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ABSTRACT

This paper describes architecture and implementation of the
ULTRAVIS system, a pure software solution for versatile and fast
volume rendering. It provides perspective raycasting, tri-linear
interpolation, on-the-fly classification using look-up tables, gradi-
ent shading (both diffuse and specular reflection), four light
sources, and alpha blending. For high frame rates, early ray termi-
nation and empty space skipping are implemented. Furthermore,
subsampling during motion is provided. The system accepts raw
data sets of 8-bit voxelsaswell as pre-segmented data sets contain-
ing up to 16 different materials. For gradient shading, the gradients
are precomputed and included in 32-bit voxels. Additionally, the
system supports volume animation, i.e., the display of a sequence of
data sets.

The system was specifically designed for Pentium Il CPUs, and
makes extensive use of MMX and Streaming SMD instructions. It
is a multi-threaded application and thus takes advantage of multi-
processor platforms. Time-critical portions of the code have been
hand-optimized in assembler. As a result, the system can achieve
inter active to real-time performance.

ULTRAVIS runs on the Windows NT 4.0 operating system on stan-
dard PCs.

CCS Categories and Subject Descriptors: 1.3.4 [Computer
Graphics]: Graphics Utilities- graphics packages; 1.3.3[Computer
Graphics]: Picture/lmage Generation - display algorithms
Additional Keywor ds: volume rendering, raycasting

1 INTRODUCTION

It is commonly understood that real-time volume rendering requires
specia -purpose hardware [13], multi-processor servers[10], [16] or,
with some restrictions, 3D texturing hardware [1], [5], [6], [8], [17].
Ontheother hand, the performance of commodity CPUsisincreasing
at a tremendous speed. Furthermore, specialized multi-media hard-
wareextensions(e.g., MM X) can be used for many basic volumeren-
dering operations such as tri-linear interpolations. Also, memory
costs have decreased so much that all but the largest data sets can be
placed into main memory for easy access. Thus, theuse of ahigh-end
PC for software-based volume rendering is intriguing.

However, one major obstacl etowards high performanceremains: the
limited memory bandwidth, even more so because volume rendering
requiresthree-dimensional accessto the data set, and frequent access
to tables. Thus, the use of the on-chip caches decides on the achiev-
able performance.

There have been few attempts to achieve high-speed volume render-
ing in software on a single workstation or PC. Probably the most

prominent oneisthe Shear-Warp Factorizationalgorithm[9]. Inthis
method, a projection plane is defined which is perpendicular to the
largest component of theview vector. Theslicesof voxelsparalel to
this planeare sheared according to theobserver position. Then, apar-
allel projectionisperformed diceby sliceinfront-to-back order. The
resulting distorted image is then corrected (warped) and displayed.
Voxels are accessed in scan-line order, giving agood spatial coher-
ence. Furthermore, the voxels are run-length encoded in al three
dimensions, aswell asthe pixelsin ascan line. Thus, runs of empty
voxelsor opaque pixels can be skipped, reducing memory traffic and

processing time. The method achieved about 1frame/s for 256° data
sets on a typical workstation of that time. However, the method
requires extensive pre-processing, and is only fast for paralel pro-
jections.

In[7], the grayvaluesin a3x2x2 block are reduced to only two val-
ues such that mean and variance in the block are preserved. Each
voxel isassigned one bit selecting the corresponding value. In case
of 8-bit quantities, the datafor one block fitsinto a 32-bit word. All
blocksof thevolumeare compressed redundantly suchthat all 8 vox-
els needed for tri-linear interpolation are available after one single
memory access. Again, interactive operation in the order of 1frame
per second was achieved. However, the method useslossy compres-
sion of the data set, which is unacceptable for many applications.
The data set is rendered into a set of layered depth images in [2],
which are blended using 2D texturing hardware. Approximations of
new viewscan quickly begenerated by reusing someof themoredis-
tant images, provided the new viewpoint is sufficiently close to the
previous one. Also, adaptive resolution can be used for the different
images, which reduces the total number of samples. The method is
used for interactive volume navigation, i.e., a viewing frustum of
limited depth is placed inside the data set. The authors achieve about
4-6 frames/s using a 300M Hz Pentium Il CPU, with a resol ution of
160x160 pixels and about 120k voxelsin the view frustum.

