for updates.
The content used for the simulation is the set of objects

requested within a given time period fromexjuest log 10 create the model we analyzed logs from the
An update model assigned modifications to the object§/ww-hp.com web server to detect possible object modi-
within the simulated time period. The simulator rep|aysf|cat|ons. The detection method described above is most
the requests and updates and records the results. Thedgcurate when considering popular objects on busy serv-

steps are depicted in Figure 2 and explained below. ~ €rs: higher request frequency gives a better estimate of
object modifications by reducing the window between

FIGURE 2. Simulation Platform successive requests. This validation considered the top
_ 15% of cacheable objects on the site, which received
Time Segment 90% of the requests. The analysis used one week data.
Update Model . s
TABLE 1. Cacheable Object Modification Rate
Request Update
Log Event HTML Other Total
Requests 6,067,086 47,174,278 53,241,364
c Time egnl;'e”t | Objects 9,898 4,381 14,279
onsistency Protoco -
Replacement Policy Modified 5,299 4,381 9,680
Cache Size Updates 230,844 47,241 278,085
Table 1 shows that HTML objects are modified more
frequently than images and other objects, as others have

observed [11]. This indicated that updates to HTML
objects should be modeled independently from other

Results objects. The other types were modeled together.

Most objects are not modified frequently, but a few were
. updated very frequently. Earlier studies [8][1][5] have
The generator ~ produces the update events accordingppserved a Zipf (power-law) distribution for object
to the update model and the indicated time segment tgnodification and object popularity. Under a Zipf distri-
be simulated from a proxy cache request log. §&&-  pytion, popular objects are very popular, but the distri-
erator  builds a table of all unique objects in the pytion has a heavy tail: as popularity decreases there is
request log and distributes updates among them. Thej|| 4 significant probability that the object is accessed.
updates are sorted by timestamp and stored in thgy comparison, an exponential distribution decays
update evertile. This gives consistent, repeatable mod-mych more rapidly, so unpopular objects under an expo-

ification behavior. nential distribution would receive few to no requests.
Thesimulator  replays both theequest logandupdate ~ Looked at another way, the area under an exponential
eventfiles and simulates protocol operation. Tdi@u- curve is finite, but the area under a power-law curve is
lator  collects simulation results after a configurable infinite. Based on the data fromww.hp.com and the
warm up period. prior research we chose a Zipf distribution to model

. . .. modifications.
We faced several issues in the development of this simu-

lation platform. The following sections summarize the On this server the average frequency of modifications

issues and how we resolved them. The most importanfor popular objects is about 4 orders of magnitude
was the assignment of modifications to objects. smaller than for the requests (9 hours versus 3 seconds).

While this does not have bearing on the object modifica-
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tion distribution it is encouraging, and illustrates signifi- is important to take into account this hierarchical behav-
cant potential for performance improvement from ior when simulating a cache consistency protocol.

consistent caching. Unfortunately, the logs do not include client request
To test the sensitivity of the simulation to assumptionsheaders. The HTTP status code indicates whether a
about update frequency, we generated a family of heavyresponse was a validation, but not whether the request
tailed distributions. The following function is a distribu- was for a validation. When a server receives a condi-
tion generator for Zipf-like distributions. tional request (with aff-Modified-Since header) it
- _ responds with 804 Not Modified status code if the

updist(x.a) = 1/(ax+1) (EQ2) requested object was not updated since the last retrieval.
wherea is the shape parameter arnd uniform random | the object was modified the server responds with a
variable in [0,1). Figure 3 illustrates three such distribu-200 OK status code. The number 84 Not Modi-

Object validation with the origin server is the only alter-

tions from the family. fied responses therefore provides a lower bound on the
S number of validation requests. 15% of responses in the

FIGURE 3. Update Frequency Distribution logs used in this simulation resulteddn4 Not Modi-

N . fied responses.
09 |+ o 3.4 Simulated Consistency Protocols

g o8r i The goal of this study was to analyze the behavior of

§ o7 - 1 DOCP as compared with the following approaches to

2 osf g handle cache consistency in the World Wide Web.

}E eer T 3.4.1 Polling for Strong Consistency

% 04 J\\ -

§

14

03 1 native for strong consistency using today’s HTTP proto-

02 - 7 col. This mechanism results in relative high response
01f g time and server load when compared with the other
ol e alternative, weak consistency. When used judiciously

0 01 02 03 4 05

0. . 06 07 08 09 1 i i i i
Relthve Obyost Foruaity this mechanism can allow a content provider to deliver

their content consistently and measure user access.

events for each of the two classes of objects: HTML and"d €ach request as a slow hit or a miss, depending on if
others as follows. the object was in the cache or not.

