
The Effect of Consistency on
Cache Response Time

John Dilley
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto
HPL-1999-107
September, 1999

E-mail: jad@hpl.hp.com

World Wide
Web, proxy
cache, response
time,
consistency
validation,
distributed
object
consistency
protocol

Caching in the World Wide Web improves response time,
reduces network bandwidth demand and reduces load on origin
web servers. Caches achieve these benefits by storing copies of
recently requested objects near end users, avoiding future need
to transfer those objects. Cached objects are usually served
more quickly and do not consume external network or server
resources.

Before returning an object, a cache must guess if the object it
holds is still consistent with the original copy of the object. The
cache may choose to validate the object’s consistency with the
origin server or may serve it directly to the user. If the cache
must communicate with the origin server the response will take
longer than one directly from cache.

This report analyzes the impact of cache consistency on the
response time of client requests. The analysis divides cache
responses into classes according to whether or not the cache
communicated with a remote server and whether or not object
data was served from the cache.

Analysis of traces from deployed proxy cache servers
demonstrates that a round trip to a remote server is the
dominant factor for response time. This study concludes that
improving cache consistency will reduce response time and
allow a cache to serve more user requests.

 Copyright Hewlett-Packard Company 1999

he
or
st
che
r-
he
e

ng

gin
ow

ci-
ak-
ss
st

aly-
col
is
es

izes
tail

the
ali-
is-

e of

e
he
ly.

-

to

-
er
ith

The Effect of Consistency on Cache Response Time
John Dilley <jad@hpl.hp.com>

Hewlett-Packard Laboratories
Palo Alto, CA
Abstract

Caching in the World Wide Web improves response time,
reduces network bandwidth demand and reduces load
on origin web servers. Caches achieve these benefits by
storing copies of recently requested objects near end
users, avoiding future need to transfer those objects.
Cached objects are usually served more quickly and do
not consume external network or server resources.

Before returning an object, a cache must guess if the
object it holds is still consistent with the original copy of
the object. The cache may choose to validate the
object’s consistency with the origin server or may serve
it directly to the user. If the cache must communicate
with the origin server the response will take longer than
one directly from cache.

This report analyzes the impact of cache consistency on
the response time of client requests. The analysis divides
cache responses into classes according to whether or
not the cache communicated with a remote server and
whether or not object data was served from the cache.

Analysis of traces from deployed proxy cache servers
demonstrates that a round trip to a remote server is the
dominant factor for response time. This study concludes
that improving cache consistency will reduce response
time and allow a cache to serve more user requests.

1 Introduction
Cache servers in the World Wide Web provide a way to
deliver information to end users more quickly and effi-
ciently than serving every request directly from the ori-
gin server. Cache servers are typically placed close to a
group of end users and serve all HTTP requests from
those users. Requests for objects that are in the cache
can be served to the user without remote communication
and wide area data transfer. Requests for objects not in
the cache are always resolved externally.

A cached copy of an object may differ from the current
copy of that object at the origin server. This happens
when a cache holds an object after the origin server
changes that object. Currently origin servers do not
communicate changes to caches; a cache must ask about
them. Cache consistency is discussed in greater depth in
[3], which proposes a new protocol to support stronger
object consistency in caches.

When a request arrives for a cached object, the cac
must decide whether to serve the object immediately
to validate it with the origin server. The user’s reque
headers and the content headers may instruct the ca
to validate the object. Otherwise the cache will dete
mine whether to validate the object based upon t
freshnessof the object in cache. The cache will serv
locally any object that it considers to befresh, but it will
attempt to check an object’s consistency before servi
the request if the object isstale. The determination of
fresh and stale are made by the cache, not by the ori
server. Note also that the cache has no way to kn
when the object actually changes, sofresh does not
imply that the object isconsistentwith the current copy
of the object.

This study explores the impact of the consistency de
sion on the response time of a cache, and finds that m
ing a round trip to the origin server to validate freshne
is the dominant component of the response time of mo
user requests.

Section 2 defines the response classes used in this an
sis and describes a widely used consistency proto
that is used by a cache to identify whether an object
fresh or stale. Using these definitions Section 3 analyz
data from three cache servers, and Section 4 summar
the findings. Three appendices present supporting de
from the log file analysis.

2 Cache Consistency
This analysis classified responses according to how
cache behaved: whether it served the data or just a v
dation of freshness, and whether or not it made a cons
tency check. The analysis measured the response tim
each of the following classes of responses.

• Fast hits, where the cache returns object data to th
requestor without remote communication. The cac
considers the object to be fresh and serves it direct

• Fast validations, where the cache returns only a vali
dation of freshness to the requestor (HTTP code304
Not Modified), who presumably already has a
copy of the data. The cache considers the object
be fresh without remote communication.

• Slow validations, where the cache returns a valida
tion of freshness after contacting the origin serv
and learning that the cached copy is consistent w
the original version of the object.
cache-resp-time.fm September 28, 1999 1:54 pm

The Effect of Consistency on Cache Response Time Cache Consistency

-
ll

in
s.

d
er

e
re

e

a
y

a-

d
he

er
P,
• Slow hits, where the cache returns object data to the
requestor after validating it with the origin server. In
this case the client does not have object data but the
cache does and the cache determines it is consistent
by contacting the origin server. (This type is also
referred to as aslow validation with data, with label
sdat in the graphs.)