The approach presented here aims at avoiding restrictions or image
quality compromises of thesekinds. Furthermore, it should beapure
softwaresystem (with the exception of hardware-supported bit block
transfers) and still achieveinteractive operation. An overview of the
ULTRAVIS architectureis given in section 2. Sections 3 and 4 detail
theimpl ementati on and the performance of the system, respectively.

2 THE ULTRAVIS ARCHITECTURE

Theblock diagram of thedifferent softwaremodul esisshowninFig-
ure 1. The ULTRAVIS system was designed as a client/server appli-
cation, alowing a thin client to connect to a powerful storage/
rendering server or server farm. The primary target platform, how-
ever, isasingle PC. Then, client and server are running on the same
machine.

TheULTRAVISsystem currently supportsfour voxel types: 8-bit val-
ues(V7_ o) calledV, 8-bit valuesplusidentifiersfor up to 16 different

materials (16 bits, 13 gV7._o with 4 MSBs unused) called IV, 8-bit
values and gradient components (Gz7_oGy7_gGx7._oV7.0), caled
GV and the later including material identifiers
(|SGZ7..1|ZGV7..1| lGX7..1IOV7..l)’ cdled IGV. Maximum data set
dimensions are 256x256x256.

In this paper wewill focus on the memory datastructureand the ren-
dering operation.
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Figure 1: Architecture of the ULTRAVIS System as a Client/Server Application

3 IMPLEMENTATION

The ULTRAVIS system is a collection of well-known and new tech-
niques for fast raycasting. Most of its performance comes from the
unique cache optimizations and the use of the SIM D-extensions as
described in the following sections.

3.1 SIMD-Extensions of Pentium IlIl CPUs

Wecan only giveavery short description of thistechnology. Excel-
lent introductions can be found in [12] and [15].

SIMD extensions exist for both integer (MMX) and floating-point
(SSE) data types. MMX provides eight 64-bit registers (MMO-
MM7), which can hold one 64-bit operand, two 32-bit, four 16-bit or



eight 8-bit operands each. An MMX-instruction is applied to al
operands in one or two MM X-registers. Most MM X-instructions
executein one clock (except multiply).

SSE provides a set of eight 128-bit registers (XMMO-XMM?7),
which can hold four single-precision floating-point operands each.
Again, an SSE instruction is applied to all four floating-point oper-
ands or operand pairs. As an example, an ADD has a latency of 4
clocks with a throughput of 1 every 2 clocks [4].

3.2 Cache Optimizations and Spread Mem-
ory Layout

Asstated earlier, thelimited memory bandwidth of aPCisthemain

problem to solve. In our implementation, memory accesses occur

due to the following reasons:

O Accessto thedata set itself. For each raypoint, 8 voxelsof 1, 2
or 4 bytes must be read for tri-linear interpolation.

O One access to acolor/opacity table per raypoint.

U Additional accessestorendering parameterssuch asthreshol ds,
shading coefficients and more per raypoint.

Themeansto dleviatethis problem arethe CPU caches, of whichwe
primarily consider theL 1 cache. Incaseof aPentium 11 CPU, theL1
data cache is a four-way associative cache with atotal capacity of
16K Byte. Thereisaseparateinstruction cacheof thesamesize[3],[4].
We'll start the discussion with the tables and parameters. Idedly,
these dataitemswould be placed into afast on-chip RAM, under full
software control, as it can be done on many DSPs (Digital Sgnal
Processors). In the absence of such feature on the Pentium I11 CPU,
wetry tomimicaRAM using the L1 cache. Tothisend, away must
be found to lock adataitem into the cacheonceit hasbeenread. This
is done using a“spread memory layout” as explained below.

