
Memory Efficient Scalable
Line-based Image Coding

Erik Ordentlich, David Taubman*, Marcelo Weinberger,
Gadiel Seroussi, Michael Marcellin†

Computer Systems Laboratory
HP Laboratories Palo Alto
HPL-1999-1
January, 1999

E-mail: [eor,taubman,marcelo,seroussi]@hpl.hp.com

embedded image
compression,
wavelet transform,
skew coder,
Golomb coder,
low memory,
bit-plane coding

We study the problem of memory-efficient scalable
image compression and investigate some tradeoffs in
the complexity vs. coding efficiency space. The focus is
on a low-complexity algorithm centered around the use
of sub-bit-planes, scan-causal modeling, and a
simplified arithmetic coder. This algorithm approaches
the lowest possible memory usage for scalable
wavelet-based image compression and demonstrates
that the generation of a scalable bit-stream is not
incompatible with a low-memory architecture.

*University of New South Wales, Sydney 2052, Australia
† University of Arizona, Tucson, Arizona
 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Memory E�cient Scalable Line-based Image Coding

Erik Ordentlich, David Taubman1, Marcelo Weinberger, and Gadiel Seroussi

Hewlett-Packard Laboratories, Palo Alto, CA 94304
Michael W. Marcellin

University of Arizona, Tucson, AZ 85721

Abstract. We study the problem of memory-e�cient scalable image compression and investigate

some tradeo�s in the complexity vs. coding e�ciency space. The focus is on a low-complexity algo-

rithm centered around the use of sub-bit-planes, scan-causal modeling, and a simpli�ed arithmetic

coder. This algorithm approaches the lowest possible memory usage for scalable wavelet-based im-

age compression and demonstrates that the generation of a scalable bit-stream is not incompatible

with a low-memory architecture.

1 Introduction

In low-memory image compression applications, such as printing and scanning of high-
resolution images, storing the whole image in system memory is not practical. Image data
arrives at the input of the encoder and is consumed at the output of the decoder one scan-
line (or a few) at a time. In this paper, we are interested in image compression algorithms
that permit exceptionally low complexity and very high throughput implementations in this
setting, while achieving acceptable compression e�ciency and generating bit-streams that
are resolution and quality (or SNR{signal to noise ratio) scalable.

In order to arrive at a more concrete notion of complexity, we adopt the following sim-
ple hardware model for the compressor and decompressor. The computational resources
are assumed to consist of three components: a processing/logic unit (the \chip"), fast but
expensive internal (\on-chip") memory, and relatively slow, cheaper external (\o�-chip")
memory. The key parameters of this model, that serve to quantify overall system complexity
and throughput, are the sizes of the two types of memory stores, the memory bandwidth or
the number of memory accesses to each type of memory measured in bytes per image pixel,
and the computational complexity (logic, throughput) of the processing unit.

We can then assess the relative merits of image compression algorithms by augmenting the
traditional criteria of compression e�ciency and bit-stream features and functionality (with
the latter criterion emerging from the advent of embedded wavelet-based compression tech-
nology) with the above complexity criteria. Algorithms that achieve extreme points in this
performance/complexity space are attractive from the stand-point that they are guaranteed
to be optimal according to some application-dependent weighting of these criteria.

In this work we present an image compression algorithm that yields a resolution and SNR
scalable bit-stream and achieves an extreme point in terms of memory usage, computational
complexity, and latency, for the provided functionality. Yet compression e�ciency is still

1Current a�liation is University of New South Wales, Sydney 2052, Australia.

1

Encoding

01100...
Sub-bit-plane N

...

...

...

10101... 10100...01100... 10101...

10100...

...

Line transform

Parallel sub-bit-planeprocessing

Off-line
reordering

Decoding

Sub-bit-plane 0

Figure 1: Line-based transform and coding architecture.

competitive with state-of-the-art algorithms. Simple variations of the basic algorithm allow
for great exibility in reducing memory bandwidth at the expense of increased memory size.

