
The Making of Linux / ia64

Stephane Eranian, David Mosberger
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto
HPL-1999-100
August, 1999

E-mail: {eranian,davidm}@hpl.hp.com

Linux, IA-64,
Merced, kernel,
porting

The IA-64 architecture, co-developed by HP and Intel, is going to
reach market mid-2000 with Merced as its first implementation.
Major industry players have endorsed this new architecture and
technical details are gradually becoming publicly available.
However, the complete architecture will not be fully disclosed until
machines become available. To provide for early availability of
Linux on IA-64, in February 1998 HP Labs began a project to bring
Linux to this new architecture with the eventual goal of releasing
it to the open source community. This report gives an overview of
the IA-64 architecture and describes our effort so far.

 Copyright Hewlett-Packard Company 1997
Internal Accession Date Only

The making of Linux/ia64

Stéphane Eranian David Mosberger

Hewlett-Packard Laboratories
1501, Page Mill Road Palo Alto CA 94303 USA

feranian,davidmg@hpl.hp.com

Abstract

The IA-64 architecture, co-developed by HP and
Intel, is going to reach market mid-2000 with
Merced as its first implementation. Major indus-
try players have endorsed this new architecture and
technical details are gradually becoming publicly
available. However, the complete architecture will
not be fully disclosed until machines become avail-
able. To provide for early availability of Linux on
IA-64, in February 1998 HP Labs began a project to
bring Linux to this new architecture with the even-
tual goal of releasing it to the open source commu-
nity. This paper gives an overview of the IA-64 ar-
chitecture and describes our effort so far.

1 Introduction

At HP Labs, we have been working on porting
Linux to the IA-64 architecture since February
1998, an activity which is now part of a broader in-
dustry effort. The initial goal of our project was to
produce a self hosting system that would be avail-
able when the first IA-64-based products would
appear. Given the progress made so far, we are
now looking into producing a fully optimized, com-
plete Linux distribution with most standard pack-
ages available. We intend to release the code to
the open source community for eventual integration
into the official code base when machines become
generally available sometime next year.

Bringing Linux to a new architecture is more than
just porting the kernel. To become really usable a
system must include a development environment,
i.e., a complete tool chain, a kernel, the C and math
libraries and hundreds of tools and commands.

This paper gives an overview of IA-64 architecture
with code samples to illustrate some key features.
We describe how we brought the various pieces
together by first producing a complete tool chain
and creating a comfortable simulation environment,
then working on the kernel and the C library. We
finish by describing how we’ve setup an IA-64 na-
tive user environment (NUE) in which it is easy to
port and execute real world applications.

2 IA-64 overview

The first implementation of the HP/Intel co-
designed IA-64 architecture, the Merced CPU,
will reach market sometime next year and will
be quickly followed by the faster McKinley[1] in
2001, Madison and Deerfield in 2002. This new ar-
chitecture builds upon lessons learned from RISC,
CISC and VLIW processors. It introduces a new
computing paradigm called EPIC (Explicitly Paral-
lel Instruction-set Computing). The basic idea is
to expose instruction level parallelism (ILP) to the
compiler and use faster and relatively simple hard-
ware. Compared to architectures with out-of-order
execution capabilities, IA-64 provides a more flex-
ible approach because the compiler has access to
the entire program source code and can use more

resources (space, time) to make the right decisions
in terms of optimization opportunities.

instruction 2 instruction 1 instruction 0 template

127 0128-bit bundle

41 41 541

Figure 1: IA-64 Instruction Format

Like VLIW processors, IA-64 groups instructions
into bundles as shown in Figure 1. Each bundle
contains three instruction slots of 41 bits each and
a 5-bit template field that encodes which execution
unit types are needed by the instructions (M-unit for
memory access, I-unit for integer operations, F-unit
for floating point or B-unit for branching).

In contrast with VLIW, IA-64 allows concurrent ex-
ecution of multiple bundles. Groups of instructions
that can be executed in parallel are terminated by
a stop bit. This stop bit is encoded in the tem-
plate field of every bundle. It also helps portabil-
ity across CPUs of the same family by not relying
on implementation specific information which has
always been a barrier to adoption of VLIW proces-
sors.