• Consistency misses, where the cache returns a new
copy of the object after contacting the origin server
and getting a fresh copy of the object. The cache had
the data but considered it to be stale and so made a
consistency check, which determined that the object
had been modified.

• Regular miss, where the cache returns an object that
was not in cache after contacting the origin server to
retrieve a copy of that object. The analysis does not
distinguish between cold misses (the first request for
an object) and capacity misses (where the object had
formerly been in cache but had been evicted by the
cache replacement policy).

• Direct, where the cache determines an object is not
cacheable through configuration (certain types are
declared to be non-cacheable) or through server
response headers (such asPragma: no-cache).
The request is sent to the origin server and the
response data is relayed to the client. The cache does
not keep a copy of the object.

The key comparisons in this analysis are between a fast
validation and slow validation, and between a fast hit
and a slow hit. In each of these cases the difference is
the consistency check from the cache to the origin
server. The validation case returns only HTTP headers
from the cache to the client; the fast hit and slow hit
cases return object data.

Appendix A defines the method that determined cache
response type from the data in cache log files.

2.1 HTTP Consistency Validation

One mechanism to determine object freshness is the
“adaptive Time To Live” (TTL) algorithm from the Alex
file system [2]. The Alex protocol is described below
and depicted in Figure 1. The Alex protocol has been
shown to be effective in practice and is widely used by
cache implementations. The definition of fresh and stale
content are determined by such a protocol as follows.

• Upon first retrieval of an object the object’s modifi-
cation time is noted. This is a cold miss.

• The time between the modification time and the cur-
rent time defines the object’sage. This value is
shown asAge 1 in Figure 1.

• The cache computes a percentage of the object’s age
defines that as the time to live (TTL). During the
TTL period the object is consideredfreshand will be
served from cache. This first TTL period is% Age 1
in Figure 1. Requests for an object within its TTL
period will result in one of two responses.

• If the requestor has a copy of the object and
makes an IMS request the response is a fast
validation from the cache.

• If the requestor does not have the object and
makes a regular GET request without an IMS
header the cache immediately sends the object
data. This is a fast hit.

• After the TTL expires the object in cache is consid
ered stale. Upon the next request the cache wi
make an HTTP GET request with anIf-Modi-
fied-Since (IMS) header to the origin server to
determine if the object has been modified. The orig
server will respond to the cache in one of three way

• If the object has not changed the origin server
will reply with the HTTP status code304 Not
Modified . This results in a slow validation if
the requestor had object data, a slow hit if not.

• If the object has changed a new copy will be
returned with HTTP status code200 OK. This
is a consistency miss.

• The origin server may fail to respond or may
respond with an error, such as to indicate that
the object does not exist on that server.

• After the slow validation check in Figure 1 a new
object age (Age 2) and TTL period (% Age 2) are
calculated. During this second TTL interval a secon
modification is shown. A request to the cache aft
this modification will result in aninconsistentreply,
where data from cache is different from data on th
origin server. The cache and user only become awa
of the new data after the TTL period expires or if th
user forces a reload of the object.

• On the next retrieval after the second TTL expires
new copy of the object is retrieved (a consistenc
miss), a new age is computed from its last modific
tion time (Age 3), and a new TTL period is com-
puted as a percent of this new age (% Age 3)

FIGURE 1. The Alex Protocol

A cache can only validate objects if the origin server an
cache implement enough of the HTTP specification. T
origin server must supply the object’sLast-Modified
time for the cache to validate the object. There are oth
mechanisms for checking object consistency in HTT
such as HTTP/1.1Etags andCache-Control , but the
Last-Modified approach is the most widely used.

Modifications

User Requests

Age 1 %Age 1

Age 2 %Age 2

In
co

ns
is

te

Age 3 %Age 3
2

The Effect of Consistency on Cache Response Time Servers Studied

t.

lts
r
-

gs;
in
e
se
to

m

g
ts.

re

em
n

d in
re-

se
f
he
st
me-

ess
not
a

his
the
ile
Furthermore, if an object has anExpires header the
cache will consider the object to be fresh until the time
specified in theExpires header, after which it is stale.
Note that the object will be served inconsistently from a
cache if it changes while still considered fresh.

2.2 Analysis Methodology and Limitations

Cache log files contain information about the response
time of user requests, as well as other information.
These logs include information about each request,
including the object URL, the object size in bytes, the
service time at the cache, whether object data was
returned to the client, and whether the cache made a
consistency check with a remote server.

This analysis used cache log information to identify
response time and cache behavior. The mapping of log
fields to cache behavior is described in Appendix A.

There are some limitations with such a log-based analy-
sis scheme:

• Cache logs do not indicate when the client received
and displayed the response in the browser applica-
tion, and therefore can not determine client response
time. They record only the request residence time at
the cache server (request service time).

Service time is related to user response time; clearly
response time can be no less. It is also related to
cache throughput: a long response time at the cache
consumes system resources for a longer time, mak-
ing them unavailable for other requests.