* First, it assigned the total number of modifications 3.4.2 Alex Consistency Protocol

during the interval to all objects using thedist The Alex consistency protocol [6] is used by the Squid
function multiplied by a scale factor. The scale factorOpen source cache server and other Harvest [7] derived

determines the how often an object can possibly,qrys It is probably the most widely deployed web
change. This factor is based upon estimated updatg,;-he consistency protocol.

frequency from the logs. At the conclusion of this

step, each object has some number of modificationdhe Alex protocol assigns each object a time to live
assigned to it. (TTL) in the cache. The TTL value is computed using
. s . . e . three values: the percentage of the object’s age, a mini-
econd, it assigned modification times for eachy, m |imit, and a maximum limit on the TTL. See [10]

object. This assignment used a Poisson process tpy 5 getailed description of this protocol.
determine the interval between modifications. This

process used the exponential functésp , described ~ We developed a simulation module for the Alex protocol

in EQ. 3 to distribute the updates within the simula- as it is implemented in Squid using these parameters.
tion interval. In EQ. 3muis the object update fre- We also identified a trick for handling cache validations.

quency from the pre\/ious step and a uniform While reading SC]UId source we noticed that it does not

random variable in [0,1). always propagate user validation requests to the origin
_ . server. Squid permits the cache administrator to change
exp(x,mu) = -mu*in(x) (EQ3)  anyPragma: no-cache request (specified by a client

* Finally, it sorted all the update events by timestamp.to request not to use a cache) into a cache validation.
o This can negatively impact object consistency if the
3.3 Cache validation cache is in a hierarchy: At the first level, the “no-cache”
We had to distinguish cache validations requests frontequest becomes a validation request, which is validated
regular requests in order to replay a realistic situationby the second level cache directly, rather than with the
Most browsers use a private cache and send out validasrigin server. We analyzed the behavior of the Alex pro-
tions when the user requests an object more than once. tiecol with and without this feature, which is referred to
as theweak validationdeature.
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To summarize, the parameters for the Alex protocol are4  \Norkload

* Min: minimum TTL in the cache, This section presents details about tequest logand

* Pct percentage of the age used to set the TTL, theupdate evenrtfiles used for the simulations.
*  Max maximum TTL in the cache, 4.1 Time Segment
* Ims weak validation feature switch on or off. The full log period covers five months with 117 millions

requests. This simulation extracted the first 10 weeks
(6048000s) and analyzed only cacheable HTTP traffic
The simulation also examined the performance of thgthe dominant traffic component). 92% of HTTP
proposed Distributed Object Consistency Protocolrequests had cacheable responses, which accounted for
DOCP [9]. With this protocol a DOCP slave proxy 95% of the total HTTP content transferred. The follow-
cache guarantees object consistency to the client. Thimg tables show the breakdown for the HTTP traffic.
DOCP cache implements strong consistency using valiyag| E 2. Simulation Trace Characteristics

dation until an object becomes sufficiently popular.
When an object becomes popular, the slave cache asksfotal Time Segment 10 weeks
for a subscription to that object with a DOCP master Total HTTP Requests 46,263,216
agent for the origin server. If a subscription is granted

3.4.3 Distributed Object Consistency Protocol

the slave receives a lease interval for the object. If a sub- Cacheable 42,733,169
scribed object changes during the lease interval the Not Cacheable 3,530,047
DOCP master’s notification agent sends an invalidation tqta content Transferred 460.61 GB
notification message to each subscribed slave proxy

cache. The lease represents a time-bounded agreement Cacheable 442.06 GB
to receive an invalidation message if the original copy is  Not Cacheable 28.55 GB

updated or deleted. After the lease expires the cach
may renew the lease on a subsequent client request; ot
erwise it uses polling to achieve strong consistency.