One major objective of this work is to demonstrate that the generation of a scalable bit-
stream is not incompatible with a low-memory approach. A key element of the SNR scala-
bility of the proposed algorithm is the use of sub-bit-planes, which arise from a context de-
pendent deinterleaving of bit-planes into subsequences (sub-bit-planes), as introduced in [1]
as part of an embedding principle. A proper ordering of the descriptions of the deinterleaved
sub-bit-planes in the bit-stream yields a �ner SNR scalability than does straightforward
bit-plane coding. The resulting distortion-rate curve obtained by truncating an embedded
bit-stream is signi�cantly less scalloped, resulting in bit-rate dependent PSNR improvements
of up to .4-.5 dB. We refer to [1] for more on the theory and motivation behind the use of
sub-bit-planes.

Scan-causal modeling and simpli�ed arithmetic coding are other key elements of the low-
memory, low-complexity package that we present, and these will be discussed in subsequent
sections.

2 Scalable line-based coding architecture

Figure 1 illustrates the \line-based" architecture underlying the proposed low-memory image
compression algorithm. A low-memory line-based wavelet transform implementation [2]
generates at the encoder K lines of transform coe�cients of the four bands in a given level of
the wavelet decomposition as soon as a su�cient number of lines of the low-low band of the
previous decomposition level (one level closer to the original image) have been generated. At
the decoder, the inverse transform consumes a corresponding number of lines of transform
coe�cients from each of the four bands at a given level of decomposition to generate new

2

lines in the low-low frequency band of the next decomposition level (again, one level closer
to the image). At the encoder, the memory requirements of the transform arise solely from
the need to bu�er up the scan lines of pixels in the image and the lines of coe�cients in each
low-low band of the decomposition that are necessary for computing K new lines in each
band of the next coarsest decomposition level. The new coe�cients that are generated in the
high-pass bands pass directly into the coding engine. At the decoder, a su�cient number of
lines of decoded transform coe�cients must be bu�ered in each band of each decomposition
level to compute K new lines in the low-low band of the next �ner level of decomposition.
In this paper we take K = 1 to characterize the lowest memory solution. Depending on the
application and on the choice of transform, memory bandwidth considerations may favor
choosing K to be as large as 4 or 8.

The coding engine consists of a collection of processing slices that encode/decode all of
the sub-bit-planes of freshly generated/requested transform coe�cients simultaneously. The
bit-stream segments that are generated in parallel by the encoder for each sub-bit-plane
are concatenated in a post-compression reordering step, to form a single embedded bit-
stream. The resulting bit-stream is augmented with auxiliary information (pointers or bit-
stream segment lengths) to enable parallel decoding of bit-stream segments corresponding
to particular sub-bit-planes, bit-planes, sub-bands, and decomposition levels, as the relevant
coe�cients are requested by the transform.

The storage and manipulation of the numerous independent bit-stream segments that are
generated and accessed in parallel raise important complexity issues that are beyond the
scope of this short paper. In particular, the complexity assessment in Section 7 does not
include the bit-stream management. We note, however, that these issues are not unique
to the present approach, as all scalable low-memory image compression schemes require
some intermediate bit-stream storage, and must, to varying degrees, perform similar o�-line
bit-stream management.

In this particular architecture, the most challenging component of the bit-stream manage-
ment sub-system is the interface between the coding engine and the bit-stream storage. This
interface must be designed so that newly generated/requested portions of bit-stream seg-
ments are o�-loaded/accessed in an e�cient manner. The post-compression processing of
bit-stream segments consists largely of memory transfers.

This architecture is related to the one considered in [2], with the key di�erence being that [2]
is centered around a non-scalable coder which does not allow for the possibility of o�-line
reordering of the bit-stream, as the emphasis is on minimizing the overall latency of a com-
bined encoder-decoder image communication system. Here, we consider applications in which
encoding and decoding are decoupled.

3

0

0

0

0

?

0

0

0

11

0

1

0

1

1

1MSB

LSB

Figure 2: Stair-casing e�ect arising at decoder when non-scan-causal contexts are used for sub-

bit-plane classi�cation and coding.

