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In a 3D graphics application, a common operation is the
binding of a 2D texture onto a triangle in a 3D positional space.
For light-dependent or view-dependent texture mapping, a need
may arise in the graphics pipeline to transform the light or
view direction vector into texture space. The affine
transformation is unique within the plane of the triangle
because the texture coordinates and the position coordinates
are specified at three vertices. In the direction perpendicular to
this plane, the scale factor between positional and texture
spaces is unconstrained and the solution is not unique. In
particular, the choice of the scale factor is quite flexible when
the texture is anisotropically scaled across the surface. This
paper describes some ways to calculate a scale factor with
desirable properties and a transformation between positional
space and texture space given a triangle's positional
coordinates and texture coordinates.
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1. Introduction

Texture mapping is a shading operation in a graphics pipeline for modulating an attribute across
geometric primitives to create the appearance of increased feature detail without higher geomet-
ric complexity. In the common case, a texture in the form of a color image is bound to an object
by associating texture coordinates with vertices of polygons. Typically, the texture is static: the
image and its binding to the surface do not change. The texture may be a digital photograph of a
bumpy surface. Yet, a textured polygon has the appearance of a flat surface with wallpaper ap-
plied to it because the bumps do not change the occlusions, highlights, and shadows as the cam-
era and lights move.

Texture mapping appears more realistic when the texture changes dynamically by depending on
the viewing direction [1] or the light direction [2]. View- and light-dependent texture mapping
begin with a photographer taking several pictures of a real scene and varying the camera location
or light location. Each photograph is associated with a known camera and/or light position. A
good approximation for a particular photograph is that a single direction describes the camera
and/or light when they are far enough away from the scene. In the graphics system performing
view- or light-dependent texture mapping, the synthetic camera or light moves around a geomet-
ric scene, and the most suitable texture is selected from among the digital photographs. The tex-
ture needs to be the closest match between the synthetic camera or light direction and the physi-
cal camera or light direction, respectively.

Textures can be bound to polygonal vertices in an arbitrary manner. In general, texture images
can be warped onto surfaces. While texture warps can be nonlinear, we restrict them to affine
transformations because interpolation of texture coordinates is linear in world space (or equiva-
lently, rational-linear in screen space [3]) in present-day texture mapping hardware. On small
triangles, this constraint is acceptable in real applications. The most general warp under consid-
eration is an anisotropic scale with rotation and translation. This complicates the mapping of a
direction vector in the positional space of the synthetic camera or light to texture space corre-
sponding to a known physical camera or light direction. The mapping is unique within the plane
of a triangle. However, the scalar mapping of the normal vector between positional space and
texture space is unconstrained, in general, because the 2D texture has no binding beyond the tri-
angle’s plane. Thus, we are free to choose a mapping perpendicular to the plane as long as the
assignment simplifies to the obvious choice of an angle-preserving transformation (isotropic
scaling with rotation and translation) when texture warping is absent.

This paper describes a transformation that maps the positional space (for example, world space)
of the geometry, camera, and lights to texture space. This is a general solution for a triangle in
3D positional space with a 2D texture bound to the three vertices. When the texture is warped
across the triangle, the problem is unconstrained. The recommended solutions have desirable
properties, and they simplify to the obvious choice of an angle-preserving transformation in the
absence of texture warping.
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2. Texture Binding

A graphics application controls the binding of a 2D texture image to a triangle in 3D positional
space. The texture coordinates s tb g are associated with the vertex position x y zb g. In ma-
trix notation, the transformation of positional coordinates to texture coordinates takes the fol-
lowing form:
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where u = 0  for the 2D texture in 3D texture space. We seek an affine matrix A  that maps the
positional coordinates at three vertices p0 , p1 , and p2  to the corresponding texture coordinates
c0 , c1 , and c2 , respectively. These constraints specify the mapping within the plane of the poly-
gon. The specified binding says nothing about how a direction vector that is normal to the trian-
gle transforms to a 3D texture space s t ub g. A desirable property of the transformation would
be for the triangle’s normal vector to transform to a vector perpendicular to the 2D texture space,
or a vector 0 0 ub g in 3D texture space for some value of u ≠ 0 . What remains to be deter-
mined is the value of u  for a triangle normal vector of a given length in positional space. While
a matrix that transforms the triangle normal vector to an arbitrary vector s t ub g is possible,
its effect is unlikely to be useful for view- or light-dependent texture mapping.