ﬁ_his workload consists of 42.7 million requests for 7.7
million unique cacheable objects. These objects repre-
sent 104 GB of content, which would require 442 GB of
The simulator assisted during protocol development taraffic if none of it was cached and 104 GB of external
help define what is “sufficiently popular”, and to estab- traffic if it was all cached.

lish an appropriate lease interval. Popularity is the fre-

quency of access: the number of requests within a givemABLE 3. HTTP Request Characteristics

time interval. An invalidation has about the same cost as
a validation, so the protocol strives to subscribe early. If HTML  Other Total

an object_ has _been requested in the previous 24 hours Ehequests (million) 6.546 36186 42733
subscription will be requested. Other values for the pop-

ularity threshold were simulated, which confirmed our Unique Objects 1617 6.082  7.699
assumption. The threshold was made a protocol constant(Million)
based upon early simulation, rather than a parameter.  Unique Content 8.81 95.26 104.07

We also explored setting the lease interval based uponSize (GB)

object modification profile observed by the DOCP mas- Total Content 29.59  412.47 442.06
ter. We used the modification history to estimate the Transferred (GB)

most likely time of next update and configured the lease
to end prior to that. From simulation we learned that itis4-2 Update Model

difficult to accurately determine both the next updategijyen the cacheable objects identified from the log, we
and access times. This method led to leases that weig;jit two update models using the heavy tail distribution
too short, causing extra network traffic. We concludedys discussed previously. The goal was to build a work-
that a simple constant lease interval was more efficienjgaq to compare protocols without introducing side
than a complicated lease function based upon metadaigects that can favor one of them. We created two
whose ability to predict the future cannot be assured. update models, one for HTML objects and one for all

We do not present a further analysis of the popularityothers. The models have an average modification period
function or the dynamic lease algorithm. The only theOf one hour (3600s) for HTML objects and one day

parameter we considered for the DOCP was: (86400s) for other objects.
* Lease the maximum period of subscription for an We produced a normal modification workload (a§ﬂ0
object for the first distribution and a heavy workload (a=}L0

for the second (see Figure 3). We simulated the proto-
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cols using each of the models. The following tables5.1 Replacement Policy
summarize the distribution of modifications.

T We simulated the least recently used (LRU) replacement
TABLE 4. Update Distribution: normal

policy used by most of the current cache products, and
two new policies described in detail in [2]. GDS-Fre-
quency (GDSF) is a variant of the Greedy Dual-Size
policy optimized for popular, smaller objects. LFU with
Dynamic Aging (LFUDA) is a variant of LFU that uses
a dynamic aging policy to accommodate shifts in the set
of popular objects. We ran the simulation with the fol-
lowing cache sizes: 1, 2, 4, 8, 32, and 128 GB. A cache
of 128 GB will hold all cachable objects (104 GB) and
odels an infinite cache for the simulation period. We
an the simulator with all combinations of replacement
policy, consistency protocol, and cache size. We also
simulated some special cases as described below.

5.2 Alex Protocol

The simulation of the Alex protocol used Squid default

Modified Objects 1,617,877 834,489 gﬁrametelrs (mlnr% pct=20%, max=3days, ims=off).
e simulator includes a sensor to measure inconsistent

Total Updates 18,812,729  2,185555 responses delivered from the cache (fast hits for objects

For the heavy distribution, 31.84% of the objects werethat had been modified at the origin server).
modified during the period with a global average updateye conducted an additional experiment to measure the
frequency of one object modified every 0.32 secondsjmpact of weaker consistency policies in the Alex/LRU
Note that all HTML objects were modified at least once. protocol on consistency. In addition to the Squid default
5  Simulation policies we S|m'ulated the f.ollowmg. |

* Strong consistency (validate every time),
The simulator ~ collects statistics after a warm up
period. During the warm up period many cache misses
occur because the cache is empty. We warmed up the
cache using the first week of the 10 weeks (10% of all
requests). * Weak consistency with thereak validationdeature
turned on (min=1hour, pct=100%, max=1week,
ims=on).

HTML Other
Period 1 hour 1 day
Modified Objects 543,693 83,163
2,270,084 217,509

Total Updates

For the normal distribution, 8.14% of the objects were
modified during the period of 10 weeks with a global
average update frequency of one object modified ever
2.43 seconds.

TABLE 5. Update Distribution: heavy

HTML Other
Period 1 hour 1 day

Weaker consistency using parameters (min=1hour,
pct=100%, max=1week, ims=off). We have seen
Squid proxy caches configured this way.

This gave thesimulator  about two months of busy
traffic during which to collect statistics. Table 6 shows a
breakdown of the requests, validations and modifica-Table 7 shows the fast hit rate, bandwidth demand, and
tions during the simulation period. inconsistent hit rate when using an infinite cache, the
TABLE 6. Simulation Results Workload normal workload, and each of the consistency levels.