3 Sequential bit-plane coding and scan-causality

Among reported image compression algorithms, those based on context-dependent coding
of bit-planes (e.g., LZC [3] and CREW [4]) are most compatible with the above line-based
architecture. We shall refer to such coders as sequential bit-plane coders. The coding en-
gine for the proposed scheme can be classi�ed as a sequential bit-plane coder with some
important distinguishing properties that are motivated by practical aspects of the line-based
architecture, and which are discussed next.

One property that is a fundamental requirement of the line-based architecture is the use of
independently adapting probability models for compressing each sub-bit-plane and bit-plane
of each sub-band and decomposition level. In contrast, most previously reported sequential
bit-plane coders, which largely ignore the memory issues central here, compress the bit-planes
sequentially, and carry probability model parameters across bit-plane boundaries.

Another property of the proposed coder, namely scan-causal modeling, addresses the fol-
lowing practical consideration. If the previously encoded bits of all spatially neighboring
coe�cients were used for sub-bit-plane classi�cation and conditioning context for the cur-
rent bit, the decoder would �rst need to decode the relevant bits of some \future" coe�cients
in order to decode the current bit. A stair-casing e�ect arises in the bit-plane dimension
as the look-ahead decoding propagates to the neighbors and the neighbors' neighbors and
so on. Figure 2 illustrates this phenomenon for a one-dimensional signal in which the more
signi�cant bits of scan-future nearest neighbors are part of the conditioning contexts. The
�gure illustrates the decoder look-ahead that must be performed for decoding the least sig-
ni�cant bit \?" of the �rst coe�cient. We see that, in this case, the extent of the stair-casing
is equal to the number of bit-planes. Parallel or pipelined decoding of the bit-planes further
increases the e�ective stair-casing extent to twice the number of bit-planes.

In the line-based setting, stair-casing in the vertical direction is very costly in terms of
memory size and bandwidth, since the intermediate stair-case results need to be stored and
accessed multiple times. Stair-casing in the horizontal direction is a nuisance, but it can be
absorbed into the coding engine with a resulting increase in on-chip memory requirements.
Horizontal stair-casing does make it more di�cult to modify the coding scan to interface

4

with a transform implementation that generates more than one line of coe�cients at a time,
which, as noted above, may be desirable from a memory bandwidth point of view.

The proposed coder, unlike previously reported sequential bit-plane coders, avoids the trou-
blesome stair-casing e�ect, and the accompanying processing and memory bandwidth re-
quirements, by using scan-causal, as opposed to information-causal contexts for sub-bit-plane
classi�cation and modeling. Scan-causal modeling amounts to requiring that the context used
for the sub-bit-plane classi�cation and coding of a given bit be based only on more signi�cant
bits of the current coe�cient and/or equally or more signi�cant bits of previously processed
coe�cients. Each coe�cient is scanned only once, and all context information is derived
from previously scanned coe�cients. More signi�cant bits from scan-future neighboring co-
e�cients, even though they will appear earlier in the �nal embedded bit-stream, are not used
in compressing the current bit. This modi�cation clearly leads to sub-optimal compression
e�ciency since information ultimately available as conditioning context is ignored.

Summary. We can now form a clear picture of the tradeo�s involved in the proposed line-
based coding algorithm. Among the signi�cant advantages of the line-based architecture
and scan-causal modeling are: 1) the inherent parallelism, which allows for low-latency pro-
cessing and the potential to encode and decode one transform coe�cient per clock cycle,
and 2) a reduction of memory and bandwidth costs to the point where they are dominated
by the transform, which allows for additional complexity tradeo�s by way of the transform
�lter lengths. These advantages, however, are not without cost as scan-causal modeling
and independent model adaptation should incur some performance penalties relative to un-
constrained approaches. Somewhat surprisingly, as we shall see in Section 6, this cost is
minimal.