First, let’ sconsider adirect mapped cacheasshowninFigure 2. Seen
from the cache, the memory is organized asa set of consecutive pag-
es, equal in sizeto the cache. The cache memory itself is organized
inlines(32 bytesfor thePentium111). Dataistransferred to and from
the cache in units of complete lines.

Themost characteristic feature of adirect mapped cacheisthataline
inmemory at offset n can only gointothecachelineat offset n. Thus,
if a program only accesses the gray memory linesin Figure 2, fre-
quent cache line replacements (or thrashing) will occur.
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Figure 2: Direct Mapped Cache

N-way associative caches dleviatethisdisadvantage. Conceptualy,
a4-way associative cachecan bethought of asacollection of 4 direct
mapped caches, as shown in Figure 3.

Then, each memory line has four places to go, and a program can
accessuptofour linesat the sameoffset beforearepl acement occurs.
Now let’s consider how the volume data set is placed into memory.
We allocate memory spacefor four timesthe size of thedataset, and
store the dataset such that only the first quarter of each pageisused,
such as shown in Figure 4a. As a consequence, voxels can only be
cached in the first quarter of each cache block. Put differently,

4-Way Associative Cache

i e s

Main Memory

o

Page O Page 1 Page 2 PageN

Figure 3: 4-Way Associative Cache

accesses to voxels can never cause replacement of data which hap-
pensto be in the other parts of the cache. This can be exploited for
frequently accessed tables by placing them into the remaining parts
of the first four memory pages, as shown in Figure 4b.
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b) Tables and other local data

Figure 4: Spread Memory Layout and Table Placement

Inthisway, frequently accessed dataitemsarevirtually locked inthe
cachefor fast access. Upto 12K Byte areavailablefor thismethod on
aPentium 11l CPU.

However, there are two disadvantages. the cache capacity for the
volume data set has essentially been reduced to one fourth, and the
required main memory size has been increased fourfold.

Let'sfirst consider the reduced cache size. For agood cache coher-
ence, we use the well-known technique of tile casting as shown in
Figure 5. Theideais, that voxels fetched for a given raypoint can
potentially be reused for many new raypoints in its 3D neighbor-
hood.

Plane n Plane n+1 -

Screen

Tile 16 Raypoints  One Iteration—> — -

Figure 5: Tile Casting, 4x4 Rays

Still, storing the voxelsin memory in anaive way (for example, off-
set = Z7 o Y7.0%X7..0) can produce thrashing since the observer

position is arbitrary. To avoid this, we use a cubic-interleaved
address function, i.e.,

(Z7...0’ Y7...0’ X7...0) - Z7Y7X7Z6Y6X6ZSYSXS'“

1
2 Z4Y X Z Y 400X5Z, Y, X7, Y1 X0 ZoY o X @



(In(1), weassumed 8-bit voxels. Thetwo zero bitsrealizethe spread
memory layout.) Then, any arbitrarily located cubic region of
dimension n occupies exactly nxnxn different cache locations (n

being a power of two, and n® < cache size). Thus, as long as the
bounding cube of the 16 raypointsfitsintothe cache, all voxel sneed-
ed for their processing can be cached without mutual replacement. If
the raypoint spacing is approximately the grid spacing, an 8x8x8
region can aways hold the 4x4 raypoints. In case of 8-bit (32-bit)
voxels, this requires as little as 512Byte (2K Byte) cache capacity.
Thus, even the algorithmically reduced cache capacity is sufficient
to achieve ahigh hit ratio. Another advantage isthat cachelinefills
always load a certain three-dimensional region.