3. Calculation of the Position-to-Texture Transformation

The position-to-texture transformation needs to be computed once per triangle. Since the fre-
quency of these calculations is high, real-time systems can benefit from the simplest solution. We
begin with the most general formulation before proceeding with a simpler one that meets our
needs for transforming direction vectors.

3.1 The General Formulation

Complete specification of the mapping between 3D positional space and 3D texture space re-
quires a rule for transforming the normal vectors. Assuming that the positional and texture coor-
dinates of the triangle’s three vertices are not collinear, the normal vectors in positional and tex-
ture spaces can be calculated by forming the cross products of corresponding triangle edges.
These two cross products point in the triangle’s normal directions of the two spaces.
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Figure 1 shows an example of the configuration of these vectors. In texture space, d0 and d1  are
two edge vectors and m  is their cross product; in positional space, q0 , q1 , and n  are the corre-
sponding vectors.

Figure 1: A triangle in texture and positional spaces.

The magnitude of a cross product vector is the product of the magnitudes of the individual vec-
tors and the sine of the angle between them [4]. For the cross product vectors in texture and
positional space, the magnitudes are

m d d n q q= =0 1 0 1sin sinα β (3)

where α  is the angle between d0 and d1 , and β  is the angle between q0  and q1 . The magnitude
of a cross product is the area of a parallelogram formed with the individual vectors, or equiva-
lently, twice the area of the triangle.

Let the normalized cross product vectors be denoted by the circumflex mark.
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A unique solution for the matrix A  in Equation (1) requires four corresponding points, three of
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vectors $m  and $n  to corresponding points on the triangle, for example, c0  and p0 . The full ma-
trix form of Equation (1) becomes the following:
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where a  and b  are scale factors yet to be determined. The matrix A CP= − 1  transforms points in
positional space to texture space. P − 1  is a general 4 4×  matrix, and its calculation would require
a general-purpose matrix inversion routine, which is usually slow. Fortunately, we need not cal-
culate P − 1  and A . For view- and light-dependent texture mapping, we seek the matrix that trans-
forms direction vectors in positional space to texture space. This matrix is the same as the one
that applies to surface-normal vectors, and its value is the transpose of the inverse of A  [5]. So
instead of calculating A , we solve for its inverse.

A PC− −=1 1 (6)

The matrix C  has a simple form, as does its inverse.
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A property of this matrix is that the sum of the columns is 0 0 0 1 . Given the form of ma-
trix P , this turns out to be a requirement for A − 1  to be affine. The upper-left 3 3×  submatrix of

A − 1c hT
 is used for transforming the three components of direction vectors [5]. The full 4 4×

matrix is given below. The fourth row is not needed for direction vectors.
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All values in this equation are known except for a  and b , the lengths of the triangle normal
vectors in texture space and positional space, respectively. The first two rows depend only on the
texture binding in the plane of the triangle; they are independent of a  and b , which describe the
scaling of the normal vector. The third row depends only on the polygon normal vector scaled by
the relative value b a ; this row is independent of the texture binding. The complexity of calcu-
lating the ratio b a  depends on whether the texture binding is isotropic or anisotropic. We defer
the discussion of these two cases to Sections 3.3 and 3.4.

3.2 A Simplified Formulation

The position-to-texture transformation is computed once per triangle so minimizing the number

of arithmetic operations is desirable in real-time systems. Calculation of the matrix A − 1c hT
 in

Equation (8) involves 4 4×  matrices, yet we need only the upper-left 3 3×  submatrix to trans-
form direction vectors. The goal of this section is to calculate the 3 3×  matrix directly.

