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and communications engineers.

1 Introduction

An exponential sum is a sum of complex numbers of absolute value one in

which each term is obtained by evaluating a function of additive and/or

multiplicative characters of a �nite �eld Fq , and where the sum is taken

over the whole of Fq . Exponential sums date back to early work of La-

grange and Gauss, the latter explicitly evaluating certain basic exponen-

tial sums now called Gauss sums in his honour. Since then, much more

general exponential sums have been considered, but generally, it is im-

possible to �nd explicit expressions evaluating these more complicated

sums. However their evaluation is intimately connected to the problem

of counting the numbers of points on related curves (more generally, al-

gebraic varieties) de�ned over �nite extensions of Fq and deep methods

in algebraic geometry have been developed to �nd good bounds on such

numbers. Two major achievements of these methods are Weil's 1940 an-

nouncement of the proof of the Riemann hypothesis for curves over �nite

�elds [66] and Deligne's Fields medal winning proof of the Weil conjec-

tures for algebraic varieties [8]. These results are justly regarded as be-

ing high-points of twentieth century mathematics, and from them, good

bounds for many classes of exponential sums can easily be deduced.

In contrast to the depth and sophistication of the techniques used

by Weil and Deligne, the bounds they proved are rather easy to state

and to use. Coding theorists and communications engineers have been

extraordinarily fecund in exploiting this ease of use. In this paper, we

quote some bounds for exponential sums, briey sketch the connection



to curves over �nite �elds and examine some applications of exponential

sums in communications theory. We make no attempt to be exhaustive in

our coverage. Rather our aim is to provide an introductory tour, focusing

on salient points, basic techniques and a few applications. For this reason,

all of our applications will involve, in various guises, a class of codes

called dual BCH codes. We provide pointers to the vast literature for

more advanced topics, and immediately recommend the survey [21] for a

snapshot of the whole area.

We show how the minimum distances of dual BCH codes and other

cyclic codes can be evaluated in terms of exponential sums. We then con-

sider the problem, important in multiple-access spread-spectrum com-

munications, of designing sequence sets whose periodic cross-correlations

and auto-correlations are all small. Then we look at how exponential sums

can be used to study binary sequences with small partial and aperiodic

correlations. These are also important in spread-spectrum applications.

We also consider the application of exponential sums in a relatively new

communications application, the power control problem in Orthogonal

Frequency Division Multiplexing (OFDM). Finally, we briey consider

some more advanced applications of exponential sums.

2 Finite Fields, Their Characters and the Dual BCH

Codes

We set out some facts concerning the trace map on a �nite �eld, as-

suming the reader to be familiar with the basic properties of �nite �elds

(existence, uniqueness, primitive elements and so on). Basic references for

�nite �elds are [23, 31, 32]. We will almost exclusively be concerned with

�elds of characteristic two in this paper, though almost everything we say

can be generalised to characteristic p with appropriate modi�cations.

Throughout, m;n will denote positive integers with mjn. Also, F2n

denotes the �nite �eld with 2n elements and F
�
2n the set of non-zero

elements of F2n . The relative trace function from F2n to F2m is de�ned

by

trnm(x) =

n=m�1X
i=0

x
2mi

:

The trace map trnm(x) has the following properties:

� It is an F2m -linear mapping onto F2m .
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� For each b 2 F2m , the equation

trnm(x) = b

has exactly 2n�m solutions x 2 F2n . In other words, the trace map is

`equi-distributed' on sub-�elds.

� trm1 (tr
n
m(x)) = trn1 (x) for x 2 F2n .

Next we introduce the characters of F2n . Of course these can be de�ned

more generally for any �nite �eld Fq . Even more generally, the characters

of an abelian group are just the homomorphisms from that group onto

the set U of complex numbers of absolute value 1. The �eld F2n contains

two abelian subgroups of particular interest, namely the additive and

multiplicative groups of the �nite �eld, and so we have two corresponding

sets of characters.

For each b 2 F2n , de�ne a map �b from F2n to the set f1;�1g by

writing

�b(x) = (�1)tr
n

1
(bx)

; x 2 F2n :

The maps �b are called the additive characters of F2n : by linearity of

trace, it can be seen that these maps are homomorphisms from the group

(F2n ;+) to U . The map �0 is called the trivial additive character because

�0(x) = 0 for all x 2 F2n . Notice that if b 6= 0, thenX
x2F2n

�b(x) = 0 (1)

because of the equi-distribution properties of the trace map.

Now let N = 2n � 1 and let ! = exp(2�i=N) be a complex N -th root

of unity. Let � be a primitive element in F2n . For each integer j with

0 � j < 2n � 1, we de�ne a map  j from F
�
2n to the set U of powers of !

by writing

 j(�
i) = !

ji
; 0 � i < 2n � 1:

The maps  j are called the multiplicative characters of F2n : they are

homomorphisms from (F�2n ; �) to U . The map  0 is called the trivial mul-

tiplicative character.

For much more information about characters of �nite �elds, see [22,

23, 32]

Next we de�ne the main class of codes that we'll work with in this

paper, the dual BCH codes. In fact, we work with a sub-class of these

codes, more properly called binary, primitive, dual BCH codes.
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Let � be primitive in F2n and let t be a positive integer with 1 �
2t� 1 � 2dn=2e + 1. Let Gt denote the set of polynomials

Gt = fg1x+ g3x
3 + � � �+ g2t�1x

2t�1 : gi 2 F2n g:

For each g 2 G, de�ne a length 2n � 1, binary word

cg = (trn1 (g(1)); tr
n

1 (g(�)); : : : ; tr
n

1 (g(�
2n�2))):

and de�ne a code Ct by:

Ct = fcg : g 2 Gtg:

So the words of Ct are obtained by evaluating certain degree 2t�1 polyno-

mials on the non-zero elements 1; �; : : : ; �2
n�2 of F2n , and then applying

the trace map.