Comparison with other approaches. We conclude this section by comparing the pro-
posed line-based coder architecture to other recently proposed classes of scalable image com-
pression algorithms. Block-based coders, or those that encode disjoint blocks of transform
coe�cients [7] (using, e.g., quad-trees), are also good candidates for low-memory applica-
tions. Nevertheless, the external memory cost associated with bu�ering up lines into blocks
is substantial when compared with the cost of line-based coding, as advocated here. Perhaps
an even more important issue is that of parallelism. A key ingredient for achieving parallel
encoding or decoding is that the evolution of the probability models within each processing
unit proceed independently. Although the temptation for block coders is to scan the block
multiple times2 (once for each sub-bit-plane) in order to maximize compression e�ciency,
block coders do possess an obvious opportunity for parallelism in that each block is encoded
and/or decoded independently. However, this \macroscopic" parallelism requires duplication
of the block working memory in each processing engine, which can rapidly become expensive.
Line-based coders conforming to the above architecture, however, exhibit \microscopic" par-
allelism. In this case, each sub-bit-plane is processed with a separate coding engine, with

2This is feasible for block coders, because blocks are understood as being small enough to �t locally on-chip.

5

the relevant models being adapted independently. This microscopic parallelism can generally
be realized with substantially less internal memory than that associated with parallel block
coding engines.

Finally, zero-tree-based coders such as EZW [5] and SPIHT [6], as originally formulated,
require bu�ering up the entire image in order to generate an embedded bit-stream. While
modi�cations of the basic algorithms can lead to lower memory implementations (with a
possible negative e�ect on compression performance), the joint compression of \trees" of
transform coe�cients requires the synchronization of the transform across all decomposition
levels, which, in turn, requires substantial bu�ering of intermediate transform data, even for
a nominal number of decomposition levels. Therefore, zero-tree-based schemes are largely
incompatible with the low-memory goals of this paper. Zero-tree-based schemes also do
not directly yield bit-streams that are simultaneously resolution and quality scalable, a key
functionality we wish to provide.

4 Modeling details

In this section we provide the details of the scan-causal context modeling used in the proposed
coder. A major practical consideration in arriving at the proposed context models is that
they be extremely simple, since, as noted above, separate models are maintained and updated
in parallel for each sub-bit-plane.

We assume that the reader is familiar with the basic elements of bit-plane coding, such as
the concepts of signi�cance and re�nement decisions [5, 3], and the idea of sub-bit-planes [1].
Adhering to the scan-causal modeling approach described above and assuming that each
band is scanned from top to bottom and left to right, the conditioning contexts for modeling
and for sub-bit-plane classi�cation of the bits of the current coe�cient X are based only
on the neighboring coe�cients (w, nw, n, ne), respectively corresponding to the coe�cients
directly left, left and above, above, and above and right of X. Let N denote this neighborhood
of four coe�cients. Three sub-bit-planes are formed within each bit-plane. Each signi�cance
decision is classi�ed as predicted-signi�cant or predicted-insigni�cant and the re�nement
decisions form a third sub-bit-plane. Let �p(x) be a binary valued function, where �p(x) = 1
if coe�cient x is signi�cant with respect to a bit-plane greater than p, or becomes signi�cant
in bit-plane p and the signi�cance decision is classi�ed into the predicted-signi�cant sub-bit-
plane of p. A signi�cance decision for coe�cient X in bit-plane p is recursively classi�ed
into the predicted-signi�cant sub-bit-plane of p if �p(x) > 0 for any neighboring coe�cients
x 2 N . The remaining signi�cance decisions in bit-plane p are classi�ed into the predicted-
insigni�cant sub-bit-plane.

Empirically validated theoretical considerations [1, 8] imply that the predicted-signi�cant
sub-bit-plane results in the greatest decrease in distortion per rate of description, followed
by the predicted-insigni�cant sub-bit-plane, and �nally by the re�nement sub-bit-plane, with
the latter two being very nearly inter-changeable in most of the bit-planes. Therefore, in
order to generate an optimal SNR scalable bit-stream, the o�-line bit-stream reordering step

6

should place the bit-stream segment describing the predicted-signi�cant sub-bit-plane before
the predicted-insigni�cant bit-stream segment, which, in turn, should be placed before the
re�nement bit-stream segment.