A total of 128 integers registers of 65 bits each
and 128 floating point registers of 82 bits each are
available. Integer registers between 32 and 127
are called “stacked registers” and are used with the
stack engine during function calls. The architecture
uses a simple load/store model like RISC and intro-
duces some new features along with the more tra-
ditional capabilities expected from a modern CPU,
such as multimedia instructions.

The following C code:

r2 = r1 == 0 ? r4+r5: r3+r6+1;

gets translated into:

cmp.eq p1,p2=0,r1;;
(p1) add r2=r4,r5
(p2) add r2=r3,r6,1

Figure 2: example of predication

The concept of predication is implemented using 64

predicate registers of 1 bit each (true or false).
Most instructions can be predicated; if the pred-
icate evaluates tofalse , the instruction is sim-
ply not executed. This mechanism can avoid costly
branches as is demonstrated in Figure 2 with a clas-
sic if-then-else statement.

The compare instruction will setp1 to true if r1
equals zero. Predicate registerp2 will be set to the
complement, i.e.,p2=!p1 . We need a stop bit (de-
noted by;;) after the compare instruction to ensure
that the processor waits until the predicate registers
are set before proceeding onto the additions. Ifp1
is true then the first addition will be executed and
the second, guarded byp2 , will be ignored without
requiring any branches. Ifp1 is false then exactly
the opposite will happen.

Another feature of IA-64 is control and data specu-
lations, which provide ways to safely move loads
off the critical execution path without having to
worry about exceptions, due to aNULL pointer
dereference for example. A compiler can take ad-
vantage of this mechanism to hide memory access
latency. Speculation is available for both integer
and floating point loads.

Control speculation is the execution of an operation
before the branch which guards it. Data speculation
is the execution of a load instruction before a poten-
tially conflicting store (aliased address) and is also
called advanced load.

(p1) br.cond label
ld8 r1=[r5];;
add r2=r1,r3

Can be transformed into:

ld8.s r1=[r5]
// do something else

(p1) br.cond label
chk.s r1,recovery_label
add r2=r1,r3

Figure 3: Example of control speculation

The safety of the operation is ensured by the fact
that failed speculative loads don’t generate faults
but instead mark their target register as invalid us-
ing a NaT (Not a Thing) bit, i.e., the 65th bit of each

2

integer register. In the case of floating point regis-
ters, a special value called NatVal is used instead of
an extra bit. Several check instructions can be used
to determine whether the load succeeded or not. In
case of failure recovery can be accomplished either
by executing a normal load or by jumping to recov-
ery code. Figure 3 shows how a load can, specu-
latively, be moved before the branch instruction to
avoid the processor stall. If the load (ld8.s) fails
then the NaT bit will be set onr1 and the check
(chk.s) will jump to the recovery code (not shown
in the figure).

// do something else
st8 [r16]=r0
ld8 r17=[r18];;
add r19=r8,r17;;
st8 [r20]=r19

Can be transformed into:

ld8.a r17=[r18];;
// do something else
st8 [r16]=r0
ld8.c.clr r17=[r18]
add r19=8,r17;;
st8 [r20]=r19

Figure 4: Example of data speculation

Advanced loads rely on an internal table called
ALAT (Advanced Load Address Table) which is
used to check whether or not the target register of
the advanced load contains stale information with
regards to stores which might have happened after
it. We give an example in Figure 4. At the top, the
load inr17 might stall the processor and delay the
addition. Moving the load earlier in the execution
stream would help mask the latency, however we
don’t know whether the store atr16 might conflict
with the load, so the move is risky but if we use
an advanced load (ld8.a), then we could rewrite
the code as shown with no problem. At the origi-
nal location of the load, we now have a load check
instruction (ld8.c.clr). This instruction will
check in the ALAT if the entry corresponding to
r17 is still marked as valid and, if so, will move on
to the addition immediately. Otherwise there was
a conflict and the normal load will be re-executed.
Theclr extension simply indicates to remove the
entry from ALAT. It should be noted that IA-64 also

has the ability to combine data and control specula-
tion with speculative advanced loads.

outputs

r32

Inputs locals

Inputs

r32

r32 r52r37 r47

outputs

dirty

dirty

5 10

r37

4

r41

br.call function B

B: alloc r32=ar.pfs,5,4,0,0

function A

current stack frame

current stack frame

r37

5

5

5

locals

Figure 5: RSE behavior on function call

To avoid unnecessary register spills and fills on
function calls, IA-64 provides a dynamic renaming
scheme on stacked registers. The idea is to pro-
vide a “fresh” set of registers each time a function
is entered. This is depicted in Figure 5:rXX shows
the logical register numbers whereas the bars rep-
resent the physical register file. Registersr47-
r51 are holding parameters to pass to function
B. The branch instruction (br.call) causes the
stack frame to “virtually” move forward by renam-
ing r47 to r32 . Thealloc instruction simply re-
sizes the current frame to accommodate local vari-
ables.