It follows from the linearity of the trace map that the code Ct is linear.
It can be shown that the dimension of the code is equal to nt over F2 ,

the set of polynomials fcx2i�1 : 1 � i � t; c 2 F2n g leading to a basis for

the code. By examining these `basis polynomials', it's now easy to show

that the code is cyclic. It is a consequence of a theorem of Delsarte that

the code Ct is the dual of the primitive, binary BCH code with designed

distance 2t+ 1 whose zeros include �; �3; : : : ; �2t�1. See [34, Chapters 8

and 9] for more background on BCH codes and their duals.

In Section 4 we will obtain bounds on the minimum Hamming dis-

tances of the codes Ct by using Weil's bound on the size of exponential

sums with polynomial argument.

3 Exponential Sums

As we stated in the introduction, exponential sums are sums in which each

term is obtained by evaluating a function of additive and/or multiplicative

characters of a �nite �eld Fq , and where the sum is taken over the whole of

Fq . Here we consider some classes of sums over �nite �elds of characteristic

2, stating bounds for such sums. We also sketch the connection between

exponential sums and the problem of counting the numbers of points on

certain curves over �nite �elds. For a much more detailed exposition of

the theory of exponential sums, we recommend [32, Chapter 5].

Let � be a non-trivial additive character of F2n and let g be a poly-

nomial of odd degree r < 2n over F2n . We are interested in sums of the

form X
x2F2n

�(g(x))
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which are called exponential sums with polynomial argument or Weil

sums. For special choices of g, the sums can be evaluated explicitly (for ex-

ample, when g(x) = x we know from (1) that the sum is identically zero).

Usually though, we have to settle for bounds on the size of the sums. The

following result, known as Weil's theorem or the Carlitz-Uchiyama/Weil

bound, is the fundamental estimate on the size of Weil sums:

Result 1 [66, 4] With notation as above,������
X
x2F2n

�(g(x))

������ � (r � 1)2n=2:

Notice the Weil sums, being sums of 2n complex numbers of absolute

magnitude 1, are potentially of size O(2n). The above bound shows that

(at least when r is not too large), the Weil sums are much smaller than

this. Notice also that the case r = 1 of Weil's bound recovers (1). The

condition that g have odd degree r can be replaced by much weaker

criteria, for example that the polynomial y2 + y + g(x) in two variables

be absolutely irreducible, or that the polynomial g not be of the form

h(x)2 + h(x) + d for any polynomial h over F2n and any d 2 F2n .

3.1 Exponential Sums and Curves over Finite Fields

We sketch the connection betweenWeil exponential sums and the problem

of counting points on curves over �nite �elds and outline how Weil's

theorem is proved using algebraic-geometric methods. For modern and

accessible approaches to the proof of Weil's theorem and related results,

see the books [36, 61]. For an elementary approach avoiding algebraic

geometry, see [54]. For introductory explanations, see [22, Chapters 10

and 11] and [32, Notes to Chapter 6].

To make the connection, we need the following simple result:

Lemma 1. [32, Theorem 2.25] For b 2 F2n , we have tr
n
1 (b) = 0 if and

only if y
2 + y = b for some y 2 F2n .

Now consider the exponential sumX
xinF2n

(�1)tr
n

1 (g(x)) = jfx 2 F2n : trn1 (g(x)) = 0gj � jfx 2 F2n : trn1 (g(x)) = 1gj

= 2jfx 2 F2n : trn1 (g(x)) = 0gj � 2n:

But we know that trn1 (g(x)) = 0 if and only if there exists a solution

y 2 F2n to the equation y2+ y = g(x), in other words, if and only if there
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is a y such that (x; y) is a point on the a�ne curve C whose equation is

h(x; y) = 0 where h(x; y) = y
2 + y + g(x). Notice though that if y is a

solution to h(x; y) = 0, then so too is y + 1. So the points on C come in

pairs and are in 2-1 correspondence with the x satisfying trn1 (g(x)) = 0.

We deduce that

X
x2F2n

(�1)tr
n

1
(g(x)) = jCj � 2n

where jCj denotes the number of points on the a�ne curve C.

Next we introduce a projective version of C. We consider a homoge-

neous version of the equation de�ning C:

H(x; y; z) = y
2
z
r�2 + yz

r�1 + z
r
g(x=z)

(where r is the degree of g) and count the projective points [x; y; z] sat-

isfying H(x; y; z) = 0. Notice that H(x; y; 1) = h(x; y) for all x; y, so the

set of projective points [x; y; z] satisfying H(x; y; z) = 0 accounts for all

the points on the a�ne curve, once each. But the projective curve has

one additional point [0; 1; 0], called a point at in�nity. So if N denotes the

number of projective points on C, then we have N = jCj+ 1 and

X
x2F2n

(�1)tr
n

1
(g(x)) = N � 1� 2n: (2)

In his paper [66], Weil considered the numbers of points on general

absolutely irreducible projective curves. Let C be such a curve de�ned

over a �nite �eld Fq . For s � 1, let Ns denote the number of projective

points on C whose coordinates all lie in the extension Fqs , called Fqs -

rational points. Then the function

Z(u) = exp

 
1X
s=1

Nsu
s

s

!

is called the zeta function of C. This function contains all the information

about the numbers of projective points on C over extensions of Fq . Weil

was able to show that Z(u) is actually a rational function of u, in fact,

he showed:

Z(u) =
P (u)

(1� u)(1� qu)
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where P (u) is a degree 2g polynomial with integer coe�cients and con-

stant term 1. Here g, the genus of C, is a topological number associated

with the curve. Writing

P (u) =

2gY
i=1

(1� !iu)

Weil also showed that the 2g complex numbers !1; : : : ; !2g all satisfy

j!ij = q
1=2. This last fact, conjectured by Artin and proved by Weil, is

the Riemann hypothesis for curves over �nite �elds, so-called by analogy

with the Riemann hypothesis for the classical zeta function.