The context for coding a bit in the predicted-signi�cant sub-bit-plane of bit-plane p is derived
from the evaluation of �p(x) on x 2 N . It follows from the de�nition of the predicted-
signi�cant sub-bit-plane that �p(�) is non-zero on at least one coe�cient in N . Within each
sub-band we obtain 3 contexts as follows.

LH band HL band HH band Context

�p(w) = 0 �p(n) = 0 �p(nw) = �p(ne) = 0 1
�p(w) = 1 �p(n) = 1 �p(nw) + �p(ne) � 1 2

�p(x) = 1 for all x 2 N �p(x) = 1 for all x 2 N �p(nw) + �p(ne) = 2 3

The contexts for the predicted-insigni�cant sub-bit-plane are de�ned in terms of the binary
function �0p(x), where �

0

p(x) = 1 if coe�cient x just becomes signi�cant in bit-plane p. The
non-zero contexts (�0p(x) 6= 0 for some x 2 N) for the predicted-insigni�cant sub-bit-plane
of bit-plane p are obtained by replacing �p(�) with �0p(�) in the above table. Intuitively,
the all-zero context (�0p(x) = 0 for all x 2 N) seems to provide less information about the
current signi�cance decision. It is therefore best to avoid the assumption of conditional
independence given adjacent neighbors and to seek out additional conditioning information
from non-adjacent neighbors. To this end, we partition this context into two contexts, based
on whether the number of coe�cients that have been processed since the last non-zero context
in bit-plane p is larger than a �xed threshold (8 in our implementation).

Signs are encoded immediately after the corresponding coe�cients are found to be signi�cant.
Sacri�cing a small amount of coding e�ciency for reduced complexity, we opted to code signs
using a uniform (1=2; 1=2) probability assignment. We also opted to pack the re�nement sub-
bit-plane uncoded into the relevant bit-stream segments.

5 Low-complexity coding

The �nal element of our low-complexity line-based package is the binary coder used to com-
press the signi�cance sub-bit-planes. Like the context model, this coder should be extremely
simple, since, in a hardware implementation, the inherent parallelism of the line-based ap-
proach necessitates having several such coders on a chip. Possible candidates are Golomb
coding and the Q-coder arithmetic coding variants [10]. Golomb coding was already applied
in [1] to coding runs of 0's in the sub-bit-planes, which were modeled as memoryless sources.
The slightly more complex context models used here, however, render Golomb coding less
appropriate since it is not well suited for coding binary sequences with context-dependent
symbol probabilities.

An especially attractive candidate is the skew-coder [9], which is the ancestor of the Q-coder,
QM-coder, and other arithmetic coding variants. The skew-coder's simplicity derives from

7

certain approximations to the usual arithmetic coding operations. Very briey, probabil-
ity interval widths corresponding to strings ending in LPSs (least probable symbols) are
restricted to be powers of two, and hence the updating of the A and C registers (the proba-
bility and code word registers as used in the arithmetic coding literature) upon encoding and
decoding a binary symbol is reduced to adding or subtracting 2L�k, where A and C are L+1
and L bits wide. The parameter k is called the skew-parameter and is typically determined
adaptively from the statistics of the binary source, roughly so that 2�k approximates the
LPS probability.

It was observed in [9] that the skew-coder with �xed skew-parameter k reduces to Golomb
coding with parameter m = 2k � 1 when used in a single context. This suggests that with
a properly chosen adaptation strategy, it should be possible to implement the skew-coder
so that it operates at the complexity level of a Golomb coder when coding MPSs (most
probable symbols) in a run of consecutive occurrences of a single context. This can in fact
be done by ensuring that the adaptation of k coincides with register renormalization, and
by making use of a simple function of the coder registers which indicates the number of
MPSs that can be processed before renormalization is necessary. In our application, the all-
zero predicted-insigni�cant context, which tends to occur in long contiguous runs, especially
within the more signi�cant bit-planes, is an ideal target for such an accelerated skew-coder.
We note that the acceleration property of the skew-coder is useful primarily in software since
it boosts average performance, while hardware must be designed for the worst case.