Registers outside of the current stack frame are con-
sidered “dirty” and if no more physical registers
are available to satisfy thealloc instruction, the
register stack engine (RSE) will spill the “dirties”
onto a designated backing store location in mem-
ory. When returning from a function call, the saved
registers are automatically restored from memory.
This means that you can have at least 96 automat-
ically preserved registers on the active execution
path without incurring memory spills or fills.

The SPARC [4] architecture also provides registers
windows. But there, the windows are fixed in size
which, in practice, tends to be either too small or
too big. In contrast, IA-64’s dynamic approach al-
lows the window to be exactly as big as necessary.

Finally, IA-64 provides a powerful register rotation
mechanism to do software pipelining and unroll

3

loops without incurring code expansion. Integer,
floating point and predicate registers can be rotated
during a loop creating the illusion of a pipeline.
We’ll give an example of this feature in Section 5.

More details about the disclosed capabilities of the
architecture can be found on HP’s IA-64 web site
at:

http://www.hp.com/go/ia64/

The Application Instruction Set Architecture
Guide [2] has been published and is available from
HP’s and Intel’s web sites. Several tutorials on the
architecture can also be found on the Internet [3, 5].

3 The tool chain

This is the first time that Linux is being ported to a
new mainstream architecture before the underlying
hardware is available. This means not only that we
have to rely on simulation for most of the project
but also that no development tools existed initially.

Linux heavily relies on using the GNU C language
for both the kernel as well as for user level code,
like the C library. Since a GNU C compiler did not
exist for IA-64, we decided to work on it first. The
obvious candidate wasegcs , a very active branch
off the gcc development tree1. Creating an optimiz-
ing compiler for EPIC is not a trivial task and would
have required changes to theegcs front-end. Such
an effort was out of the scope of this project. In-
stead, we focused our attention on producing a
functional back-end which generates correct code
but doesn’t try to use EPIC features like speculation
or register rotation, for instance. Cygnus maintains
the GNU C compiler and has officially announced
last April that they will produce an optimized ver-
sion of the GNUPro toolkit for IA-642. As com-

1The egcs team is now reunited with the gcc team, see
http://egcs.cygnus.com

2See http://www.cygnus.com/news/ia-
64.html

pilers improve, we expect to simply recompile our
code to get better performance.

A compiler by itself is not enough; the GNU as-
sembler, GNU linker, binary object manipulation
library (BFD) and tools likenm, objdump and
size are also required. To this end, we added
IA-64 support to the GNUbinutils package.
The tool chain uses the standard LP64 data model
(Longs and Pointers are 64 bits) and and the bi-
nary format is the official ELF64 as defined for IA-
64. By June 1998, the tool chain was able to pass
thegcc test suite and the"Hello World!" pro-
gram was generated correctly.

4 The simulator

One of the challenges of the project was that no
hardware would be available for much of the project
and that we would rely on simulation for kernel
bring up. While this may sound scary at first, it
turned out to be quite a nice experience as we’ll de-
scribe later on.

Our execution environment uses a simulator, devel-
oped by HP, which emulates the full instruction set
of the CPU but not all of the platform, e.g., no PCI
chips or firmware. It supports two modes of execu-
tion: user or system as shown in Figure 6.

vi bashls

vi bashls

x86 Hardware x86 Hardware

IA-64 simulator
(kernel mode)

Linux/ia64

Linux/x86

IA-64 simulator
(user mode)

Linux/x86

IA-64 binaryIA-32 binary

Figure 6: Execution modes

In user mode only the non privileged instructions
are available allowing user applications to run di-
rectly on top of the simulator. The IA-64 emula-
tion stops at the system call boundary and execution

4

struct {
long long tv_sec;
long long tv_usec;

} ia64_tv;

struct timeval {/* from <sys/time.h> */
long tv_sec;
long tv_usec;

} ia32_tv;

case __NR_gettimeofday:
/* sanity check on args (arg0,arg1) */
...
r = gettimeofday (&ia32_tv, &tzbuf);
if (r != -1) {

ia64_tv.tv_sec = ia32_tv.tv_sec;
ia64_tv.tv_usec = ia32_tv.tv_usec;
sim_memcpy(arg0,&ia64_tv,sizeof(ia64_tv));
if (arg1)

sim_memcpy(arg1,&tzbuf,sizeof(tzbuf));
}
...