• The logs indicate only how long the cache applica-
tion took to service the request. They do not include
processing time of the operating system kernel or
network card on the cache system. The cache
believes its task is complete when the write of the
last byte returns, but the task is not actually complete
for the cache until the OS kernel has successfully
transmitted all response bytes to the client, received
an acknowledgment, and closed the connection.

• The logs can not identify when objects are served
from the browser’s cache. These objects would likely
be displayed much more quickly than requests to the
cache, just as local cache responses are faster than
responses requiring remote communication. The
logs do identify when the browser validates an
object: it sends a GET IMS request for the object to
the cache.

• The logs do not indicate whether external requests
are served by other parent proxies or by the origin
server. The aggregate response time of external
caches and origin servers is nevertheless useful,
since this determines perceived user response time.

• The logs do not always enable us to identify all of
the response classes described earlier.

• The users of the caches we studied were connected
to high speed networks. The response time to users

on slow modems would be substantially differen
Also the logs we were able to obtain were from LAN
and cable modem users in the United States. Resu
from significant-duration cache traces from othe
geographical regions would likely show more dra
matic differences in response times.

We attempted to obtain European and Asian cache lo
either the logs were not available or they did not conta
sufficient information to perform our analysis. We ar
still interested in analyzing non-US cache logs. Plea
contact the author if you have logs that can contribute
this study.

3 Servers Studied
The analysis is based upon the study of log files fro
three web cache servers.

• granite.hpl.hp.com , January 1998 - April 1999.
This is a Squid server within our department. Durin
the period there were 3.3 million cacheable reques

• proxy.hpl.hp.com , April 1999. This Netscape
cache serves HPL Palo Alto. During the period the
were 11.4 million cacheable requests.

• cable-modem site, one week of June 1997. This
Netscape cache served a residential cable mod
deployment. During the week there were 8.2 millio
cacheable requests.

The responses from these cache servers are evaluate
the remainder of this section. The responses are p
sented in tables using attributes described in Table 1.

Table 1. Response attributes

In a web workload, mean response time (and respon
size) is often skewed by a relatively small number o
long duration (or large) responses. For this reason t
median response time, which indicates what mo
responses see, is often much less than the mean. So
times 80% or more of the responses are satisfied in l
than the mean response time. Since the median is
skewed by a few large (or long) responses it may be
better indicator of response time than the mean. For t
reason this analysis includes the mean as well as
50th percentile (the median) and the 80th percent
responses.

Attribute Description

Response Type The response type as described in
“Classes of Responses” above

Percent of
Responses

The fraction of all HTTP GET
responses that were of the class

Response Time The mean response time for the class

Response Size The mean response size in K bytes

Percentiles The median (50th) and 80th percentile
response times for the class
3

The Effect of Consistency on Cache Response Time Servers Studied

ser
or
0th
n
hat
he

the
a

ot
se

is-
own
at
er
ts
tile
re

s
on
tive

the
n

ig-
se
pe.

in
s

a
n
by
The analysis excludes non-HTTP, error, and other
response types, so the sum of the “Percent of
Responses” may not total 100%.

3.1 Squid on granite.hpl.hp.com

The first server studied was our workgroup’s cache
server. It serves requests from a local population of
researchers. It is connected to the external network
through a second Squid proxy (parent) that does not
cache objects; the parent acts as a firewall proxy.

Sixteen months of responses were analyzed, consisting
of 3.3 million cacheable requests.

Table 2. granite.hpl.hp.com responses

Table 2 shows that the mean response time for slow val-
idations is approximately eight times longer than fast
validations, and that both transfer about the same
amount of data to the client. The median response time
for slow validations is about 10 times longer then the
median response time for fast validations. The response
size is that of the HTTP response headers. No object
data is returned to the user for a validation.

The mean response time for slow hits is 3.5 times that
for fast hits; the median is 5.5 times. Both of these
response classes return object data to the client of about
five KB. Table 2 also shows that consistency misses take
approximately nine times longer than fast hits and twice
as long as slow hits; the median time for consistency
misses is seven times longer than fast hits. In these cases
object data is returned to the user, but fast hits require no
remote communication; slow hits receive only a small
validation from the origin server; consistency misses
retrieve full object data from the remote server. The data
transfer size, wide area round trip, and server demand
all affect response times.

Note also that consistency misses are considerably
larger than fast hits and slow hits. Most of the consis-
tency misses were for HTML objects. The increased
response time is due both to larger mean HTML object
size (see Table 14, “Most Bytes Transferred by Type,”
on page 9), and the complexity of generating dynamic
HTML objects. The log-based analysis could not deter-
mine when HTML objects were dynamically generated
but we know from experience that some of them are.

The mean response times by class in Table 2 are clo
to the 80th percentile value than to the median value f
the class. In some cases the mean is larger than the 8
percentile. This indicates a heavy-tailed distributio
where a few very long transfers skew the mean such t
it no longer corresponds to the response time of t
majority of requests.

Cold misses are slower than consistency misses, but
mean object size is again much larger. This is due to
few very large cold misses. The granite cache did n
keep any objects in cache over 4 MB, so each respon
over 4 MB is necessarily a capacity miss.