Now a straightforward calculation shows that

u
d logZ(u)

du
=

1X
s=1

Nsu
s
:

On the other hand,

u
d logZ(u)

du
= u

Z
0(u)

Z(u)
= u

0
@ 2gX

j=1

�!i
1� !iu

+
1

1� u
+

q

1� qu

1
A

=

1X
s=1

 
2gX
i=1

(!i)
s + 1 + q

s

!
u
s
:

By comparing the two power series, we get

Ns = q
s + 1�

2gX
i=1

(!i)
s

and so

jNs � q
s � 1j � 2gq1=2: (3)

We can now specialise to the projective curve C arising from our ex-

ponential sum. It turns out that the curve is always absolutely irreducible

when r is odd and has genus g = (r� 1)=2. Taking q = 2n and s = 1, the

bound (3) tells us that N = N1, the number of projective points on our

curve, satis�es jN � 2n � 1j � (r � 1)q1=2. Comparing with the identity

(2), we now obtain the bound of Result 1.

These results have been generalised considerably to the situation where

C is replaced by any non-singular algebraic variety V . Dwork [12] showed

that the analogous zeta function is rational while Deligne [8] �nally proved

Weil's conjectures concerning the analogue of the Riemann hypothesis for

such varieties. These deep results have also been exploited by coding the-

orists. We will summarise this work briey in the �nal section.
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3.2 Hybrid Exponential Sums

We loosely de�ne hybrid exponential sums to be exponential sums in

which the summand is a product of a multiplicative and an additive char-

acter. Perhaps the simplest hybrid sums are the Gaussian sums:

De�nition 1. Let � be an additive character and  a multiplicative char-

acter of F2n . Then the Gaussian sum G(�;  ) is de�ned by

G(�; ) =
X
x2F�

2n

�(x) (x):

The following result about Gaussian sums is basic; elementary proofs

can be found in [32, Theorem 5.11] and [22, Proposition 8.2.2].

Result 2 Let � be a non-trivial additive character and  a non-trivial

multiplicative character of F2n . Then

jG(�;  )j = 2n=2:

Why should this result be surprising? The sum is of size 2n=2, only

slightly bigger than the square root of the size of the domain over which

the sum is taken. Moreover, the sum has exactly this absolute value for

every pair of non-trivial characters.

Hybrid exponential sums with polynomial arguments have also been

considered; the following is a useful general purpose bound on such sums,

again due to Weil [66].

Result 3 Let  be a non-trivial multiplicative character of F2n of order

d with dj(2n � 1). Let � be a non-trivial additive character of F2n . Let

f(x) 2 F2n [x] have m distinct roots and g(x) 2 F2n [x] have degree r.

Suppose that gcd(d;deg f) = 1 and that r is odd. Then������
X

x2F�
2n

�(g(x)) (f(x))

������ � (m+ r � 1)2n=2:

Here, the technical conditions on the polynomials f and g are needed

to rule out various degenerate cases. They can be replaced by weaker

conditions | see [54, Theorem 2G, p.45]. We emphasise again that the

bound shows that the hybrid sums are much smaller than the size of the

�eld over which the sum is taken.
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4 Application: Minimum Distance of Dual BCH Codes

When t = 1, the code Ct is called the simplex code. The minimum Ham-

ming distance of this code is exceedingly simple to calculate. Recall that

the code is linear, so we need to �nd the minimum Hamming weight of a

non-zero codeword of C1. Now a non-zero codeword c has components of

the form trn1 (b�
i) where b 2 F

�
2n and 0 � i < 2n � 1. As i runs through

the range 0; 1; : : : ; 2n � 2, so �i runs over the whole of F�2n , the non-zero

elements of F2n .

Consider the exponential sum (1):

0 =
X
x2F2n

�b(x)

= 1 +
X

x2F�
2n

(�1)tr
n

1
(bx)

= 1 + jfx 2 F
�
2n : trn1 (bx) = 0gj � jfx 2 F

�
2n : trn1 (bx) = 1gj

= 1 + (2n � 1� wtH(c)) � wtH(c)

= 2n � 2wtH(c)

Here we have used the fact that the number of components in which c

equals 0 is just the code length less the Hamming weight of c. It follows

from our last equality that wtH(c) = 2m�1. So every non-zero codeword

of C1 has Hamming weight equal to 2m�1, and the minimum distance of

the code is also 2m�1.

We can apply the same technique, and the Weil bound, to bound the

minimum distance of the code Ct. Recall that a non-zero codeword cg of

Ct comes from a non-zero polynomial g(x) with zero constant term and of

odd degree at most 2t�1. Reversing the steps in the previous calculation,

we get:

2n � 2wtH(cg) =
X
x2F2n

(�1)tr
n

1
(g(x)) =

X
x2F2n

�1(g(x)) (4)

But this last sum is bounded in absolute value by (2t� 2)2n=2 according

to Result 1. We deduce that

2n�1 � (t� 1)2n=2 � wtH(cg) � 2n�1 + (t� 1)2n=2;

and the following theorem is now obvious:

Theorem 4. Suppose 1 � 2t� 1 � 2dn=2e +1. Then the minimum Ham-

ming distance of Ct is at least 2
n�1 � (t� 1)2n=2.