TABLE 7. Summary Results by Refresh Policy

Statistics Period 9 weeks
Total HTTP Requests 42,227,728 Strong Default  Weak WkVal
Completed 42,224,590 Fast hits 0.00% 29.31% 30.05% 46.44%
Cacheable 38,971,702 Bandwidth 185.891 185.850 185.835 185.840
Validation (304) 7,194,224 (GB)
Total Content Transferred ~ 417.26 GB E:ﬁiﬁil:)is)ts 42.224 29850  29.537  22.617
Modifications (normal) 4,488,916 )
Stale hits (% 0.00% 0.17% 0.25% 0.38%
Modifications (heavy) 42,515,677 of fast hits)

Figure 4 shows the percent of fast hits that return incon-
sistent object data under the four consistency policies
using the normal workload.
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FIGURE 4. Inconsistency, normal workload Figure 5 shows the percentage of invalidation misses on
04 . . . . . . subscribed objects for the three lease intervals using the
0as P normal workload, 4 GB cache, and the GDSF policy.
g ozl i FIGURE 5. Invalidation Miss Rate by Lease
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Relaxing the consistency level does not affect network \‘\\\7:~;3§;:_::L,k_nl?OgP/lwg}alslrr%rr
bandwidth demand; it alters the ratio of fast and slow o 2 4 8 16 ) 64 128
hits. Increasing the ratio of fast hits reduces the number Cache size (GB)

of external requests made by the cache to validate obje

; . (Extending the lease interval does not affect network
freshness and therefore improves average response ti

MSandwidth demand because renewals and validations do
Inconsistent accesses under the normal workloadhot carry much content relative to object data transfer. It
occurred well less than 1% of the total fast hits. With thealters the length of time a popular object will be served
heavy workload inconsistent accesses occur about fivduring a subscription. Increasing the duration allows the
times as often. cache to serve more fast hits, and also increases the
chance of eviction of a subscribed object. Sending inval-
achieve a good level of consistency to compare to th dations increases DOCP master workload, but since

hey occur asynchronously to user requests they do not
DOCP approach. ; ;

directly affect response time. A long lease also has an
5.3 Distributed Object Consistency Protocol impact on server state since it increases the size of the

For the simulation of the DOCP we explored how to ;ggscrlber list, but we did not study this in our simula-

configure and tune the subscription mechanism. A sub-

scription has costs to the DOCP master to maintain stat¥Vith an infinite cache the fast hit rates are slightly
and send out the invalidation in case of modification.higher (about 1 percent each) and the invalidation miss
These costs can be prohibitive if the subscription mech¥ate is zero, since no subscribed objects are evicted.

anism is not well tuned. For example, a subscriptionTphe |ease parameter does not significantly alter the
becomes useless when the object is evicted by th§,mper of subscribed objects, which depends primarily
DOCP slave’s cache replacement policy. on object popularity. It does not significantly affect the
To study this effect we developed sensors to measurgetwork bandwidth demand.

subscription efficiency. The invalidation miss rate is theyys chose a value of three days for the lease period for
ratio of invalidations for objects that are no longer in the (1o remainder of our simulation. This is the same value
cache to total invalidations. We conducted experiments,q the Alexmax parameter, but there is a difference

tﬁ u_ndelr_starjd the impact of various lease intervals Ofheqyeen the interpretation of the two values. The Alex
the invalidation and subscription miss rate. refresh policy is set up by the cache administrator to
Table 8 shows the results of a simulation using the noroptimize the client resources. The DOCP lease period is
mal workload, a 4 GB cache, and the GDSF policy.  determined by the DOCP master administrator to opti-
TABLE 8. Impact of Lease Interval on mize its resources. Both contro_l an object’s maximum
o . stay in the cache without validation.
Invalidation Miss Rate

The remaining simulations use the default policy to

Lease 1 day 3 days 1 week 6 Results
Fast hits 36.78% 41.78% 44.79% This section presents the overall results for the normal
Bandwidth (GB) 283.337 283.354 283.719 workload and examines the impact on the protocols
when using the heavy modification workload.
Requests (million) 26.696 24.582 23.312 Lo .
o 6.1 Subscription Efficiency
Invalidation miss 0.38% 1.92% 6.05% ] _ i o )
(% invalidations) In the previous section the invalidation miss rate was

used under a single replacement policy to determine the
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DOCP lease interval to be used for the remainder of th&'he consistency protocol does affect the hit rate or byte
simulation. Figure 6 presents the subscription miss ratdit rate of a cache. Those factors are controlled by the