The median and 80th percentile object sizes for cons
tency misses and cold misses are nearly equal, as sh
in Table 3; it is only at the 90th percentile and above th
cold misses have a distinctly heavy tail relative to oth
response types. This is likely due to a few large objec
being requested through the cache. The 90th percen
value indicates that 10% of misses from this server we
larger than 27 KB.

Table 3. Squid response size (KB) - percentiles

Figure 2 shows the distribution of response time
observed at this server. Figure 3 shows the distributi
of response sizes. These graphs present a cumula
distribution function (CDF), which indicates on the y
axis the percentage of responses less than or equal to
time (or size) on the x axis. With a CDF the media
value is the x value at which a curve crosses 50%.

FIGURE 2. granite.hpl.hp.com response time CDF

Figure 2 shows that fast validations and fast hits are s
nificantly faster to complete than the other respon
types, and that misses are the slowest response ty
70% of fast hits and 80% of fast validations complete
under 100 msec. Fewer than 10% of slow validation
complete in under 100 msec.

The response size distribution for fast validations is in
very small range, indicated by a nearly vertical line i
the CDF in Figure 3. The response size is determined

Response Type Pct

Mean
Size
(KB)

Response Time (sec)

mean 50th 80th

Fast val (fval) 12.7 0.196 0.088 0.025 0.098

Slow val (sval) 4.3 0.124 0.769 0.263 0.589

Fast hit (fhit) 12.6 4.986 0.218 0.041 0.141

Slow hit (sdat) 13.0 4.871 0.776 0.229 0.501

Cons miss (cons) 4.5 8.242 1.910 0.437 1.148

Miss (miss) 49.2 16.440 2.332 0.501 1.514

Response Type Median 80th pct 90th pct

Consistency miss 3.018 12.015 19.485

Miss 2.882 12.580 27.523

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

fval ✧

✧ ✧
✧

✧

✧

✧

✧

✧

✧

✧

✧

✧

✧

✧

✧
✧

✧
✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧ ✧ ✧ ✧

fhit ✛

✛ ✛
✛

✛

✛

✛

✛

✛

✛

✛

✛

✛

✛
✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛

sval ■

■ ■ ■ ■ ■
■

■

■

■

■

■

■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

sdat ✕

✕ ✕ ✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

cons ▲

▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲
▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

miss ✫

✫ ✫ ✫ ✫ ✫ ✫ ✫
✫

✫

✫

✫

✫

✫

✫

✫
✫

✫
✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫
4

The Effect of Consistency on Cache Response Time Servers Studied

pe

er

rge
fi-
ize

w

at
n
ns
of

te
se
n-
low

nd
y
al-
nd

r at
ers
le
the headers sent by the cache, which are very similar for
every response. Slow validation headers come from var-
ious origin servers, and show greater variability and
smaller overall size. The Squid cache evidently includes
more header information than most origin servers do.

The file size distribution also shows that response sizes
for fast hits and slow hits are closely matched. This
eliminates size variation as a likely cause for the differ-
ence in response times.

FIGURE 3. granite.hpl.hp.com response size CDF

More detail about hit and validation response times and
sizes types is presented in Appendix C as a histogram
and CDF for each response type.

3.2 Netscape on proxy.hpl.hp.com

The next server studied was the HP Laboratories Palo
Alto external Netscape cache server. It serves requests
from local users and other cache servers. It is connected
to the external network through a packet filtering fire-
wall. It does not use a parent cache. One month of traffic
included 11.4 million cacheable requests.

Table 4. proxy.hpl.hp.com responses

Table 4 indicates that fast validations were more than
ten times faster than slow validations: about 14 times
faster in the mean and median; and about nine times
faster at the 80th (and 90th) percentiles. In these cases

the reported data size was zero bytes; the Netsca
cache did not report header size in the access log.

The response time for slow hits is about six times long
than fast hits at the mean, nine times at the median.

Note the large response size for misses. Some very la
objects were served through this cache, which signi
cantly affected the mean transfer size. The response s
cumulative distribution shows that there were very fe
of these objects: only 5% of objects were over 27 KB.

FIGURE 4. proxy.hpl.hp.com response time CDF

The response time distribution for this server shows th
fast validations and fast hits are significantly faster tha
the other response types. Furthermore slow validatio
and slow hits take almost exactly the same amount
time. This indicates that the round trip to the remo
server is the dominant component in cache respon
time, not the amount of data transferred to clients. Co
sistency misses and regular misses are slower than s
validations and slow hits.

FIGURE 5. proxy.hpl.hp.com response size CDF

The response size distribution shows that fast hits a
slow hits return similar amounts of data. Consistenc
misses and regular misses are also closely matched. V
idations (fast and slow) were reported as zero bytes a
do not appear on this graph.