This bound can be improved in certain cases [38].
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5 Application: Sequence Sets with Low Periodic

Correlations

The correlation properties of sets of binary sequences are important in

Code-DivisionMultiple-Access (CDMA) spread-spectrum communications

as well as in ranging and synchronisation applications.

We begin in this section by de�ning the periodic correlation functions

for sequences and then stating a basic sequence design problem. This is

motivated by a simpli�ed description of how sequences with favourable

correlation properties are used in CDMA communications. Then we de-

�ne a class of sequences, the m-sequences, and look at their correlation

properties. Finally, we show how exponential sums can be used to bound

the correlations of some sets of sequences obtained from m-sequences and

the dual BCH codes.

5.1 Periodic Correlation Functions

Let u = u0; u1; u2; : : : and v = v0; v1; v2; : : : be two complex-valued se-

quences of period N (by which we mean ui+N = ui and vi+N = vi for all

i � 0). We de�ne the periodic cross-correlation of u and v at a relative

shift � , 0 � � < N , to be:

CC(u; v)(�) =

N�1X
i=0

xi � yi+� :

and call CC(u; v)(�) the periodic cross-correlation function of u and v.

This function is a measure of the similarity of the sequences u and v at

various shifts. We also de�ne the periodic auto-correlation of u at a shift

� , 0 � � < N , to be:

AC(u)(�) = CC(u; u)(�):

The periodic auto-correlation is a measure of the self-similarity of the

sequence u when compared to shifts of itself. The auto-correlation of u

at shift 0, AC(u)(0) =
PN�1

i=0 juij
2, is in many applications a measure

of the energy in the transmitted signal corresponding to sequence u. The

auto-correlations of u at non-zero shifts are usually called non-trivial auto-

correlations.

5.2 A Simpli�ed Model for CDMA Communications

We next discuss a simpli�ed model for CDMA communications. In our

model, we haveK users, all transmitting data simultaneously and without
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coordination or synchronisation on the same channel. The transmitted

signal is the sum of users' individual signals, and is corrupted by noise.

The users are transmitting to a single receiver, whose job it is to take the

received signal and process it to obtain individual user's data.

Each user is assigned a spreading code, which in our model is just a

complex-valued sequence of period N . User j is assigned the sequence

u
j = u

j
0; u

j
1; u

j
2; : : :

To send a data bit aj 2 f0; 1g, user j actually transmits the sequence

(�1)ajuj , i.e. the sequence of bits:

(�1)aju
j
0; (�1)

aju
j
1; (�1)

aju
j
2; : : :

In other words, he transmits a f+1;�1g-version of his data bit spread by

his sequence uj.

The received signal can be modelled by a sequence s = s0; s1; s2; : : :

where

si =

K�1X
j=0

(�1)aju
j
i+�j

:

Here �j is the delay of user j relative to the receiver. Because the users

are transmitting in an uncoordinated fashion, these delays are unknown

to the receiver. We have also assumed an ideal situation where there the

transmission channel is noiseless.

Now suppose the receiver wishes to estimate the data bit a` for user

`. The receiver calculates, for each � with 0 � � < N , the function

CC(s; u`)(�). Notice that:

CC(s; u`)(�) =

N�1X
i=0

0
@K�1X

j=0

(�1)aju
j
i+�j

1
A � u`i+�

=

K�1X
j=0

 
N�1X
i=0

((�1)aju
j
i+�j

� u`i+�

!

= (�1)a`AC(u`)(� � �l) +
X
j 6=`

(�1)ajCC(uj ; u`)(� � �j):

Now suppose that all the non-trivial autocorrelations and all the cross-

correlations of the sequences uj are small. In other words, we assume that
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for every ` and � 6= 0, AC(u`)(�) is small and that for every j; ` and every

� , CC(uj ; u`)(�) is small.

Then when � = �`, the expression above for CC(s; u`)(�) has a �rst

term (�1)a`AC(u`)(0) whose sign reveals a`, and whose relatively large

magnitude dominates the remaining correlation terms. When � 6= �` then

all the terms are small. Thus the receiver, after calculating CC(s; u`)(�)

for each � should focus on the largest resulting correlation value to esti-

mate the delay �` and use the sign of this value to estimate the data bit

a
`.

Clearly, the success of this approach to transmitting information cru-

cially depends on the term (�1)a`AC(u`)(0) not being swamped by the

other correlations. In other communications applications, for example, in

synchronisation, single sequences with small non-trivial auto-correlations

are called for. Thus we are motivated to consider the following basic se-

quence design problem:

For a set U containing K complex-valued sequences of period N ,

de�ne

ACmax(U) = max
u2U ; 1��<N

jAC(u)(�)j;

CCmax(U) = max
u6=v2U ; 0��<N

jCC(u; v)(�)j:

and

Cmax(U) = maxfACmax;CCmaxg:

Find sequence sets U which minimise ACmax(U) (when K = 1) or

Cmax(U) (when K > 1).

There are a number of lower bounds on Cmax(U) for sequence sets

consisting of K sequences of period N [30, 51, 59, 67] which can be used

to judge how good a particular design is.

For further details of how sequence sets with favourable correlation

properties can be exploited in communications applications, see [9, 13, 14,

53, 57, 60].

5.3 The m-sequences and Their Periodic Correlations

We introduce a class of sequences, called the m-sequences, which have

good auto-correlation properties.
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Let � be a primitive element of F2n . The sequence s = s0; s1; : : : with

si = tr
n
1 (��

i)

is called a binary m-sequence. Because � is an element of period 2n � 1

in F2n , the sequence s has period 2n�1. Notice that taking one period of

an m-sequence gives us a length 2n � 1 vector that is a codeword of the

simplex code. From the equi-distribution property of the trace map, we

see that s contains 2n�1 ones and 2n�1� 1 zeros in a period. We de�ne a

related f+1;�1g-valued sequence u of period 2n � 1 by ui = (�1)si .