Linear systems theory often encounters block matrices, where the elements of a matrix are them-
selves matrices [6]. Consider the following representation of the matrix A  as a block matrix.
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If A  is an affine matrix for transforming points and B  is the upper-left 3 3×  submatrix, then B
is the matrix for transforming tangent vectors (a.k.a. edge vectors or the differences between
pairs of points) [5]. This suggests a simplified method for formulating the problem: we seek a
matrix B , which transforms the edge vectors from positional space to texture space. We select
two triangle edges and the edge representing the triangle normal from Figure 1.
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Note that B  is a major part of the solution for A . If A  ever needs to be calculated, the follow-
ing sequence may be faster than calculating A  directly:

1. Calculate B .

2. A  is affine so let 0 = 0 0 0 T  and F = 1 .

3. Solve for E  by substituting a pair of corresponding positional and texture points into
Equation (1).

In computer graphics, fast inversions of affine matrices are possible with block matrix operations
[7, 8]. If B − 1  and F − 1 exist, then the inverse and inverse-transpose of A  are as follows.
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The matrix for transforming direction vectors from positional space to texture space is the upper-

left 3 3×  submatrix of A − 1c hT
. From Equation (11), this matrix is B − 1c hT

 and the formulation in
Equation (10) leads to a simplified way to calculate it.
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For the solution, we substitute Equation (13) into Equation (12) and take the transpose.
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This equation for B − 1c hT
 yields the matrix that transforms direction vectors from positional space

to texture space. This solution requires ten fewer multiplications than Equation (8). The com-
ments at the end of Section 3.1 about dependence on the texture binding and the ratio b a apply
to this matrix.

3.3 Normal Vector Scaling for Isotropic Texture Binding

An affine transformation that scales isotropically also preserves angles [8]. Since a translation
can occur in an affine transformation, the scaling applies to the difference between two points or
to direction vectors. For a triangle in texture and positional spaces shown in Figure 1, the trans-
formation between the two spaces scales isotropically in the plane of the triangle if it observes
the following two properties.

q
d

q
d

0

0

1

1

0= < <and =α β α β π, , (15)

Divisions, square roots, and inverse trigonometric functions are slow to evaluate. In the interest
of computational efficiency, these can be eliminated by rearranging the equations. For the first
condition, we square both sides, multiply by the denominators, and rewrite the squared magni-
tudes as dot products.

q q d d q q d d0 0 1 1 1 1 0 0
T T T Td id i d id i= (16)

For the second condition, we take the sine of both sides, substitute Equations (3), square both
sides, multiply by denominators, and rewrite the squared magnitudes as dot products.

m m q q q q n n d d d dT T T T T Tc hd id i c hd id i0 0 1 1 0 0 1 1= (17)

For this case of isotropic texture binding, a reasonable design choice is to make the transforma-
tion isotropic in all three dimensions. Then the following property applies.

b
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q
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This makes the 3D transformation angle-preserving: isotropic scaling with rotation and transla-
tion. Substitution of Equation (18) into Equation (8) or (14) yields the full transformation.
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3.4 Normal Vector Scaling for Anisotropic Texture Binding

When the binding of a texture to a triangle is such that the properties in Equation (15) (or
equivalently, in Equations (16) and (17)) are not observed, then the transformation is anisotropic
in the plane of the polygon. In order to choose a scale factor in the direction normal to the poly-
gon, the minimum and maximum scale factors in the plane of the polygon need to be found. The
scaling properties of matrix B in Equation (10) can be determined by transforming a sphere in
positional space to texture space. In this discussion, we work with the edge vectors or the differ-
ences between pairs of points. Consider the equation of a sphere in positional space.

x y z x y z
x
y
z

2 2 2 1+ + =
L

N
MMM

O

Q
PPP

= =q qT

B  is the matrix that transforms edge vectors from positional space to texture space: d Bq= . Its
inverse does the converse: q B d= − 1 . Upon substituting this into the equation for a sphere in
positional space, an equation emerges in terms of edge vectors in texture space.

q q d B B d d GdT T T T= = =− −1 1 1c h (19)

All matrices of the form G B B= − −1 1c hT
 are symmetric and positive definite if the matrix B − 1  is

nonsingular [9]. The condition is true when the triangle’s vertices are not collinear. Positive defi-
nite matrices have a number of important properties including the following:

1. All eigenvalues of G  are real and positive ( λi > 0 ).

2. The eigenvectors corresponding to different eigenvalues are orthogonal to one an-
other. This applies to all Hermitian matrices, a superset of positive definite matrices.