Figure 7: Example system call emulation

traps into the simulator. At that point, system calls
are emulated using the host OS. We have ported this
simulator from HP-UX to Linux. Running on top
Linux greatly simplifies system call emulation be-
cause most calls map more or less directly to their
x86 equivalent. Generally, all that is required is 64
to 32 bits parameter translation.

Figure 7 shows the example of how we emulate
gettimeofday(2) . The sizes of thetimeval
structures differ between IA-32 and IA-64, there-
fore we first execute the IA-32 system call and,
if the operation succeeds, we convert the structure
back to 64-bit quantities and copy the result back
to the arguments which are both addresses in this
case.

In system mode, the full instruction set is available,
virtual memory and interrupts are simulated, so OS
kernel bring up is possible. Access to I/O devices
is achieved by having special device drivers in the
kernel which trap into the simulator to get service
from the host OS. We give a detailed example in the
next section.

Once the tool chain and the simulator were in place,
the whole development environment was running
on Linux/x86 and work on the kernel could really

begin.

5 The kernel

We started working on the kernel in late October
1998. Our goals for the kernel were as follows:

� deliver a straight port and minimize the
changes to the machine independent part of the
code

� follow very closely the development of the of-
ficial kernel as this would make the final inte-
gration phase much smoother.

We have kept our modifications very localized by
creating new files in two machine dependent direc-
tories, namelyarch/ia64 andinclude/asm-
ia64 , which made it quite easy to follow the latest
official kernel developments. In October 1998, we
started with version2.1.126 and we are currently
using the2.3.X code base.

5.1 Kernel attributes

The kernel is running in native 64-bit mode and
uses little-endian byte ordering for obvious compat-
ibility reasons with IA-32. The current page size
is 8KB. Applications see a 64-bit address space,
though the current kernel implements only 43-bit
(8TB) at this point. Should applications ever grow
beyond this limit, the kernel could be changed to
support a larger address space. For example, by
simply doubling the current page size from 8KB to
16KB, the address space would increase to 47-bit
(128TB) with no modifications to existing applica-
tions.

5.2 Device drivers

In order to get access to I/O, we developed a se-
ries of interrupt driven device drivers which trap

5

into the simulator to get service from the host
OS. We built a SCSI driver (simscsi), a serial
driver (simserial) and later an Ethernet driver
(simeth). The SCSI driver is very simple and
calls the simulator for read/write requests using
[offset,size] pairs. The disk is emulated us-
ing a file on the host as a disk image. Using the
loop device, we can easily transfer files back and
forth between the host and target file systems. This
driver also allows us to exercise the complete SCSI
code.

The serial console driver traps into the simulator for
get/put character and anxterm is used as the front-
end.

Linux/x86

IA-64 simulator

Linux/ia64
using IP_IA64

using IP_IA32

simeth

IA-64 interrupt

ia64_handle_irq() simeth_rx()

recv(sockfd,buf,1514,0)

BPF: EtherBcast || IP==IP_IA64

other apps

SIGIO

packet in

Figure 8: Reception of network packets

The Ethernet driver manages raw Ethernet frames
which are obtained, via the simulator, from the real
interface on the host using raw sockets. The inter-
face is put in promiscuous mode and using a Berke-
ley Packet Filter (BPF), we can allocate a specific
IP address to the simulated kernel. The standard
network commands like,ifconfig or route ,
are used by the Linux/ia64 kernel to configure its
“own” interface.

Figure 8 shows how a packet is received. The
simulator opens a raw socket and puts the inter-
face into promiscuous mode, very much liketcp-
dump, then attaches a packet filter program to it.
This filter tells the Linux/x86 kernel to deliver all
packets which are either Ethernet broadcasts (like
ARP requests) or IP packets with destination ad-
dress set to the Linux/ia64 kernel. Once such a
packet arrives, aSIGIO signal is sent to the sim-
ulator which then posts an IA-64 interrupt. This
causes the IA-64 kernel to execute the Ethernet re-
ceive code (simeth rx()) which calls back to

the simulator to read the Ethernet frame and even-
tually pushes the packet up the network stack.