Lemma 2. Let s be a binary m-sequence of period 2n � 1 and let u be

the corresponding complex-valued sequence. Then for � 6= 0 mod 2n � 1,

we have AC(u)(�) = �1.

Proof. We have:

AC(u)(�) =

2n�2X
i=0

(�1)si � (�1)si+�

=

2n�2X
i=0

(�1)tr
n
1 (�

i) � (�1)tr
n
1 (�

i+� )

=

2n�2X
i=0

(�1)tr
n
1 [(1+�

� )�i]

=
X
x2F�

2n

�(x) where  = 1 + �
�

= �1 +
X
x2F2n

�(x)

= �1

where we have again used (1) and the fact that  = 1 + �
� 6= 0 provided

� 6= 0 mod 2n � 1. �

Of course, for m-sequences to be useful in applications, we need to

have a convenient method for generating them. It turns out that an m-

sequence of period 2n � 1 satis�es a linear recurrence relation of degree

n and can be generated using a simple electronic device called a Linear

Feedback Shift Register. For more details, see [31, 32].

5.4 Sequence Sets from m-sequences

Since the auto-correlations of m-sequences are so neatly described, might

we not expect the cross-correlations of two di�erent m-sequences to be

13



calculable? In fact, we can always express such cross-correlations as a

Weil exponential sum, as we now show.

Let � be a second primitive element of F2n and de�ne a second m-

sequence t = t0; t1; : : : by ti = trn1 (�
i). Since � and � are both primitive,

we can write � = �
d for some d with gcd(d; 2n � 1) = 1. We also de�ne a

f+1;�1g-valued sequence v corresponding to t.

Now consider the cross-correlation:

CC(v; u)(�) =

2n�2X
i=0

(�1)tr
n
1 (�

di) � (�1)tr
n
1 (�

i+� )

=
X
x2F�

2n

(�1)tr
n
1 (ax+x

d) where a = �
�

= �1 +
X
x2F2n

(�1)tr
n
1 (ax+x

d)
:

More generally, if we consider the sequence set G consisting of u; v

and the term-by-term product of u with all the cyclic shifts of v, then

any cross- or auto-correlation of sequences in this set of size 2n+1 can be

expressed in a similar way as a Weil exponential sum involving functions

of the form g(x) = ax+ x
d.

In certain special cases, not only can the sums (and therefore Cmax(G))

be bounded, but the spectrum of values taken on by the correlations as

the pairs of sequences range over G can be calculated explicitly.

For example, when d = 2k + 1, n is odd and gcd(n; k) = 1, Gold [15,

16] showed that Cmax(G) = t(n) where t(n) = 1 + 2b(n+2)=2c, and that

the values taken on by non-trivial correlations of sequences in G, called a

Gold code, lie in the set f�1;�t(n); t(n)� 2g. It can also be shown that

the set G has optimal correlation properties, meeting a lower bound of

[59] on the correlations of binary sequence sets.

More general results of this type are summarised in [53, Theorem

1]. The analysis used to prove these correlation results is interesting in

itself, though not a direct application of exponential sums. One shows

that, by choosing a basis for F2n over F2 , the functions tr
n
1 (ax+ x

d) can

be described by quadratic forms in n variables over F2 for these special

d. Essentially, this is because the exponent d has a binary expansion

of weight 2. According to the theory of Dickson [34, Theorems 4 and

5, Chapter 15], the distribution of values taken on by such a form is

determined by an invariant called the rank of the form. This rank, and

therefore the spectrum of correlation values, depends on the parameters

14



k and n and can be explicitly calculated. We refer the reader to [35] for

a nice treatment of this topic.

Also of special note are very recent results [10, 11, 20] which together

resolve the long-standing Welch and Niho conjectures concerning the cor-

relation spectra in the cases d = 2m+3, n = 2m+1 and d = 22r+2r� 1,

4r + 1 = 0 mod n, respectively.

Among the many papers considering other families of sequence sets

with good correlation properties are [3, 17, 24, 40{43, 50, 56]. See also the

survey by Helleseth and Kumar in [47, Vol. II].

5.5 Sequence Sets from Dual BCH Codes

We will examine in more detail the correlations a family of sequences

obtained from the dual BCH codes. Let G�t denote the set of polynomials

G�t = fx+ g3x
3 + � � � + g2t�1x

2t�1 : gi 2 F2n g:

For each g 2 G, de�ne a period 2n � 1, binary sequence sg with terms

(sg)i where

(sg)i = trn1 (g(�
i)); i � 0

and let ug be the f+1;�1g-valued sequence corresponding to sg. We de�ne

two sequence sets St; Ut by:

St = fsg : g 2 G
�

t g; Ut = fug : g 2 G
�

t g:

We see that the sequences in Ut are f+1;�1g versions of the sequences in

St and that jStj = jUtj = 2n(t�1). Single periods of the sequences of St are

just codewords of the dual BCH code Ct that are all distinct under cyclic

shifting (this explains the restriction to polynomials with coe�cient of x

equal to 1 in the de�nition of G�t ). For example, when t = 1, the single

sequence in St is just an m-sequence coming from the simplex code.

Consider a pair of sequences ug and uh from Ut, where

g(x) = x+

t�1X
i=0

g2i+1x
2i+1

; h(x) = x+

t�1X
i=0

h2i+1x
2i+1

:

Then a straightforward calculation shows that

CC(ug; uh)(�) = �1 +
X
x2F2n

�1(e(x))
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where e(x) is the polynomial

(1 + �
� )x+

t�1X
i=0

(g2i+1 + �
(2i+1)�

h2i+1)x
2i+1

:

So the correlations of sequences in our set can be expressed as Weil ex-

ponential sums. Notice that if � 6= 0 mod 2n � 1, or if g(x) 6= h(x) and

� = 0 mod 2n � 1, then e(x) is a non-zero polynomial of odd degree and

lies in the set Gt. A direct application of Result 1 yields:

Theorem 5. The sequence set Ut contains 2n(t�1) sequences of period

2n � 1 and satis�es Cmax(Ut) � 1 + (t� 1)2(n+2)=2
.