However, the construction of the memory offset from the coordi-
nates of avoxel is quite complex. Here we use a table-based con-
version as reported in [14]. The bit patterns produced by the
individual coordinates are independent from each other, and can
therefore be looked up in three address trand ation tables (ATT) and
ORed together. Actually, two tables are always the same except for
aone-hit shift, seethe Y- and Z-patternsin (1). Thus, thememory off-
set Q of avoxd at X,Y,Zisgiven by

Q = ATTy(X; ) OATT(Y; O ATT(Z; o «1 2

The ATTs have 1KByte each and, as one might expect, are locked
into the cache using the technique just described.

Next, intermediate results for the 16 rays must be stored in a tile-
buffer. For each pixel, we storethe coordinatesand the plane number
of the current raypoint, the vector to the next raypoint (all vector
componentsina16.16 fixed-point format), and theaccumul ated col -
ors (8.8) and translucency (0.16). The pixel entries are organized as
a double-linked list for early ray termination (see section 3.8).
1K Byteisallocated for the tilebuffer in the cache, aswell asfor al
local variables and rendering parameters.

The next class of tables are the color look-up tables (CLUT). A
CLUT is accessed by the interpolated 8-bit function value of aray-
point, yields a32-bit RGBa-quadruple and has 1K Byte. Each mate-
rial has its own CLUT. Thus, the size of all CLUTSs exceeds the
remaining cache capacity. However, the CLUTsare stored such that
they can only replace themselves in the cache. Furthermore, ele-
mentsof uptofour CLUTscanbekept inthecache. Thus, if the data
set has four materials or less, thisis again approximate to having a
dedicated on-chip RAM.

Finally included in the spread memory layout isan accel eration data
structure (ADS) for empty space skipping (see section 3.7). This
gives the memory layout as shown in Figure 6.
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Figure 6: Spread Memory Layout

Although the addressing scheme and the memory layout seem to be
quite convoluted, they arewell worth the effort asoutlined in section
4. A single cache miss can consume as much time as literally hun-
dreds of CPU operations.

It should be noted, though, that the cache structure can only bemain-
tained during the actual frame generation. If the system executesthe
user interface, or during API calls or task switches, this cache struc-
ture will be corrupted.

The disadvantage of the increased memory footprint is simply the
price we pay for high performance. However, memory capacity is
much more easily available than bandwidth.

3.3 Ray-Volume Intersection Tests

Conditional branches can severely reduce performance on today’s
deeply pipelined CPUs. For perspective raycasting from arbitrary
viewpoints, the ray-volume intersection calculation is subject to
these problems, even in the optimized form as given in [18]. How-
ever, SSE and amodificationto [18] allow an optimized algorithmto
be used, which removes all conditional branches. As shownin Fig-
ure 7, the observer can bein 27 sub-spaces: either inside the data set
(not considered here) or outside with one, two or threefacesvisible.
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Figure 7: Intersection Tests

Given observer position E and aviewi ng ray R, the intersection
point P with any of the volume facesis given by

P=E+t[R 3
One coordinate of P isalwaysknown, and sot isdetermined. Inthe
case of theface x = max,,

max, —E

t= —2— ©)
Ry
A maximum of three different candidates exist, for example
k= L .Y
R, R, R, Ry
©)
) max,—-E, Q,
3 RZ RZ

Thejust defined vector Q isconstant for agiven viewpoint, and can
therefore be precomputed as
min, —E

X for E,<min,

Qy = | max,—E, for E, > max, (6)

0 else



(Qy and Qz accordingly). After performing (5), the one possiblecan-
didate must beisolated. Since thebounding box of thedatasetiscon-
vex, tisgiven by

t = max(ty, t,, ty) (M

Thus, by using (5)-(7), all 26 cases have been reduced to one. After

performing (3), however, the resulting intersection point P must
still be tested for being on the bounding volume of the data set. The
following relations must be satisfied:

min, <P, <max,) O(min, <P, < max,)J (min, <P, < max
X X X y y y z z y4

A fast SSE implementation of thisagorithmisoutlined in Figure 8,
which usesthe SSE operations RCP (fast reciprocal, 2 cycle latency

with a maximum absolute error of 1.5x2°12), MUL, MAX (returns
themaximain four pairs), CMP (returnsall “1" if true, elseall “0” in
destination register), AND (bitwisesAND) andMOVMASK (special
instruction which transfersthefour sign bitsinto an integer register).
Notethat we perform 16 intersection testsin oneloop (see Figure 5),
and that most constants can be kept in the SSE registers during that

operation for further speedup.t
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- t t t
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Intersection Point is valid if {Bit2,Bit1,Bit0} = {111}