3.3 Cable modem site

The third server studied was a Netscape cache serve
a cable company acting as an ISP for residential us
connected to the Internet through high-speed cab

Response
 Type Pct

Mean
Size
(KB)

Response Time (sec)

mean 50th 80th

Fast val 13.9 0.00a

a. Netscape did not report HTTP header size

0.071 0.032 0.072

Slow val 9.6 0.00a 0.993 0.447 0.661

Fast hit 13.9 6.194 0.159 0.051 0.117

Slow hit 5.9 5.249 0.908 0.468 0.692

Cons miss 1.25 9.427 1.355 0.724 1.202

Miss 26.4 768.38 2.130 0.794 1.413

Direct 28.4 331.75 1.926 n/a n/a

0
10
20
30
40
50
60
70
80
90

100

10 100 1000 10000 100000 1e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

fval ✧

✧ ✧✧
✧

✧

✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧

fhit ✛

✛ ✛

✛

✛

✛

✛

✛

✛

✛

✛

✛
✛

✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛

sval ■

■

■ ■■■■

■■■■

■
■

■

■

■

■
■
■
■■

■■■■■■■ ■ ■

sdat ✕

✕ ✕ ✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

cons ▲

▲ ▲ ▲ ▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

miss ✫

✫ ✫ ✫ ✫
✫

✫

✫

✫

✫

✫

✫

✫

✫

✫

✫
✫ ✫ ✫ ✫ ✫

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06
F

re
qu

en
cy

 (
pe

rc
en

t)

Response time (msec)

fval ✧

✧
✧

✧

✧

✧

✧

✧

✧

✧
✧

✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧

fhit ✛

✛ ✛

✛

✛

✛

✛

✛

✛

✛
✛

✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛

sval ■

■ ■ ■ ■
■

■

■

■

■

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

sdat ✕

✕ ✕ ✕
✕

✕
✕

✕

✕

✕

✕

✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

cons ▲

▲ ▲▲▲▲
▲

▲

▲

▲

▲

▲

▲
▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲

miss ✫

✫ ✫ ✫ ✫ ✫
✫

✫

✫

✫

✫
✫

✫
✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫ ✫

0
10
20
30
40
50
60
70
80
90

100

10 100 1000 10000 100000 1e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

fhit ✧

✧ ✧

✧
✧

✧
✧

✧

✧

✧

✧

✧

✧

✧

✧
✧ ✧ ✧ ✧ ✧ ✧ ✧

sdat ✛

✛ ✛ ✛

✛
✛

✛
✛

✛

✛

✛

✛

✛

✛

✛

✛
✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛ ✛

cons ■

■ ■ ■ ■
■

■ ■
■

■

■

■

■

■

■

■

■

■

■
■

■
■ ■ ■ ■ ■ ■ ■

miss ✕

✕ ✕
✕ ✕

✕
✕

✕

✕

✕

✕

✕

✕

✕
✕

✕ ✕ ✕ ✕ ✕
5

The Effect of Consistency on Cache Response Time Summary and Conclusions

ers
n

to
en

or-
the

r-
ct
se
ly
er
uc-
o

an
es
e

rver
ct
tly
ad
re
e

er

he
o-
p-

we
nd
he

d

on
g
to

for
modems. This cache was connected to the external net-
work through a packet filtering firewall without a parent
proxy. One week of traffic was analyzed for this report,
consisting of 8.4 million cacheable requests.

The workload of the users at this site during the entire
five month log collection period was studied in detail by
Arlitt et al [1]. This report extends that characterization
to examine cache response time by cache behavior.

The logs from this site did not contain enough detail to
differentiate between consistency, proxy-only, and regu-
lar misses. Table 5 summarizes the results from this site.

Table 5. Cable modem cache, all responses

This data set confirms the LAN findings of fast valida-
tions being more than an order of magnitude faster than
slow validations. Both the mean and the median
response time for slow validations indicate that they take
between 15 and 20 times longer to complete than fast
validations.

The mean response time for slow hits is about the same
as fast hits, but this is evidently due to a few very long
fast hits: the median and 80th percentile response times
show that slow hits take eight to nine times as long to
complete as fast hits. In Table 5 the mean and median
response time for misses is about 160% longer than for
slow hits; the mean response time for misses is 170%
longer than fast hits. However, the median response time
for misses is 20 times longer than fast hits.

The data size does not appear to be a dominant factor in
response time, but distance does. Table 6 presents mean,
median, and 80th percentile response size for fast hits,
slow hits, and misses.

Table 6. Cable modem cache size distribution (KB)

The response size of fast hits is 10% larger on average
than slow hits, but slightly smaller at the median and
80th percentiles. The mean response size for misses is
72% larger than for slow hits, the median is 70% larger.

4 Summary and Conclusions
Caching of objects in web cache servers near end us
can significantly reduce object retrieval time. When a
object is in cache it takes approximately half the time
validate and return the object to the requester than wh
an object is not in cache and must be retrieved. This c
roborates earlier research in caching, and supports
deployment of web cache servers.

In this report, we have further demonstrated that pe
forming a consistency check prior to returning an obje
from cache has a significant impact on object respon
time. When a validation is returned from cache direct
it is returned approximately an order of magnitude fast
than an object that requires a consistency check. Red
ing the service time of requests will allow a cache t
support more total user requests.

Based upon these results we suggest that there is
opportunity to improve user response time from cach
by improving the cache consistency mechanism. W
have developed such a mechanism based on se
invalidation and shown that it provides better obje
consistency, is faster for end users, consumes sligh
less network bandwidth, and reduces origin server lo
[3]. As faster end systems and residential networks a
deployed consistency validation mechanism will hav
more relative impact on the performance of us
requests and caches.