for all the replacement policies studied. replacement policy. The curves for Alex with the GDSF
and LFUDA policies are left off the curves for readabil-
FIGURE 6. Invalidation Miss Rate ity. They line up exactly with the corresponding DOCP
90 T T T T T T CUrVG.
| DOCP/LRU —+—
g P DOCHLFUDA  * 1 6.2 Hit Rate and External Bandwidth Demand

o Figure 8 shows the external network bandwidth demand

8 under simulated consistency protocol and replacement
policies. External network bandwidth demand is the
total number of bytes transferred between the cache and
origin servers including the headers and the object data
8 of all HTTP requests between the cache and origin serv-
ers. Validations and invalidations contain only headers.
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Another measure of subscription efficiency is the num- . 3% _—
ber of subscription requests a DOCP slave makes to & ¢ |
DOCP master for objects that the master considers th
slave already to be subscribed. This is the subscriptions 260 |-
miss rate. Figure 7 presents the subscription miss rate

240 -
under the normal workload and the three replacements
policies. 220 -
I . 200 |-
FIGURE 7. Subscription Miss Rate ]
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120 - DOCP/LFUDA ---%---

100 |- . The total byte traffic without a cache would have been
417 GB. The curves above illustrate the number of bytes
saved by the different configurations of consistency pro-

tocol and replacement policy.
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60’*,‘
\ Figure 9 shows the cache hit rate under the simulated

“or consistency protocol and replacement policies.
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The cache replacement policy determines the objects
that are left in cache when more space is needed. The,
GDSF policy attempts to maximize cache hit rate by - LT

keeping more objects in cache. Therefore it evicts larges
or unpopular objects. The LFUDA policy attempts to £ 4
maximize cache byte hit rate by keeping more popular*

55 -

bytes in cache; it does not consider object size when [

making replacement decisions, only popularity. The 353 ARILRY —— |
LRU policy keeps recently referenced objects regardless DOCPIGDSF - X --

of popularity. Since the subscription decision is based s - - - DOCPLFUDA &

on object popularity the frequency-based policies ! 2 o chheseny 2 %

achieve better invalidation and subscription miss rates.

The consistency protocol does not influence network

The following sections present the results of simulation X .
of the DOCP protocol and the Alex protocol under threePandwidth demand nor cache hit rate. They are deter-

replacement policies and a range of cache sizes. mined by the cache replacement policy. The consistency
protocol adds validations and invalidations which do not
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generate a significant amount of traffic compared to the6.4 Consistency

data carried by regular requests. More detailed conclu- . . S
sions can be found in the study about these replaceme%the response time (fast hit rate) and resource utilization
policies [2]. pandwidth, requgsts) between the normal and heavy
workload were similar for both protocols. The Alex pro-
6.3 Fast Hit Rate and External Requests tocol implements weak consistency, which leads to

. . otential access to a inconsistent objects. DOCP pro-
Figure 10 shows the fast hit rate at the DOCP SlaV‘%;ides stronger consistency using invalidations when the
cache; this is also the total number of external request

.. . >"gbjects are updated.
handled by origin servers. Those requests include objec
retrievals and validations made by the cache and DOCRPable 9 presents a comparison of these results for the
invalidations sent by the DOCP master to the DOCPAlex and DOCP protocols with an infinite cache and the
slave cache upon updates. LRU policy.

FIGURE 10. Fast Hit Rate TABLE 9. Consistency Results

4 - - - - - - Consistency Normal Heavy
wp ::‘j ) iéf?‘t’f?”"*"’""W"MWT Modifications 4,488,916 42,515,677
P Inconsistent (Alex) 21,652 82,054
®ro-7 ° L - iy Percent of Fast Hits 0.17% 0.666%
= Invalidations (DOCP) 44,247 164,264

30 4

Percent of Fast Hits 0.246% 0.918%

Fast hit rate (percent)

25 -

Aled/LRU The heavy workload produced ten times more object

ot AlledGDSE x| updates thz_;m the nor_mal Workload. \_Nith_ DOCP, the
] DOCPILRY -0 cache received four times more invalidations on sub-

. . . . DOCPILFUDA -0~ - scrlbe.d obje_cts. For Alex the cache delivered four times
1 2 4 8 16 32 64 128 more inconsistent ObJeCtS.

Cache size (GB)

The DOCP improves the fast hit rate and reduces the7 Summary

number of total requests. Recall that when using pollingUsing invalidation for popular objects improves
to achieve strong consistency the fast hit rate is zero. response time by increasing the number of fast hits.
Increasing fast hits also reduces the number of external
requests and the demand on origin web servers without
sacrificing consistency. We simulated current technol-
ogy, the Alex protocol with the LRU replacement policy,
and configured it to achieve a good level of consistency.
We simulated our new approaches DOCP/GDSF and

Figure 11 shows the aggregate server request demand.
includes the strong policy, which illustrates the benefit
of strong consistency via invalidation.