There is a simple relationship between the correlations CC(ug; uh)(�) and

the Hamming weights of words of Ct, as we now show. The analysis above

shows that ce is in the code Ct. We already know from (4) that

2n � 2wtH(ce) = �1 +
X
x2F2n

�1(e(x))

so we have

CC(ug; uh)(�) = 2n � 2wtH(ce);

an identity linking the correlations of pairs of sequences in Ut with the

Hamming weight of a related codeword in Ct.

When t = 1, Theorem 5 gives us the correct bound on the non-trivial

periodic auto-correlations of m-sequences. When t = 2, the polynomials

in G�2 are of the form x+ g3x
3 and when n is odd, the sequence set U2 is

a subset of the Gold code with d = 3 (omitting just the sequence v from

the Gold code). The theorem gives a bound on Cmax which is slightly

weaker than Gold's bound. When n is even, we get a new sequence set

satisfying Cmax(U2) � t(n). This set is a special case of what are called

in [53] Gold-like codes.

6 Application: Aperiodic and Partial Correlations

Traditionally, it is the periodic auto- and cross-correlations of sequence

sets discussed above that have received most attention in the literature.

But aperiodic and partial correlations of sequences emerge as being at least

if not more important parameters to study when more realistic models of

communications systems are considered.
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As usual, u and v will denote complex-valued sequences of period N .

Aperiodic correlations are correlations taken over only �nite sequences:

suppose 0 � � < N ; Then the aperiodic cross-correlation between u and

v at a relative shift � , 0 � � < N is de�ned to be

ACC(u; v)(�) =

N���1X
i=0

ui � vi+� :

We can also de�ne the aperiodic auto-correlation function of sequence u

via:

AAC(u)(�) = ACC(u; u)(�):

Aperiodic correlations are important in, for example, CDMA systems

where consecutive periods of a spreading sequence are used to spread

di�erent data bits [53, Section V].

Partial correlations are correlations taken over only subsequences of

sequences: suppose 0 � j; �; ` < N . Then the partial cross-correlation

between u and v of periodN over the subsequence of length ` beginning at

position j and with relative shift � , denoted PCC(u; v)(j; k; `), is de�ned

by

PCC(u; v)(j; �; `) =

`�1X
i=0

uj+i � vj+i+� :

Similarly, we de�ne the partial auto-correlation by:

PAC(u)(j; �; `) = PCC(u; u)(j; �; `):

Notice that when ` = N , the partial correlations revert to the usual

periodic correlations. Partial correlations arise as natural parameters of

study in CDMA systems where many (possibly several hundred) data

bits are spread by each copy of a user's spreading sequence [48, 49, 55]

and in systems [9, 14], where a long sequence (typically an m{sequence)

is used for synchronisation, but where correlations are computed over only

a short subsequence of that sequence for faster acquisition.

So we are motivated to study the problem of constructing sequence

sets for which the maximum value of non-trivial aperiodic or partial cor-

relation is as small as possible. But these correlations are much less well

understood than periodic correlations. One reason for this is that in the

periodic case, we can use the algebraic structure of, for example, a �nite
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�eld to de�ne sequences and their periodic correlations are then calcu-

lated from certain sums taken over the whole �nite �eld. We have seen

an example of this in our calculation of the periodic auto-correlations of

m-sequences. In contrast, the corresponding aperiodic and partial corre-

lations for such sequences lead to sums over only part of the �nite �eld

and the exponential sum results are no longer directly applicable. Nev-

ertheless, as we show next, hybrid exponential sums can be employed

to obtain bounds for these new correlations. We concentrate on partial

correlations, though very similar methods can be used to handle aperi-

odic cases too. We make use of a technique called the P�olya-Vinogradov

method. For a survey of applications of this technique in number theory

and communications see [63] and for related results [29, 33, 52].

For i � 0 we de�ne �(j; `)i by:

�(j; `)i =

�
1 if j + kN � i < j + kN + `, for some k 2 Z,

0 otherwise.

Then the sequence �(j; `) has period N and we can write:

PCC(u; v)(j; �; `) =

N�1X
i=0

�(j; `)i � uivi+� : (5)

Next we bring the Discrete Fourier Transform (DFT) of the sequence

�(j; `) into play. Generally, if u = u0; u1; : : : is a complex-valued sequence

of period N and ! = exp(2�i=N) then the sequence

û = û0; û1; : : :

with terms

ûk =

N�1X
i=0

ui!
ik
; k � 0

is called the Discrete Fourier Transform (DFT) of u. It is a simple exercise

in manipulation of geometric series to show that u can be recovered from

û via the Inverse DFT:

ui =
1

N

N�1X
k=0

ûk!
�ik

; i � 0:

The sequence �(j; `) has a particularly nice DFT:
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Lemma 3. Let �(j; `) be de�ned as above. Then

\�(j; `)k =

(
!
jk � !