5.3 Development time line

We took the incremental approach of bringing up
subsystems one by one. We began in late Oc-
tober with an almost completely commented out
start kernel() function. At that point we had
only the kernel banner working. Since then, we
have been enabling components like VM and inter-
rupts which allowed us to get through the famous
BogoMips loop. Shortly after we added context
switches and by Christmas we were able to create
and run kernel only threads.

Then we added support for system calls and we
“landed” in user mode in January and were able
to execute the"Hello world!" program pro-
duced a few months ago. At that time we did not
have a complete C library, therefore it was impossi-
ble to recompile standard applications and run them
on the kernel. Instead, we had a�libc, i.e., an ex-
tremely small subset of a classic C library which
included some string operations, a basic STDIO, a
simple malloc and most of the system call stubs.
We used it extensively to recreate a comfortable test
environment by writing simple test programs like a
tiny shell (tsh), ls , cat , mount , halt , etc.

In early March, the network stack was up and run-
ning. The system had its own IP address and you
could ping in and out as well as login from any re-
mote machine. Here again, we rewrote simple ver-
sions ofping , rlogin , inetd andifconfig .
By Easter, we had signal support and a few weeks
later ptrace was in place (including system call
tracing, single stepping and peek/poke) and it be-
came possible to use thestrace program for de-
bugging purposes.

When we look back at the time line, we think that
such rapid progress can be attributed to two major
factors. The first one comes from the Linux kernel
itself and the fact that the same code base has been
ported to many other architectures including 64-bit

6

CPUs like Alpha or Sparc64. The code you have
to produce for a new architecture is well identified
in the source tree and a clean API exists between
machine-independent and machine-dependent parts
of the kernel. This is very helpful to get started as
you know where to focus your attention and you can
also learn from the previous ports. Another reason
comes from the fact that we’ve been using simula-
tion and not real hardware. Even though simula-
tion is slow, it does not really matter when you try
to bring up a kernel, accuracy is much more impor-
tant. The ability to do source level debugging on the
kernel, just like you would do with user programs,
turned out to be of great help as well.

...
init p6 to true
init r33,r35
add r17=8,r16

1:
ld8.s r32=[r16],16
ld8.s r34=[r17],16
czx1.r r14=r33
czx1.r r15=r35
;;
cmp.eq.and p6,p0=8,r14 // r14==8?
cmp.eq.and p6,p0=8,r15 // r15==8?

(p6) br.wtop.dptk.few 1b
...

Figure 9: core loop of strlenuser()

5.4 Code examples

5.4.1 strlen user()

As an example of how to combine control specu-
lation with register rotation inside the kernel, we
show, in Figure 9, an actual code sequence ex-
tracted fromstrlen user.S usually found in
arch/ia64/lib . This function computes the
length of a string passed from a user program. It
differs from the regularstrlen function by the
fact that is has to check for memory access viola-
tions. Normally, this function uses an optimistic ex-
ception scheme to avoid systematic bounds check-
ing. When a fault is detected, execution goes
through an exception table and branches back
slightly later in the code with some registers hold-
ing special error codes. This example demonstrates

how one can use control speculation to achieve ex-
actly the same goal but more efficiently.

We use two “pipelines” of depth 2,[r32-r33]
and [r34-r35] . We load 8 characters at a time
(ld8.s) speculatively which is handy to safely
look forward in the string. Each loop iteration loads
16 bytes taking advantage of the memory band-
width (2 memory operations allowed per bundle)
and looks for the zero byte in the previous 16 bytes.

Registersr16 andr17 are initialized 8 bytes apart
and used as base pointers on the string. They are
automatically incremented (by16) by the load. The
czx instruction returns the position of the zero byte
or 8 if not found.

Data is inserted inr32 andr34 (stage 0) and gets
“rotated” each time we go around the loop, it is
eventually consumed when it reachesr34 andr35
(stage 1) at the next iteration. In reality registers are
simply renamed (no data copied) by group of eight
([r32-r39]). The illusion of smaller pipelines is
created by always entering data at fixed “stages”,
like we do for r34 . In case we go too far ahead
and hit a page that’s not mapped, when the register
gets used in stage 1, its NaT bit will be set and the
parallel compare instructions will result inp6 set
to 0 (p0 is ignored) forcing the execution out of the
loop.