Figure 8: Fast Ray-Volume Intersection Test Using SSE

1 The problematic case +o x 0 is forced to 0 by using a bitmask
derived from (3 . Not shown for clarity.

3.4 Fetching the Voxels from Memory

It should be noted that only three accesses to the ATTs need to be
done per raypoint for thetri-linear interpolation. Thisisbecause two
neighboring table entries can beloaded into an MM X -register in one

access, e.9., ATT (L x]) and ATT( x7) , x being the x-coordinate

of theraypoint. From these six bit patterns, all eight voxel addresses
are constructed by logical operations according to (2).

3.5 Tri-Linear Interpolation and Classifica-
tion

If the dataset containsmaterial identifiers, thefirst step for each ray-
point isto fetch the identifier of the nearest-neighbor voxel. Thisis
the material i which isassigned to theraypoint. The user can disable
materialsindividualy, if that hasbeen donefor i, theraypoint isdis-
carded. Otherwise the eight neighboring voxels are fetched. The
material identifiers of all voxels arethen comparedtoi. In case of a
mismatch, the corresponding voxel is set to zero. This generates
crisp material boundaries, especially if gradient shading is used.
For thetri-linear interpolation we can expl oit the M ultiply-and-Add
MM X-instruction, which can be used to perform two linear interpo-
lations. Thus, four such instructions are needed for one tri-linear
interpolation. If gradients are present, the components aretri-linear-
ly interpolated as well.

The resulting raypoint value Vp is checked against a user-supplied

threshold and, if above, used as index into the proper CLUT, i.e,,
Cy, p ap = CLUT;(Vp) with A={RG,B}.

3.6 Gradient Shading

For data sets which include gradients, the following illumination
model is evaluated for each (valid) raypoint:

3
p= ka,iEC)\,P’“kd,iEC)\,PZ E”m[“é’tm”+ 8

m=20

3
Z m Cmax(n; |G Hm|| +a,

In(8), I) pisthelightintensity of araypoint emitted towardstheeye,
ka, kg and kg are the ambient, diffuse and specular reflection coef-

ficients, respectively, i denotes the material identifier, Lm isthe
direction to the m-th light source with brightness By, and

Viin

A
"

(Also, kg = 1Ky ;-

Thetwo remaining quantities nj and a; and the second and third term
in (8) require more explanation.

These terms are computed in floating-point format using SSE. The
interpolated gradient is transferred to the SSE-unit and normalized
using the fast Square-Root-Reciprocal SSE-instruction (same per-
formance as RCP, see column to the left).

We assume white light sources at infinity. The light directions are
alwaysrelativetothemain viewing direction, i.e., thedirection from
the eye to the center of the screen. One light direction is just that
(similar tominer’ shelmet), the other onesare 45° from theright, left
and above. Using the absol ute value of the dot productsimplements
two-sided shading.

For the specular (third) term in (8), anumber of simplifications are

made. First, weassume aconstant viewing vector v pertile(only for



the shading, not for theraycasting) asthedirection from thecenter of

thetileto theeye. Thus, the vectors Hm are also constant and can be
precomputed prior to therendering of agiventile. Second, the expo-
nentiation isreplaced by a multiplication, an add and aclamp. This
isoutlinedin Figure9. Essentially, the cosineisstretched by the mul -

max(n*cos(x) + a, 0) cos(x)

cosY(x)

-1.5 -1 -0.5 ] 0.5 1 15
®

Figure 9: Exponentiation Replacement

tiplication and shifted such that n Ccos(0) +a = 1, from whichit

followsthat a = 1—n.1

This method shows a number of advantages. First, the function is
smooth around the origin whereit isrequired most, evenfor largen.
This stands in contrast to table-based methods, which are always
proneto produce aiasing for narrow highlights. Second, the largest
deviation occurs for small values, and so the discontinuity may not
even be noticeable. Also, the approximation gets better for large n.
Finally, the method is computationally inexpensive since it avoids
the exponentiation.