A page-based response time analysis is underway. T
cache logs include some information about page comp
sition and cache hit rates. From this data and assum
tions about object modification and access patterns
can derive an analytic model of page composition a
consistency. Using this model we can estimate cac
response time based upon the consistency protocol.

5 Acknowledgments
We are grateful for the time and effort of Tai Jin who
supplied logs from the local Squid cache and provide
insight into its operation, and Mike Rodriquez of HPL
Research Computing Services who ran our scripts
the HPL logs. Thanks to Rich Friedrich for suggestin
the work, and for his review comments. Thanks also
Martin Arlitt, John Barton, Ilja Bedner, Radhika Mal-
pani, Stéphane Perret, Jerry Rolia, and Anna Zara
their helpful comments and feedback.

6 References
[1] M. Arlitt, R. Friedrich, T. Jin, Workload Characterization

of a Web Proxy in a Cable Modem Environment, in ACM
SIGMETRICS Performance Evaluation Review, vol 27
no 2, pp25-36, August 1998.

[2] V. Cate. “Alex -- A Global Filesystem”. In Proceedings of
the USENIX File System Workshop, pages 1--12, May
1992. USENIX Association.

[3] J. Dilley, M. Arlitt, S. Perret, T. Jin, “The Distributed
Object Consistency Protocol”, Technical Report HPL-
1999-109, Hewlett-Packard Laboratories, Sept. 1999.

Response
 Type Pct

Mean
Size
 (KB)

Response Time (sec)

mean 50th 80th

Fast val 9.24 0.00 0.037 0.013 0.030

Slow val 10.1 0.00 0.717 0.191 0.380

Fast hit 15.0 11.188 0.952 0.028 0.049

Slow hit 11.1 9.912 0.976 0.214 0.437

Miss 50.8 17.034 2.582 0.562 1.479

Response Type Mean 50th 80th

Fast hit 11.188 2.343 8.506

Slow hit 9.912 2.510 8.906

Miss 17.034 4.263 13.174
6

The Effect of Consistency on Cache Response Time References

ed
s
n.

o

Appendix A: Log File Syntax
This appendix describes the syntax of the cache access
log files and the patterns that correspond to each of the
response types discussed in this report.

In the access log files, each request that was served by
the cache is indicated by a variable-width line of infor-
mation with a fixed number of fields. To analyze the
cache behavior we parsed the logs and examined the
values of each of the fields. The following sub-sections
present the format, contents, and analysis method used
for each of the three cache servers we studied.

Squid/HPL
The Squid 1.1.20 server running on granite.hpl.hp.com
logged the following information. The Squid log format
is described in the Squid FAQ, particularly in Section 6.

Table 7. Squid log fields (granite.hpl.hp.com)

We used the squid-status and remote-status fields to
identify the Squid cache behavior. Table 8 lists the com-
bination of squid-status and remote-status values that
corresponded to each of the categories in our analysis.

Table 8. Response type by Squid field code

Netscape/HPL
The Netscape Proxy Server on proxy.hpl.hp.com logg
the following information. The Netscape log format i
described in the Netscape Proxy Server documentatio

Table 9. Netscape log fields (proxy.hpl.hp.com)

Log field Translation of the field code.

date Date and time of the request.

xfer-time-msec Transfer time for the request, cache to
client.

ip IP address of the requestor.

squid-status Result code from Squid. A translation of
field codes can be found in the Squid
FAQ, section 6.6.

remote-status HTTP status code returned to the client.
HTTP status codes can be also be found
in the Squid FAQ, section 6.7.

content-size Size of the content returned to the client,
including headers.

request-type HTTP request type (GET, HEAD,
POST).

URL URL of the remote resource being
accessed including parameters.

user Local user who made the request
(always “-”).

route Route which the request took, indicating
whether it was served locally or was
routed to a parent cache.

mime-type The content MIME type.

Response Type squid-status/remote-status values

Fast val TCP_HIT/304
TCP_MEM_HIT/304
TCP_IMS_HIT/304

Fast hit TCP_HIT/200
TCP_MEM_HIT/200
TCP_IMS_HIT/200

Slow val TCP_REFRESH_HIT/(302|304)
TCP_CLIENT_REFRESH/(302|304)

Cons miss TCP_REFRESH_MISS/(200|40*)
TCP_CLIENT_REFRESH/(200|40*)

Miss TCP_MISS/*
TCP_CLIENT_REFRESH/206

Log field Translation of the field code.

ip IP address of the client making the request.

user User who made the request (always “-”).

date Date and time of the request.

URL URL of the object, including parameters.

clf-status Status returned from the proxy to the client.

p2c-cl Proxy to client content length.

remote-
status

Status returned from the origin to the proxy

r2p-cl Remote to proxy content length.

content-
length

Value of the content-length field in the
HTTP headers.

p2r-cl Proxy to remote (POST) content length.

c2p-hl Client to proxy header length.

p2c-hl Proxy to client header length.

p2r-hl Proxy to remote origin server header length.

r2p-hl Remote to proxy header length.

xfer-time-
total

Total transfer time for the request (sec-
onds.msec).

actual-
route

Route which the request took (SOCKS,
DIRECT, NONE).

cli-status Client status, indicates if the client aborted.

svr-status Remote server status.

cch-status Cache status, indicates if data was fetched t
disk, object was not cacheable, and so on.
7

The Effect of Consistency on Cache Response Time References
For the Netscape cache we used the clf-status, remote-
status, route, and cch-status fields to identify cache
behavior. Table 10 lists the combination of clf-status,
remote-status, route, and cch-status that corresponded to
each of the categories in our analysis. In the table, a “-”
indicates that no value was present in this field for the
request; a “*” indicates that any value is accepted for
this field.