...
// 16bytes/iteration
mov ar.lc=PAGE_SIZE/16-1
mov ar.ec=2
mov pr=0xfffffffffffd0000
add src2=8,src1
add tgt2=8,tgt1;;

1:
(p16) ld8 r32=[src1],16
(p16) ld8 r34=[src2],16
(p17) st8 [tgt1]=r33,16
(p17) st8 [tgt2]=r35,16

br.ctop.dptk.few 1b
...

Figure 10: core loop of copypage()

7

5.4.2 copypage()

The next example is the copy page()
function usually found in
arch/ia64/lib/copy page.S . It is a
nice example because the loop is fairly simple and
you don’t have to worry about alignment problems.
Here again we use register rotation to hide memory
access latency. This code example shows how
a loop can be unrolled without incurring code
expansion.

Here again, we copy 16 bytes per iteration to max-
imize bandwidth usage. A simple way to depict
what’s going on it to take the analogy of two sep-
arate execution streams each one copying 8 bytes
and loading the next 8 bytes at each iteration. the
srcX and tgtX symbolic names are used to de-
scribe the source and destination base registers for
load and copy in each stream. They are initial-
ized 8 bytes apart to avoid collision and get auto-
matically post-incremented by the loads and stores.
The loop will be executedar.lc +ar.ec times.
Thebr.ctop loop is similar to a repeat/until loop,
therefore we must set the loop counterar.lc to
n� 1 wheren is the number of iterations required.

We also use two pipelines of depth 2 with[r32-
r33] and [r34-r35] just like the previous ex-
ample. This time however, you can notice that all
the instructions in the body of the loop are com-
pletely independent of each other, thus no stop bit
is required leading to a 1 cycle per iteration loop.

Now the tricky part concerns the initialization and
drainage of the pipelines and that’s where the pred-
icate registersp16 and p17 and the epilogue
counter (ar.ec) come in handy. The predicate
registers[p16-p62] rotate similarly to the other
registers but predicatep63 is special. Its value de-
pends on the relative values of bothar.lc and
ar.ec . For this type of loop (br.ctop , i.e., a
counted loop), as long asar.lc is greater than
zero, its values stays at 1 (true). The circular
rotation causesp16 to inherit whatever value was
in p63 at the previous iteration. Whenar.lc
reaches 0,p63 is set to zero and rotation continues.

With this mechanism, it becomes easy to embed the
initialization (prologue) and drainage (epilogue) of
the pipeline inside the loop by simply setting the
predicate registers before entering the loop body.

Given the depth of our pipelines, we want the first
iteration of the loop to execute only the load part,
then enable both loads and stores and terminates by
only storing what’s left in the two pipelines. The
mov pr= operation initializes the predicates such
thatp16 is true and[p17-p62] are false (notice
that p16 andp17 are one rotation apart). During
the first iterationp16 is true , thus only the loads
are executed. In the second iterationp17 receives
true , i.e., the previous value fromp16 , which it-
self gets true fromp63 and both loads and stores
are executed. Whenar.lc reaches zero all the
loads required have been executed and we simply
have two extra stores to do, i.e., one more iteration,
that’s whyar.ec is set to 2 (1 would not cause an
extra iteration). At this pointp63 is now zero and
the last branch will causep16 to get 0 effectively
disabling the loads. Finallyar.ec is decremented
and reaches 1 at which point the loop ends.

Another powerful feature to notice from those ex-
amples is that whenever the memory access latency
of the machine changes, the structure of the code
stays the same and only a few places need to change
to account for deeper/shorter pipeline.

6 First steps in user land

Once you have a kernel, the work is far from be-
ing done as most of the code lives at the user level.
First, the C and math libraries need to be ported,
then hundreds of commands, tools and extra li-
braries need to be recompiled and sometimes fixed.

While we were doing kernel work at HP Labs,
CERN3 decided to join our effort and started work-
ing on those libraries. The first goal was to deliver
a generic port and then to look at doing EPIC op-

3Centre Europ´een de la Recherche Nucl´eaire, Geneva
Switzerland, seehttp://www.cern.ch

8

timizations for performance critical routines. The
GNU libc version 2.1 is used on the major platforms
and was, thus, the obvious choice.