Depending on the rendering mode, many products of the specular
term can be precomputed, i nwhich case the computing requirements
are in the same order as diffuse shading.

SSE can speed up therequired computations significantly. An exam-
pleis shown in Figure 10, which computes four dot products using

XMMO Lay Loy Lax Lox

XMM1 Lay Loy Lay Loy

XMM2 Ls, Lo, Ly, Loz 2 ADDs
XMM3 Gy Gy Gy Gy

XMM4 | Gy Gy Gy Gy

XMM5 G, G, G, G, 3 MULs

Figure 10: Computation of four Dot Products

only five SSE instructions and also showswhy thereare exactly four
light sources.

Notethat the user can set ky, kq and nfor each material , and thus con-
trol the appearance (glossiness etc.) of each material individually.
Also, the user can set athreshold for the gradient magnitude below
which no shading is done. This can be used to highlight structures
inside the volume data set.

3.7 Empty Space Skipping
For empty space skipping, we use aseparate accel eration data struc-

1 Itis of course not the task to find an n which best approximates the

shape of a given cos?(x). The user can simply adjust n until the
results are satisfactory.

ture (ADS). Other than any form of Distance Coding [19], weusejust
one bit to indicate whether or not aregion of size 2x2x2 is empty.
Notethat for such aregion 27 voxelsareconsidered, and that thedata
set is divided into such regionsin a space-filling manner.

A regionisnot empty if at least onevoxel bel ongsto amateria which
is not currently disabled, and its value is above the user-supplied
threshold for that material.

The bits are written into the ULTRAVIS memory structure such that
onebyte and one quadword (64 bits) describe aregion of size4x4x4
and 8x8x8, respectively.

Although the ADS itself is not hierarchical, the operations we per-
form on its elements are so (a technique called hierarchy compres-
sion). Thisis because we can load one quadword in asingle access
intoan MM X-register and test it for being all zeroinonesingle oper-
ation. If thetest fail s, we cantest anindividual byteinthat quadword,
and finally asingle bit.

If aregionisfound empty, the plane of thenext raypoint on the actual
ray iscomputed using atechnique similar to that described in section
3.3 (see also Figure 5). This plane number is written into the tile-
buffer. Processing of all intermediate raypointson that ray basically
involves one read from the tile-buffer and one compare.
Additionally, if aregion is found solid (not a single bit indicates
“empty”), theplane number for which the next empty spacetest must
be performed iscomputed, and also written into the tile-buffer. This
reduces the overhead of empty space skipping.

The ADSisrebuilt each time after the user either switchesamateria
on or off or adjuststhe thresholds. In case of asequence of data sets,
each data set has its own ADS. Since the overhead of empty space
skipping does not always pay off, the user can switch it on and off at
any time.

3.8 Compositing and Early Ray Termination

Currently, thesystem only supportsstandard a pha-blending [11]. In
case the accumulated translucency of the actual ray hasfallen below
auser-supplied threshold, itsentry inthetilebuffer isremoved from
the double-linked list. Thus, despite the tile-oriented processing,
these rays do no longer consume processing time.

3.9 DirectDraw

Using DirectDraw, an off-screen double buffer of 256x256 pixels
each (whichisalso the number of raysshot per frame) isallocated in
the video memory of the graphics adapter, and made availableto the
rendering threads. Each completed tile is written from the on-chip
cache viaMMX registers directly to the video memory using non-
temporal store instructions to avoid cache pollution [4]. After the
frameiscompleted, it is copied to the visible frame buffer and at the
sametime magnified to the final imageresol ution of 512x512 pixels
using 2D graphics hardware, again under control of DirectDraw.
In case of subsampling during motion, 128x128 rays are shot
through the volume. The resulting 128x128 pixel images are again
magnified to 512x512 screen pixels using fast 2D hardware. Thus,
the speed-up istypically greater than 3.5.