FIGURE 11. Request Demand

“ ' ' ' Alex/STRONG —+— DOCP/LFUDA, which provides assured consistency.
a2r ‘ ‘ ‘ R We compared these technologies to the strong validation
a0 AledLEIDS 0 1 approach used to guarantee consistency. Table 10 sum-
T o0CPIGDSE -0 | marizes observed results using a cache size of 4GB,
z wl i which holds 4% of the cachable objects in our study.
) sk 4 TABLE 10. Result Summary - 4 GB Cache
g PP TRy T Strong/  Alex/ DOCP/  DOCP/
3 3O|L\\\\7%”'”""%"'"'\-\rtgff:’.ff’fr—e'fu»A-—»—~ﬂ_‘>_..—~~—777—7¥— LRU LRU LFUDA GDSF
X i\\
e T Hit rate 42.95%  42.95%  46.09%  54.55%
i R 1 Fasthitrate ~ 0.00%  25.87%  39.00%  41.78%
2 4 "1 ® e s Bandwidth  305.35 267.5 254.4 242.9
Cache size (GB) (G B)

The DOCP protocol outperforms the Alex protocol, and Reduests 42224 31301  25.757  24.583

the GDSF policy outperforms the other policies. This is_(million)

due in part to the synergy between the frequency basegle opserved that the DOCP performs better than cur-

replacement policy and subscription mechanism. rent protocols, while bringing object consistency to the
Web. Furthermore, we point out a significant overall
improvement due to the combination of the new consis-
tency protocol and the new replacement policies.




Performance Evaluation of the Distributed Object Consistency Protocol

Conclusions

7.1 Limitations

We present in this subsection some limitations of ou
simulation approach.

7.2 Suggestions for improvement

not benefited from the caching infrastructure because
rthe only alternative to control object consistency has
been to bypass caching. The DOCP allows a content
provider to have more control of the information distri-

Server subscriber list. We did not model the sub-bution and to facilitate cache management with a real
scriber list of DOCP in our approach. This simula- benefit for users because:

tion focused on one proxy cache. The implication of
this on protocol performance is negligible: the data
sent over the wire is unchanged. The amount of
server state required is important to quantify though.

Lower bound of validations. The logs did not iden-
tify all validation requests to the proxy cache, only
those with positive (slow) validation responses.
There were some validation requests that resulted in

A change to a popular object will be propagated by
the network using best effort delivery. Inconsistent
objects will not remain long in proxy caches.

Content servers and proxy caches will not have to
worry about setting expiration date. DOCP will man-
age that automatically based upon the request and
modification streams.

consistency misses rather than positive validationsFinally, those benefits come at the same cost as current
The simulator made fewer validations than occurredtechnology.

in practice, but the Alex and DOCP simulations were
consistent with each other. 9

(1]

We have two suggestions to improve the simulation plat-
form to better observe the behavior of DOCP.

Optimize the generation of update events. wel2l
observed that thepdate evenfile size becomes a
limiting factor to extend the simulation period or the
modification load. It is useless to produce update
events for objects accessed only once. 60% of the3]
objects in this trace were requested only once. This
optimization would be easy to implement in the
generator and would ease the size constraint.

Model multiple proxies. The simulation platform can [4]
be enhanced to model a more complete environment
that will help understand DOCP behavior. The idea
is to cluster client requests and consider each clustep]
of users served by a different DOCP slave. This will

also permit modeling the server subscriber list. [6]

8 Conclusions

Our goal was to evaluate the impact of stronger consis-

[7]

tency on the Web. We built a simulator to validate and
qguantify our proposed Distributed Object Consistency
Protocol for web proxy caches. Implementing this simu- 8]
lation helped us to explore the performance and behav-
ior of current technology, and to compare and contrast

our proposed protocol.

9]

We found that the cache replacement policy drives most
of the benefit regarding network bandwidth usage and

cache hit rate. The consistency protocol does not signifif10]

cantly impact the network bandwidth usage unless the
consistency level is significantly relaxed (as in the Alex

with weak validation approach).

We believe consistency and latency will become more
important factors to differentiate services among service

providers, especially as we move towards electroniqlz]

commerce over the web. One of the biggest challenges
with this is to build a cache infrastructure that facilitates
information distribution. Up to now critical content has

(11]
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