A similar acceleration technique has been suggested in connection with the Q and QM
arithmetic coders (\speedup-mode" in [10]). The skew-coder, however, retains a unique
simplicity concerning this \speedup-mode" in that the required division operation [10] can
be implemented by masking an appropriate set of bits in the A and C registers. This
simpli�cation relative to the Q and QM coders stems from the power-of-two restriction
mentioned above.

The above two properties of the skew-coder, namely the simple underlying operations and the
accelerated mode, permit very e�cient implementations of the line-based coding algorithm
in both hardware and software. For this reason we adopted the skew-coder as the binary
coder.

Adaptation. The skew parameter k can be adapted using a variety of simple count-based
methods or state-machines. We opted to use the MELCODE state-machine from the run-
mode of the JPEG-LS standard [11].

6 Compression e�ciency

We evaluated the compression e�ciency of two variants of the proposed coder on a set of
four images (luminance only) used in the JPEG 2000 standardization process. The results
were obtained using a 16-bit �xed point implementation of the (9,7) bi-orthogonal wavelet
transform with 5 decomposition levels. Each sub-band was scaled so that the corresponding

8

reconstruction basis functions in the image domain would have unit norm. The above line-
based compression algorithm was then applied to the resulting coe�cients one line at a
time (K = 1 in the architecture description of Section 2). Finally, for each image, the
reconstructions at each bit-rate were obtained by truncating a single su�ciently high-rate
bit-stream.

The compression results are presented in Table 1. In addition to results for the proposed
algorithm we have included results for three benchmark algorithms: sequential bit-plane
coder A (a variation of the proposed algorithm), sequential bit-plane coder B, and SPIHT
with arithmetic coding [6]. Sequential bit-plane coder A is a variation of the proposed coder
that uses a full-edged arithmetic coder to compress the binary decisions, and signs and
re�nement decisions are compressed according to simple context models derived from the
scan-causal neighboring coe�cients. Sequential bit-plane coder B is a full-edged sequential
bit-plane coder that has all of the elements of coder A and adds horizontally and vertically
non-scan-causal neighbors to the coding and sub-bit-plane classi�cation context-modeling.
The context modeling of coder B also incorporates some non-nearest neighbors. Sequential
bit-plane coder B is very similar to the entropy coder described in [12], except here it is
applied to the bit-planes of scalar quantized indices. Coder A was in fact obtained by simply
eliminating the non-nearest neighbors and non-scan-causal neighbors from the coding and
sub-bit-plane classi�cation context modeling of coder B.

From Table 1 we get a rough idea of the cost, in terms of compression e�ciency, of the
simpli�cations behind the proposed algorithm. At .5 bits per symbol, for example, we see
that dropping non-causal horizontal and non-causal vertical neighbors results in a loss of
about .15 db typically, and dropping the modeling of signs and re�nement decisions and
using the skew-coder instead of an arithmetic coder results in another .15 db loss typically.

The last line of Table 1 gives the average short-fall in PSNR of the proposed algorithm
relative to the best average benchmark at each rate. The resulting short-falls correspond to
about a 5% rate redundancy across the board.

We include a comparison with SPIHT only to convey an understanding of the compres-
sion e�ciency of the proposed coder relative to a well-known benchmark. As noted above,
however, zero-tree-based schemes such as SPIHT are not compatible with a low-memory
architecture. In fact, even the performance of coder B is limited by complexity constraints
that are not shared by SPIHT, such as the line-based scanning order. We also note that the
published version of SPIHT used to obtain the numbers in Table 1 requires bu�ering up the
whole image for compression and decompression.