Table 10. Response type by Netscape field code

Netscape/Cable Modem
The Netscape server at the cable ISP site was configured
differently from the local Netscape cache. In particular,
a key piece of information was missing from the logs:
cch-status. Without this information it was not possible
to determine if an object was already in cache in the
case of a consistency miss (when the cch-status would
have been REFRESHED), nor if the response was direct
(proxy only, when cch-status would indicate DO-NOT-
CACHE or NON-CACHEABLE).

The log did have a few additional fields, in particular to
record DNS lookup time, but we did not use this infor-
mation in our analysis. It had some other response time
metrics for some Netscape internal states (cwait, iwait,
fwait), but these values were always zero.

Table 11 lists the log fields that were present in the logs.

Table 12 lists the combination of clf-status and remote-
status that corresponded to each of the categories in our
analysis of this server. In Table 12 a “-” indicates that no
value was present for this field for the request.

Table 11. Netscape log fields (cable modem cache)

Table 12. Response type by Netscape field code (cable
modem proxy)

Resp
Type

clf-
stat

rmt-
status route cch-status

Fast val 304 - - NO-CHECK

Fast hit 200 - * NO-CHECK

Slow val 304 304 * UP-TO-DATE

Slow hit 200 304 * UP-TO-DATE

Cons
miss

200 200 * REFRESHED

Miss 200 200 * WRITTEN

Direct * * * DO-NOT-
CACHE
NON-
CACHEABLE

Log field Translation of the field code.

ip IP address of the client making the request.

user User who made the request (always “-”).

date Date and time of the request.

URL URL of the object, including parameters.

clf-status Status returned from the proxy to the client.

p2c-cl Proxy to client content length.

user-agent The browser version string from the client.

remote-
status

Status returned from the origin to the proxy.

r2p-cl Remote to proxy content length.

content-
length

Value of the content-length field in the HTTP
headers.

p2r-cl Proxy to remote (POST) content length.

c2p-hl Client to proxy header length.

p2c-hl Proxy to client header length.

p2r-hl Proxy to remote origin server header length.

r2p-hl Remote to proxy header length.

xfer-time-
total

Total transfer time for the request (sec-
onds.msec).

xfer-time-
dns

Total time to lookup remote IP address with
DNS.

xfer-time-
cwait

Time in cwait state (was always zero).

xfer-time-
iwait

Time in iwait state (was always zero).

xfer-time-
fwait

Time in fwait state (was always zero).

Response Type clf-status remote-status

Fast val 304 -

Fast hit 200 -

Slow val 304 304

Slow hit 200 304

Miss 200 200
8

The Effect of Consistency on Cache Response Time References

fer
G

t.

g
ct
ld
a

ze
ts)
er

ti-
r-
ar
his
.

Appendix B: Large File Analysis
The largest objects observed in the logs are multimedia
objects (.mpg, .mp3, .mov, .ra, .rm), Microsoft Office
documents (.ppt, .doc, .xls), compressed objects (.zip,
.gz), applications (.exe), and print-quality documents
(.ps, .pdf). The following file analysis is based upon one
day’s data from the HPL Netscape cache.

Table 13 examines the largest file classes. In each case
these object types accounted for less than 0.2% of the
total requests, yet they were responsible for a significant
fraction of the bytes transferred. Table 14 presents the
top classes by total demand.

Table 13. Largest Object Types

Table 14. Most Bytes Transferred by Type

GIF images are responsible for the most data trans
into the cache, but only by a small margin over MPE
video objects. 30 in 1 million requests are for MPEG
objects, but one byte in seven is from an MPEG objec

Most caches will not hold large objects, preferrin
instead to cache many smaller objects to improve obje
hit rate. Caching one average sized MPEG object wou
evict 1,760 average size GIF images. The decision
cache administrator must make is whether to optimi
cache response time (by holding many smaller objec
or external bandwidth demand (by holding some larg
popular objects).

One implication of this is that caches should be par
tioned according to the type of object they will be sto
ing, to allow some very large objects to be stored ne
the end users requesting them, but not everywhere. T
is an active field of research that we continue to follow

Object Type

Mean
Size
(KB)

Total
(MB)

%
Bytes

MPEG 7,394 332 16.1

MP3 3,412 37 1.78

QuickTime Movie 1,878 59 2.85

PowerPoint Presentation 1,664 84 4.10

RealMedia Audio/Video 1,465 36 1.88

Microsoft Word document 903 56 2.70

Microsoft Excel spreadsheet 782 18 0.85

PostScript + PDF documents 393 118 5.75

ZIP (compressed) archive 566 49 2.42

Object Class
%
Reqs

Total
Demand
(MB)

Mean
Size
(KB)

%
Bytes

GIF 55.0 353 4.2 17.2

MPEG 0.03 332 7,394 16.1

JPEG 16.7 326 12.6 15.8

HTML 14.8 245 10.8 11.9

PDF + PS 0.19 118 393 5.75

EXE 0.26 101 255 4.94

PPT 0.03 84 1,663 4.10

ASP 4.13 65 10.4 3.19

MOV 0.02 59 1,878 2.85
9

The Effect of Consistency on Cache Response Time References
Appendix C: Response Analysis
The Cumulative Distribution Function plots convey
information about the response time or size distribution
across all classes for a population of responses. It is a
fairly concise way to represent the data.