`k
�1

!k�1
if k 6= 0 mod N

` if k = 0 mod N

Replacing terms of �(j; `) in (5) by expressions involving the inverse

DFT, we get:

PCC(u; v)(j; �; `) =
1

N

N�1X
i=0

N�1X
k=0

\�(j; `)k!
�ik � uivi+�

and then reversing the order of summation:

PCC(u; v)(j; �; `) =
1

N

N�1X
k=0

\�(j; `)k

 
N�1X
i=0

uivi+� � !
�ik

!
:

Now consider a non-trivial partial auto-correlation of the f+1;�1g-

valued version of a period N = 2n � 1 m-sequence. We take u = v

and ui = (�1)tr
n
1 (�

i) for some primitive element � 2 F2n in the above

expression. We also take � 6= 0 mod 2n � 1 and de�ne  = 1+ �
� so that

 6= 0. Then we have, for k 6= 0,

N�1X
i=0

uiui+� � !
�ik =

N�1X
i=0

(�1)tr
n
1 (�

i)
!
�ik

=
X
x2F�

2n

�(x) �k(x) (substituting x = �
i)

= G(� ;  �k);

a Gaussian sum. Separating the contributions due to k = 0 and k 6= 0

and using\�(j; `)0 = ` we get:

PAC(u)(j; �; `) =
`

N
� AC(u)(�) +

1

N

N�1X
k=1

\�(j; `)k �G(� ;  �k)

showing that the partial auto-correlation of an m-sequence can be ex-

pressed as a sum involving Gaussian sums and a periodic auto-correlation

term. To get a bound on jPAC(u)(j; �; `)j, we use the facts that AC(u)(�) =

�1 and jG(� ;  �k)j = 2n=2 with the triangle inequality. We obtain:

jPAC(u)(j; �; `)j �
`

N
+

2n=2

N
�

N�1X
k=1

���\�(j; `)k��� (6)
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and we are now left with the problem of estimating a sum involving terms

of the DFT of �(j; `). A bound of N logN for this sum in the case j = 0

is reported by Vinogradov [65]; improvements in the constant have been

obtained since by Sarwate [52]. Since j\�(j; `)kj = j\�(0; `)kj, Vinogardov's

bound applies to the more general case of j 6= 0 too. Combining Vino-

gradov's bound with inequality (6) we obtain:

Theorem 6. Let u be the f+1;�1g-valued version of an m-sequence of

period N = 2n � 1. Then for any j and any � 6= 0, we have

jPAC(u)(j; �; `)j � 1 + (N + 1)1=2 logN:

An almost identical method can be used to bound the partial and

aperiodic correlations of the sequence set Ut. The only di�erences are that

the Gauss sum is replaced by a hybrid exponential sum with polynomial

argument, we use Result 3 rather than Result 2 to bound this sum, and

we use Theorem 5 to bound the periodic cross-correlations of sequences

from Ut. See also [45] for applications of the P�olya-Vinogradov method to

other sequence families and for a survey of other approaches to working

with the partial correlations of sequence sets.

In this Section, we started with sequences with favourable periodic

correlation properties and then looked at their partial correlations. But

computational evidence [45] suggests that the bounds we can obtain using

the P�olya-Vinogradov method are rarely tight. Is it possible to design

sequence families with better partial correlations from scratch?

7 Application: The Power Control Problem in OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a communi-

cations technique that has recently seen rising popularity in wireless

and wire-line communications [1, 2, 5, 6]. OFDM-based solutions have im-

portant advantages over more traditional data transmission approaches:

OFDM has greater inherent resistance to a certain kind of noise called

multi-path interference that plagues wireless communications, while im-

plementations of OFDM systems can be realised using standard digital

signal processing techniques and can avoid the use of an expensive channel

equalisation process.

In an OFDM system, the transmitted signal is a sum of phase-shifted

sinusoidal carriers, the phase shifts carrying the data. The data itself is

coded because of channel noise. Given a length N binary code C and a
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codeword c = (c0; c1; : : : ; cN�1) 2 C, the transmitted signal at time t for

the codeword c can be modelled as the real part of the sum

N�1X
j=0

(�1)cje(2�i)jt:

If we de�ne a degree N � 1 polynomial c(z) by

c(z) = (�1)c0 + (�1)c1z + � � � + (�1)cN�1zN�1
;

then the OFDM signal at time t is then just the real part of c(e2�it)

so that the transmitted signal is related to the values of polynomials on

jzj = 1, the unit circle in the complex plane.

The envelope power of the OFDM signal at time t is de�ned to be

jc(e2�it)j2. The mean value of this function as t ranges over [0; 1] is equal

to N (this can be shown simply by computing the integral of jc(z)j2 =

c(z)�c(1=z) around the unit circle). So we de�ne the peak-to-mean envelope

power ratio or PMEPR of the OFDM signal to be:

PMEPR(c) =
1

N
max
jzj=1

jc(z)j2

and the PMEPR of the code C to be:

PMEPR(C) =
1

N
max
c2C

max
jzj=1

jc(z)j2:

The number PMEPR(C) is a measure of the dynamic range of the power

in the OFDM signals that are obtained from the code C. It is desirable to

work with codes C which have `small' values of PMEPR, acutely so for low-

cost wireless applications. This is because a low value of PMEPR leads

to signals that can be ampli�ed by cheap electronic components without

too much distortion being introduced, and which make e�cient use of

regulatory limits that are commonly imposed on the power of wireless

signals. Notice that if c = (0; 0; : : : ; 0), then PMEPR(c) = N . In fact this

is the largest value of PMEPR that can occur, so by `small' in this context

we mean substantially less than N . We can summarise the OFDM power

control problem as:

Find binary codes C which simultaneously are good error correct-

ing codes and have PMEPR(C) small.
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For a summary of previous work on this problem and references to the

engineering literature, see [46]. Here we will show how hybrid exponential

sums (and a little analysis) can be used to obtain bounds on the PMEPRs

of the non-zero words of dual BCH codes. A similar analysis for many

other code families can be found in [46]. We also recommend [7, 44] for a

completely di�erent approach to the power control problem.