3. d GdT = 1 is the equation of an ellipsoid.

4. G  can be decomposed into G V V= Λ T , where Λ is the diagonal matrix with eigen-
values λ λ λ0 1 2, , on the main diagonal and V v v v= $ $ $0 1 2  is the orthogonal matrix
with matching unit eigenvectors in the columns.

5. Each eigenvalue/eigenvector pair describes one axis of the ellipsoid, which has a half-
length of 1 λi  and points in the direction of $vi .

The largest eigenvalue is associated with the shortest axis, the smallest with the longest, and the
mid-size with the mid-length. In other words, the largest and smallest eigenvalues place bounds
on the scaling by matrix B . From Equation (14), we consolidate rows before calculating G .
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Note that ~b0  and ~b1  are linear combinations of q0  and q1 , which are orthogonal to $n . There-

fore, ~b0  and ~b1  are orthogonal to $n , and the dot products vanish: ~ $b ni
T = 0 . Also, $n  is a unit

vector: $ $n nT = 1. This leads to a simple form for G .
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The eigenvalues of G  are as follows.
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Recall that we seek to choose a value of b ab g to completely specify the matrix B − 1c hT
 in Equa-

tion (14). The eigenvector for λ2  is $v2 0 0 1= T , a unit vector parallel to the u  axis in tex-

ture space. The ellipsoid has an axis length of a bb g in this direction. The eigenvectors for λ0

and λ1  have the form $ * *vi = 0 T : they must be orthogonal to $v2 . While they lie in the s-t
plane, they generally do not coincide with the s  and t  axes.
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Figure 2: Three orthogonal cross sections of an ellipsoid through its axes.

Figure 2 illustrates the intersections of three orthogonal planes with the ellipsoid. Each plane is
orthogonal to one eigenvector, and the span of the other two eigenvectors is the plane itself. The
parallelograms enclosing the elliptical cross sections are rectangles aligned to the eigenvectors in
3D texture space. The axes have a half-length of 1 λi . Since λ λ0 1≥ , the axis corresponding
to λ0  is shorter than or equal to the one for λ1 .

The ellipsoid’s two axes in the plane of the texture image place minimum and maximum bounds
on the scaling in this plane. The texture binding puts no constraint on the scaling in the direction
normal to the plane. Thus, we are free to choose a scale factor in this direction. A reasonable de-
sign choice is to make the scale factor in the normal direction reside in the range of values for the
plane. From Equations (22), the range is as follows.
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An implementation should choose one value of b a  in this range. The obvious choices are λ0 ,

λ1 , or some intermediate value such as the arithmetic, geometric, or harmonic means.

1. Arithmetic mean: 
1
2 0 1λ λ+d i

2. Geometric mean: λ λ0 1

3. Harmonic mean: 
2 0 1

0 1

λ λ
λ λ+

All these choices simplify to the simple case for isotropic texture binding in Equation (18) when
λ λ0 1= . The selected value of b a  needs to be substituted into Equation (8) or (14) to yield the
full transformation.

The choice of a value for b a in the Range (23) makes $v0  the direction of the minor axis, and $v1

the direction of the major axis. The interpretation of the scale factor for the normal direction is
straightforward for the two boundaries of the range. The lower boundary means that the 3D tex-
ture space is stretched in the direction of the major axis relative to the minor axis and normal di-
rections, which share the same scale factor. The upper boundary means that the 3D texture space
is compressed in the direction of the minor axis relative to the major axis and normal directions,
which share the same scale factor. An intermediate value of b a  means that the 3D texture space
is stretched in the direction of the major axis and compressed in the direction of the minor axis
relative to the normal direction. All the cases are correct in the sense that the solution is not
unique for lack of information from the texture binding.