CFD plots do not convey well the characteristics of each
class of responses. This appendix provides additional
detail for the key response classes.

The images on the following pages illustrate the specific
response time and response size for fast validations and
slow validations, and fast hits and slow hits. This page
contains graphs for the proxy.hpl.hp.com (proxy) server,
the next page for the granite.hpl.hp.com (granite) server.

Fast and slow validation response size was reported as
zero bytes by the Netscape cache proxy.hpl.hp.com, and
are not graphed.

FIGURE 6. proxy: Fast Hit Response Size

FIGURE 7. proxy: Slow Hit Response Size

FIGURE 8. proxy: Fast Validation Response Time

FIGURE 9. proxy: Slow Validation Response Time

FIGURE 10. proxy: Fast Hit Response Time

FIGURE 11. proxy: Slow Hit Response Time

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 6343

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 5375

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 71

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 993

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 159

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 908
10

The Effect of Consistency on Cache Response Time References
FIGURE 12. granite: Fast Validation Response Size

FIGURE 13. granite: Slow Validation Response Size

FIGURE 14. granite: Fast Hit Response Size

FIGURE 15. granite: Slow Hit Response Size

FIGURE 16. granite: Fast Validation Response Time

FIGURE 17. granite:Slow Validation Response Time

FIGURE 18. granite: Fast Hit Response Time

FIGURE 19. granite: Slow Hit Response Time

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 201

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 127

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 5107

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 100001000001e+06

F
re

qu
en

cy
 (

pe
rc

en
t)

Response size (bytes)

mean: 4993

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 88

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 769

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 218

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000

F
re

qu
en

cy
 (

pe
rc

en
t)

Response time (msec)

mean: 766
11

	1 Introduction
	2 Cache Consistency
	2.1 HTTP Consistency Validation
	FIGURE 1. The Alex Protocol

	2.2 Analysis Methodology and Limitations

	3 Servers Studied
	Table 1. Response attributes
	3.1 Squid on granite.hpl.hp.com
	Table 2. granite.hpl.hp.com responses
	Table 3. Squid response size (KB) - percentiles
	FIGURE 2. granite.hpl.hp.com response time CDF
	FIGURE 3. granite.hpl.hp.com response size CDF

	3.2 Netscape on proxy.hpl.hp.com
	Table 4. proxy.hpl.hp.com responses
	FIGURE 4. proxy.hpl.hp.com response time CDF
	FIGURE 5. proxy.hpl.hp.com response size CDF

	3.3 Cable modem site
	Table 5. Cable modem cache, all responses
	Table 6. Cable modem cache size distribution (KB)

	4 Summary and Conclusions
	5 Acknowledgments
	6 References
	[1] M. Arlitt, R. Friedrich, T. Jin, Workload Characterization of a Web Proxy in a Cable Modem En...
	[2] V. Cate. “Alex -- A Global Filesystem”. In Proceedings of the USENIX File System Workshop, pa...
	[3] J. Dilley, M. Arlitt, S. Perret, T. Jin, “The Distributed Object Consistency Protocol”, Techn...

	Appendix A: �Log File Syntax
	Squid/HPL
	Table 7. Squid log fields (granite.hpl.hp.com)
	Table 8. Response type by Squid field code

	Netscape/HPL
	Table 9. Netscape log fields (proxy.hpl.hp.com)
	Table 10. Response type by Netscape field code

	Netscape/Cable Modem
	Table 11. Netscape log fields (cable modem cache)
	Table 12. Response type by Netscape field code (cable modem proxy)

	Appendix B: �Large File Analysis
	Table 13. Largest Object Types
	Table 14. Most Bytes Transferred by Type

	Appendix C: �Response Analysis
	FIGURE 6. proxy: Fast Hit Response Size
	FIGURE 7. proxy: Slow Hit Response Size
	FIGURE 8. proxy: Fast Validation Response Time
	FIGURE 9. proxy: Slow Validation Response Time
	FIGURE 10. proxy: Fast Hit Response Time
	FIGURE 11. proxy: Slow Hit Response Time
	FIGURE 12. granite: Fast Validation Response Size
	FIGURE 13. granite: Slow Validation Response Size
	FIGURE 14. granite: Fast Hit Response Size
	FIGURE 15. granite: Slow Hit Response Size
	FIGURE 16. granite: Fast Validation Response Time
	FIGURE 17. granite:Slow Validation Response Time
	FIGURE 18. granite: Fast Hit Response Time
	FIGURE 19. granite: Slow Hit Response Time
	The Effect of Consistency on Cache Response Time
	John Dilley <jad@hpl.hp.com>
	Hewlett-Packard Laboratories Palo Alto, CA