Consider then a general non-zero codeword cg of the length N = 2n�1

dual BCH code Ct. We have

(cg)j = trn1 (g(�
j)); 0 � j < N;

where g is a polynomial of degree 2t � 1 over F2n and � is primitive in

F2n . So the polynomial cg(z) corresponding to the codeword cg is

cg(z) =

N�1X
j=0

(�1)tr
n
1 (g(�

j ))
z
j

and we want to obtain a bound for max
jzj=1 jcg(z)j

2. Notice that at z =

e
(2�i)`=N , an N -th root of unity, we have

cg(e
(2�i)`=N ) =

N�1X
j=0

(�1)tr
n
1 (g(�

j ))
e
(2�i)j`=N =

X
x2F2n

�1(g(x)) `(x)

| a hybrid exponential sum with polynomial argument. When ` 6= 0, the

sum satis�es the conditions of Result 3 with f(x) = x and m = 1. So we

can immediately say:

jcg(e
(2�i)`=N )j � (2t� 1)2n=2 for ` 6= 0:

On the other hand, for ` = 0, we get:

jcg(1)j =

������
N�1X
j=0

(�1)tr
n
1 (g(�

j ))

������ =
�������1 +

X
x2F2n

�1(g(x))

������ � 1 + (2t� 2)2m=2

according to Result 1. Thus we see that, at the N -th roots of unity, the

polynomial cg(z) has absolute value no greater than (2t� 1)2n=2.

Now we convert this bound holding at the N -th roots of unity to a

bound that is valid on the entire unit circle. We make use of the following

lemma, obtained by bounding the coe�cients that occur in a Lagrange

interpolation of a degree N � 1 polynomial from the N -th roots of unity

to jzj = 1:
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Lemma 4. [46] Let c(z) be a degree N � 1 polynomial and write  =

e
(2�i)=N

. Then

max
jzj=1

jc(z)j �

�
2

�
log (2N) + 2

�
� max
0�j<N

jc(j)j:

The lemma shows that the interpolation can be achieved at the expense

of a factor of O(logN). Combining the lemma with our exponential sum

estimate, we obtain:

Theorem 7. Let C�t denote the code obtained by removing the all-zero

word from the length N = 2n � 1 dual BCH code Ct. Then

PMEPR(C�t ) �
N + 1

N
� (2t� 1)2 �

�
2

�
log (2N) + 2

�2

:

Thus the theorem shows that the PMEPR of the dual BCH codes is

O((logN)2) for �xed t and large N , clearly much better than the worst

case PMEPR value of N . Notice however that for �xed t, we have shown

the dual BCH codes to have normalised envelope power at most (2t� 1)2

at t = `=N , 0 � ` < N . The factor of (logN)2 in the theorem comes

from our use of Lagrange interpolation. This indicates that there is room

for improvement in our bound on PMEPR(C�t ). Indeed a result of [46]

shows that there do exist codes which are asymptotically good (i.e. their

normalised minimum distances and rates are both bounded away from

zero as N ! 1) and which have PMEPR growing only as O(logN).

Unfortunately, the proof is non-constructive.

For a collection of open problems related to the power control problem,

see the closing comments of [46].

8 Further Applications and Literature

In this section, we provide brief notes and pointers to some of the lit-

erature on exponential sums and applications that we have not touched

upon in earlier sections.

Kloosterman sums [32, Chapter 5] in characteristic 2 are exponential

sums of the form X
x2F2n

�(ax+
b

x
); a; b 2 F2n :

Their evaluation is intimately connected with counting points on elliptic

curves. If a; b are not both zero, the sum can be bounded by 2 � 2n=2. In
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much the same way as for the dual BCH codes, we can de�ne a Kloost-

erman code to be the set of words ca;b where

(ca;b)i = tr
n

1
(a�

i
+

b

�i
); 0 � i < 2

n � 1; a; b 2 F2n :

It is easy to mimic our previous arguments to show that the Kloosterman

code has minimum distance at least 2
n�1 � 2

n=2
. In fact the complete

distribution of weights occuring in this code has been calculated [28].

We can also de�ne sequence sets with favourable periodic correlations

using the Kloosterman code. The sequences are term-by-term sums of an

m-sequence corresponding to a primitive element � and the shifts of its

reciprocal m-sequence which comes from the element �
�1
.

Kumar and Moreno [27] have used Deligne's results bounding the

numbers of points on algebraic varieties to construct sequence families

with good correlations. Their sequences have terms that are powers of a

p-th root of unity (rather than the f+1;�1g-valued sequences we have

studied here). They have also used Deligne's results to bound the mini-

mum distances of certain binary codes [37]. These two papers contain a

wealth of other references to previous work on codes and sequence de-

signs. The Carlitz-Uchiyama/Weil bound has also been extended using

Deligne's theorem and applied to coding theory [39].

Exponential sums have been applied to the study of the covering radii

of BCH codes [19, 62] and Goppa codes [21, Section 12 and 13].

Exponential sums over Galois rings (rather than Galois �elds) have

recently received a lot of attention, beginning with the inuential paper

[18]. There are analogues of the Carlitz-Uchiyama/Weil bound [25] and

of Result 3 for hybrid exponential sums [58]. These bounds have been

used to construct quaternary codes with large minimum distances and

to design quaternary (more generally p
`
-ary) sequence families with low

periodic and aperiodic correlations. See also [26, 64] and the references

therein for related sequence designs. The hybrid sum results of [58] were

used in [46] to bound the PMEPR properties of some quaternary codes.

As we have already noted, a complete survey of the whole area of

exponential sums and their applications can be found in [21]. We hope

this paper serves as a useful introduction to what is a fascinating and

thriving area.
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