After just three weeks of intense work, they man-
aged to run the"Hello World!" program. With
the first code drop from CERN we were able to
compile real world applications. We quickly re-
compiled a complete login sequence withinit ,
mingetty , login directly using RPMs4 from
standard distributions. Soon, we had the other
basic packages likeutil-linux , sh-utils ,
fileutils and evennetkit-base .

We managed to get shells likepdksh , tcsh and
bash . We also got our first full screen editor with
vim , a vi-clone.

Porting existing packages can be a bit tedious as
code quality varies a lot but it turns out to be an ex-
cellent validation test for the kernel and libraries.
Most of the problems we’ve encountered so far
with applications revolve around non 64-bit clean
code. For example, until very recentlyping was
not 64-bit clean because it was relying onstruct
timeval being of size 8 which is not true on IA-
64 where it is 16 bytes.

The problem is somewhat alleviated by the fact that
most of the key packages have been fixed to run on
Linux/Alpha. However many programs still need
some cleaning because relying on unaligned access
trap handler is clearly not a long term solution.

It is our goal to get a complete distribution, so the
basic libraries and utilities are just the first step
and work is needed to port other, possibly larger,
packages. Clearly a GUI is needed and X11, i.e.,
XFree86, its associated applications, toolkits and
desktop environment like GNOME and KDE will
need to be ported. A decent debugger, namelygdb ,
must be also be available for any serious devel-
opment to become possible. These days a system
wouldn’t be complete without a web browser and
thus Mozilla must also be worked on just like all
the languages like Java, Perl, Tcl/Tk, GNU Fortran,

4Redhat Package Manager, seehttp://www.rpm.org

Python, etc.

7 The NUE environment

As we were porting applications, we realized that
our development methodology was not very practi-
cal. Running big applications on top of the kernel
is inherently slow as our simulator had never been
designed for speed. Recompiling existing pack-
ages directly from RPMs is quite a challenge as all
Makefiles need to be tweaked to change the com-
piler to use the egcs for IA-64. Sometimes it’s even
worse, as some packages use helper programs dur-
ing the build process and most Makefiles assumes
host and target environment are identical.

To circumvent those problems we had to come
closer to what you would get on the target system in
terms of development tools, locations of files, name
of commands and ability to execute binaries. To
achieve this, we developed what we call the Na-
tive User Environment (NUE). Specifically, NUE
has to:

� provide an easy to use porting environment
hosted on Linux/x86

� minimize modifications to packages (espe-
cially Makefiles)

� allow execution of IA-64 binaries without ker-
nel and directly from the shell prompt in a
transparent fashion.

The key point is that most applications don’t actu-
ally require to run on top of the Linux/ia64 kernel
to execute successfully, oftentimes user-level simu-
lation is good enough.

Our simulator already offered user-mode simula-
tion and could run in batch mode, i.e., command
line invocation with no output. The next piece of
the puzzle was to get transparent execution at the
shell prompt. We used a mechanism similar to what
you get for a shell script. Linux has a module called

9

binfmt misc which is used to dynamically bind
binary types to specific interpreters which is gen-
erally used with Java programs. So we simply had
to tell the kernel that whenever it is trying to ex-
ecute an ELF64 binary it should launch the sim-
ulator. This is achieved very simply as shown in
Figure 11 whereia64sim is the name of the sim-
ulator.

echo ":ia64:M::\x7fELF...:\
:/bin/ia64sim:" \

>/proc/sys/fs/binfmt_misc/register

Figure 11: binfmtmisc with IA-64 binaries

The next step was to build an environment in which
all cross compilation tools would have native names
like cc , ld , as . To do this safely, we decided
to build a self-contained environment which you
would enter viachroot . So we recreated a stan-
dard Linux file system tree keeping only the non
binary commands. The next step was to put the
tool chain in the right place and install all required
headers files and libraries in/usr/include and
/usr/lib respectively. We also needed to im-
port quite a few IA-32 binaries like the dynamic
loader, IA-32 shared libraries such that host bina-
ries would still run. We also copied IA-32 tools like
editors,make, cp actually creating an hybrid sys-
tem where you could mix and match binary types.
For the illusion to survive the build process (espe-
cially theconfigure phase) we have had to fake
a few commands likearch anduname and force
them to return what they would normally print on a
real IA-64 system. Figure 12 shows what the output
of a few commands looks like.