7 Complexity analysis

Our analysis is based on the (9,7) transform that was used to obtain the above compression
results. We assume the ability to process K lines of transform coe�cients simultaneously
with our line-based coder, although the compression performance was determined only for

9

Image .0625 .125 .25 .5 1.0 2.0

aerial2 � 24.43 26.40 28.42 30.49 33.13 37.92
y 24.49 26.43 28.53 30.57 33.36 38.36
z 24.53 26.46 28.57 30.61 33.45 38.43
� 24.63 26.52 28.49 30.60 33.32 38.22

cafe � 18.86 20.59 22.77 26.29 31.31 38.41
y 18.85 20.62 22.82 26.45 31.57 38.84
z 18.90 20.66 22.94 26.58 31.84 39.22
� 18.95 20.67 23.03 26.49 31.74 38.91

bike � 23.14 25.63 28.95 32.80 37.35 43.42
y 23.07 25.47 28.95 32.92 37.50 43.63
z 23.14 25.62 29.15 33.15 37.81 43.81
� 23.44 25.89 29.12 33.01 37.70 43.80

woman � 25.28 27.08 29.53 33.04 37.76 43.63
y 25.32 27.08 29.50 33.12 37.84 43.65
z 25.25 27.14 29.67 33.28 38.11 43.75
� 25.43 27.33 29.95 33.59 38.28 43.99

AVERAGE � 22.93 24.92 27.42 30.65 34.89 40.84
y 22.93 24.90 27.45 30.76 35.07 41.12
z 22.96 24.97 27.58 30.91 35.30 41.30
� 23.11 25.10 27.65 30.92 35.26 41.23

Ave. Di�. -.18 -.18 -.23 -.27 -.41 -.46

Table 1: PSNR's for the proposed coder and three benchmarks. (�)-proposed coder; (y)-sequential

bit-plane coder benchmark A; (z)-sequential bit-plane coder benchmark B; (�)-SPIHT

with arithmetic coding.

K = 1. We are certain, however, that processing K > 1 lines at a time can only improve
compression performance since the context model adaptation would bene�t from a more
spatially localized scan. In quoting memory size and memory bandwidth we assume that
image pixels and transform coe�cients are respectively 8 and 16 bits (a 16 bit �xed point
transform was used to obtain the above results). The analysis also assumes a single image
component (i.e. luminance only). Finally, we assume that all bu�ers that are image-size-
dependent are contained in external memory.

External Memory. It can be shown [7] that the external memory required by the line-
based transform for storing image pixels and intermediate samples from the Low-Low band
of each decomposition level is equivalent to roughly 6K + 21 image lines. The proposed
coder needs to save an additional 5 bits of context information per column, from the most
recent strip of K lines of transform coe�cients in each band of each decomposition level.
Under the above assumptions this amounts to an additional (2)(3)(5=8)(1=2) � 1:9 image

10

lines. The total is about (23 + 6K) lines.

External Memory Bandwidth. The external memory bandwidth for a straightforward
implementation of the line-based wavelet transform is shown in [7] to be about 2:1+ 5:8=K.
As above, we add the extra bandwidth required for reading and writing the 5 context
bits per column per strip of K lines for all bands and all levels to the external mem-
ory bandwidth of the line-based transform. The additional external memory bandwidth
is thus ((2)(10=8)(3)(1=2))=(2K) = 1:9=K bytes per image sample. Another source of
external memory bandwidth, unique to this coder, is the potential need for storage and
retrieval to and from external memory of the coder state for each level in the wavelet
decomposition. Let M be the number of bytes of coder state that need to be stored or
retrieved per K lines of transform coe�cients. If H and W are, respectively, the height
and width of the original image, the total number of coder state external byte transfers is
(2)(M)(H=(2K) +H=(4K) + : : :) = 2MH=K, or 2M=(KW) transfers per pixel. The total
then comes to 2:1+(7:7+(2M=W))=K. This suggests that K should be no smaller than 2 or
4 and perhaps as large as 8 in order to approach the lower bound for external memory band-
width, which is an extremely important parameter in most practical systems which work
with large images. Smaller values of K might be reasonable when working with transform
kernels whose vertical support is smaller than that of the (9,7) kernel.