The scale factor in the normal direction determines the length of shadows cast by bumps. Larger
values lead to shorter shadows and give the impression that the bumps are shallower. Likewise,
smaller values have the effect of longer shadows and deeper bumps. Since the texture binding
does not constrain the solution, a graphics API may allow the application to control the value
selected.

3.5 Estimate of Normal Vector Scaling

The transformation between positional and texture spaces is calculated once per triangle. Since
the calculation involves many arithmetic operations, a simple estimate of the scale factor for the
normal vector may be adequate in the interest of increasing performance. Consider the following
estimate.
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b
a

= + = +λ λ η ξ0 1

2 2
(24)

This estimate is the square root of the average of the eigenvalues. The value can be calculated
without the full expense of computing the eigenvalues themselves. We need only η  and ξ  from
Equation (21) with no need for calculating ρ  and the square root in Equations (22).

For isotropic texture binding, the estimate simplifies to the desired scale factor in Equation (18).

b
a

= + = =λ λ λ λ0 1
0 12

(isotropic case)

An implementation can apply this estimate without determining whether the texture binding is
isotropic or anisotropic. Moreover, this value satisfies Range (23). Given the lower and upper
bounds, the average obviously lies in their range, and application of square root preserves the
relationships.
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As the ellipse becomes very elongated, the estimate approaches ∼70.7% of the upper bound.

lim
λ

λ λ λ
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2 2
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→ ∞

+ −
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UVW =

Hence, the estimate satisfies the following properties with λ λ0 1≥ .

λ λ λ λ λ λ λ
1

0 1
0

0 1 0

2 2 2
≤ + ≤ + ≥and (26)

This estimate is relatively simple to compute, simplifies to the desired value for isotropic texture
binding, and always lies in the desired range for the anisotropic case.

3.6 Operations Count

In real-time systems, a count of the operations is an indication of the complexity and perform-
ance of a particular feature. For transforming direction vectors from positional space to texture
space, the fastest approach in this paper includes evaluation of Equations (14) and (24). For
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light-dependent texture mapping, N  lights may be active so N  light direction vectors need to be
transformed by the final matrix. The following table gives a summary of the calculations for this
approach and a count of the elementary operations.

Table 1: Calculation Sequence and Operations Count

Calculation Add Mult Div Sqrt

d c c0 1 0= − 2

d c c1 2 1= − 2

q p p0 1 0= − 3
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Total per triangle 27 8+ N 32 18+ N 2 + N 1 + N

The sequence consists of two parts: calculation of the matrix and transformation of the light di-
rection vectors. Table 1 shows deferral of row scaling until after transformation of direction
vectors. In a scalar implementation, deferral is beneficial for less than three lights, requiring
32 18+ N  multiplications. Performing row scaling during calculation of the matrix requires
41 15+ N  multiplications, and this is more efficient for more than three lights.

In this table, the light direction vectors for light i are Li  in positional space and Li
′′in texture

space; normalization of Li
′′ yields $Li

′′. If the transformation preserves angles, then normaliza-
tion can be simplified. The isotropic scale factor needs to be determined and inverted once for

the triangle, and the result can scale each component of Li
′′. However, determining whether a

transformation preserves angles and then extracting the isotropic scale factor can involve many
operations. An alternative is to apply a fast algorithm for calculating reciprocal square root [10]
for each transformed light vector without determining whether the transformation preserves an-
gles. Turkowski’s algorithm uses a table lookup and two iterations of a simple formula without
divisions for improving accuracy.

Calculation of the scale factor for the normal direction requires a square root. However, this
function can be a low-precision approximation for improved performance. The effect of a small
numerical error would be a small change in the length of shadows cast by bumps.

4. Conclusion

In the absence of nonlinear texture warps, the transformation between the positional space of a
triangle and texture space can be expressed as an affine matrix. Calculation of this matrix begins
with the triangle’s edge vectors and cross product vectors as well as their magnitudes in both
spaces. These values determine whether the scaling is isotropic. In case of anisotropic scaling, an
implementation needs to select a scale factor for mapping the normal vector: this paper describes
some reasonable choices. Calculation of the final matrix for transforming direction vectors is
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straightforward. The matrix plays an important role in view- and light-dependent texture map-
ping.
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