With those pieces in place, it became very easy to
take an existing source RPM package and recom-
pile it directly using a simple command as is shown
in Figure 13.

With this comfortable environment we started tack-
ling more seriously the hundreds of packages that
you typically find on Linux distributions. So far
we have successfully recompiled and executed ed-
itors like vim andemacs, shells likebash , news
readers liketin , web browsers likelynx , network

cd /nue
chroot . <- in NUE now
/bin/arch
ia64
uname -m
ia64
ld -v
GNU ld version 2.9.4 (with BFD 990404)
Supported emulations:

elf64_ia64
file /usr/bin/ld
ELF 32-bit LSB executable, Intel 80386,
version 1, dynamically linked, stripped
file /usr/bin/rpcgen
/usr/bin/rpcgen: ELF 64-bit LSB exe-
cutable, IA-64 version 1, stripped

Figure 12: output of commands in /nue

rpm --rebuild --target ia64 \
mingetty-0.9.4-10.src.rpm

Installing mingetty-0.9.4-10.src.rpm
Building target platforms: ia64
Building for target ia64
Executing: %prep
...

Figure 13: Rebuilding RPMs

commands likeftp andtelnet and many others.
This environment is fairly easy to replicate onto an-
other machine and can be of great help when port-
ing applications to IA-64.

8 Next steps

As of today, we have a complete IA-64 tool chain
hosted on Linux/x86 and based onegcs-1.1.2 ,
gas-990404 and GNU libc v2.1. It produces
functional code and has proven to be quite robust
to get us that far. We have a working kernel with
major subsystems enabled. Many real world appli-
cations are running on our kernel and also directly
inside our Native User Environment.

We are actively collaborating with other industry
partners like Cygnus, IBM, Intel, SGI and VA
Linux Systems as part of the Trillian project. In
the near term and in the framework of this project,
we’re planning on working on the kernel to fill in

10

the missing pieces like SMP support, the platform
specific code, the boot loader and also the IA-32
emulation. Our partners at CERN will continue to
work on the libraries and noticeably on the dynamic
linker and various optimizations. As Cygnus moves
forward with their compiler work, we expect to see
major improvement to our code. We also intend to
tackle the large application space.

While the information about IA-64 still needs to
be protected by strict non-disclosure agreements
(NDAs), we are keeping Linux developers abreast
of our progress and intend to share as much as we
can as more information about the architecture is
disclosed to the public. Even though it may be hard
to join this project, you can still help significantly
by making sure than any code you write or read is
64-bit clean. This not only means looking at all
abusive casts but also at things like hard coded data
structure sizes and other bad coding habits. We dis-
covered that many of the packages used with Linux
don’t have good validation tests, so another way of
helping would be to develop good test suites. While
no tests can be perfect, it would help catch some er-
rors very early on.

9 Conclusion

After giving a brief overview of the major features
of IA-64 we have described what it really takes to
port a complete Linux system to this new architec-
ture. At this point in time we have brought forward
a complete GNU-based tool chain, a simulator, an
easy-to-use porting environment, most of the kernel
and the beginning of a real Linux distribution.

While the non-disclosure restrictions make it hard
to work completely in the open, we are trying to
stay as close as possible to the spirit of open source
projects by working with other partners. By do-
ing so, we’ve made significant progress and think
we are on time to deliver a complete and optimized
distribution to the open source community some-
time next year when machines become available.
We also hope that our effort will help jump start a

Linux community around this new exciting archi-
tecture.

References

[1] Linley Gwennap. Intel outlines high-end
roadmap. Microprocessor Report, pages 16–
19, October 1998.

[2] Hewlett-Packard Company/Intel Corporation.
IA-64 Application Instruction Set Architecture
Guide.
http://www.hp.com/go/ia64.

[3] Intel Corporation. Merced Processor & IA-64
Architecture.
http://developer.intel.com/design/IA64.

[4] SPARC International.The SPARC Architecture
Manual, Version 9. Prentice-Hall, 1993.

[5] Sverre Jarp.IA-64 Architecture: A detailed tu-
torial. CERN.
http://nicewww.cern.ch/˜sverre/.

11