Internal Memory. The bulk of the internal memory of the proposed line-based coding
engine arises from the multiple coding units that must operate in parallel for each sub-bit-
plane. For the two signi�cance decision sub-bit-planes, the requirements amount to: 6 16-bit
registers for the skew-coder variables; 8 16-bit symbol counters, one for each of the 8 contexts;
8 5-bit registers for model parameter variables; 8 1-bit ags for maintaining MPS/LPS to
0/1 mapping; and 2 32-bit i/o shift registers. The total is 336 bits. Since the re�nement
sub-bit-plane is left uncoded, it requires only an additional 32 bit i/o shift register, for a
total of 368 bits for one bit-plane. Assuming that 10 bit-planes will be preserved for each
coe�cient, we conclude that 3680 bits of internal memory are required per band. Finally,
multiplying this number by 3, we get 11040 bits of internal memory for the coding engine.
We note however that there is a great deal of exibility in the design of this internal unit.
For example, reducing the symbol counters from 16 bits to, say, 10 or even 8 bits for the
non-zero contexts (all but one), would probably have no impact on the overall compression
e�ciency. This would also permit the reduction of two of the skew-coder registers to 10
bits as well. This set of numbers leads to slightly over (316)(10)(3) = 9480 bits of internal
memory to handle the three sets of K lines of transform coe�cients in each of the three
high-pass bands.

Internal memory bandwidth and throughput. An ideal implementation of the pro-
posed coding engine is as a very wide circuit that simultaneously processes all bit-planes of
the current coe�cient and updates all of the relevant state variables in a single clock cycle.
A small amount of pipe-lining may be necessary to achieve this throughput guarantee.

11

Acknowledgments. This paper emerged as a result of the authors' participation in the on-going

JPEG2000 image compression standardization process. Wei Yu is acknowledged for a skew-coder

implementation and discussions on its acceleration.

8 References

[1] E. Ordentlich, M. J. Weinberger, and G. Seroussi, \A low-complexity modeling approach for
embedded coding of wavelet coe�cients," in Proc. 1998 IEEE Data Compression Conference,
(Snowbird, Utah, USA), pp. 408{417, Mar. 1998.

[2] C. Chrysa�s and A. Ortega, \Line Based, Reduced Memory, Wavelet Image Compression," in
Proc. 1998 IEEE Data Compression Conference, (Snowbird, Utah, USA), pp. 398{407, Mar.
1998.

[3] D. Taubman and A. Zakhor, \Multirate 3-D subband coding of video," IEEE Transactions on
Image Processing, 3(5), pp. 572{588, Sept. 1994.

[4] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, \CREW: Compression with reversible
embedded wavelets," in Proc. 1995 IEEE Data Compression Conference, (Snowbird, Utah,
USA), pp. 212{221, Mar. 1995.

[5] J. M. Shapiro, \Embedded image coding using zerotrees of wavelet coe�cients," IEEE Trans-
actions on Signal Processing, 41(12), pp. 3445{3462, Dec. 1993.

[6] A. Said and W. A. Pearlman, \A new, fast, and e�cient image codec based on set partitioning
in hierarchical trees," IEEE Trans. on Circuits and Systems for Video Technology, pp. 243{250,
6(3), June 1996.

[7] D. Taubman. Embedded Block Coding with Optimized Truncation. ISO/IEC JTC 1/SC
29/WG1 document N 1020R, October 21, 1998.

[8] J. Li and S. Lei, \Rate-distortion optimized embedding," Picture Coding Symposium, Berlin,
Germany, pp. 201{206, Sep. 10-12, 1997.

[9] G. G. Langdon Jr. and J. Rissanen, \A simple general binary source code," IEEE Transactions
on Information Theory, 28(5), pp. 800{803, Sept. 1982.

[10] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, New York, New York, 1993.

[11] ISO/IEC 14495-1, ITU T.87, \Information technology - Lossless and near-lossless compression
of continuous-tone still images," 1998. Final Draft International Standard.

[12] P. Sementilli, A. Bilgin, J. H. Kasner, and M. W. Marcellin, \Wavelet TCQ: Submission to
JPEG 2000," (invited paper), Proceedings, Applications of Digital Image Processing, SPIE,
San Diego, California, July 1998.

12