3.10 Multi-Threading

For each CPU inthe PC, the UL TRAV IS System createsonerendering
thread. We use screen-space partitioning in units of 4x4 pixel tiles.
For an even workload, the threads assign themselves tiles using a
shared tile counter (dynamic self-scheduling).

3.11 Volume Animation

All data setsin a sequence must fit into main memory for maximum
performance. The threads run continuously in wrap-around mode.
Still, however, the user has compl ete control over the operation and
can move the data set and adjust rendering parameters while the ani-
mation is running, due to the multi-threaded architecture.



4 PERFORMANCE

Thetest machineisan HP Kayak XU PC withtwo 500MHz Pentium
111 CPUs, 1GByte of main memory and a graphics adapter using the
TNT2 Ultrafrom NVidia. The test data sets are frequently used as
benchmarks: engine and MRI-head (courtesy UNC Chapel Hill).
The latter contains material identifiers for four tissue types. Both
data sets have about 256x256x110 voxels, however, the actual
bounding box can be smaller depending on the threshold val ues.
The VTune-tool from Intel, which monitors the CPU performance
using the various event counters of the processor, was used to mea-
sure the following performance details.

4.1 Ray-Volume Intersection Test

The pure ray-volume intersection test as shown in Figure 8 (includ-
ing all move, shuffle and logical instructions, but excluding type
conversion of the results) was implemented using 26 assembler
instructions. One test takes 30.82 clocks on average, and thus, the
intersection tests for one tile are performed in approximately 1us.

4.2 Tri-Linear Interpolation

Decomposed into seven linear interpolations and performed using
the Multiply-and-Add MM X-instruction, the tri-linear interpola-
tions were implemented using between 14 (V) and 30 (IGV) assem-
bler instructions. Onetri-linear interpol ati on takes between 12.6 and
19.5 clockson average, giving aperformance of 25M to 40M tri-lin-

ear interpolations per second per CPU. 1

4.3 Diffuse Shading

For GV and |GV, the user can select between no shading, diffuse-
only shading and combined diffuse and specular shading. Diffuse
shading (including gradient normalization) was implemented using
33 (GV) or 35(IGV) assembl er instructions. Diffuse shading for one
raypoint takes about 53 clocks or 106ns on average.

4.4 Diffuse and Specular Shading

For GV, combined diffuseand specular shading asdefined in (8) was
implemented in 54 assembler instructions and takes 72.5 clocks or
145ns on average. Thus, this simplified method of generating high-
lights increases the computational expenses of diffuse shading by
only about 37% in this case.

For IGV, fewer terms can be precomputed since they depend on the
material identifier of the raypoint. Thus, 70 instructions are needed,
whichtake 102 clocksor 204nson average per raypoint. Notethat all
performance figures include the processing of four light sources.

45 Cache Hit Rate

For the images in Figure 11, we measured the cache hit rates for
accessestothe AddressTrand ation Tables(ATT), tothevolumedata
setandtothe CLUTSs. MissestoboththeL 1and L 2 cacheshavebeen
counted. One L2 data cache miss aways causes 32 bytesto be read
from main memory [3]. The measurements have been done using a
single-threaded version of the program. Theresultsare summarized
in Table 2.

In all cases, the images have been generated using tri-linear inter-

1 The ray-volume intersection test needs 20 arithmetic FP operations.
Thus, a 500MHz Pentium 111 CPU achieves 1.19 clocks per instruc-
tion (CPl), 1.54 clocks per floating-point operation and
324MFLOPS in this part of the algorithm. In our implementation, a
tri-linear interpolation accounts for 24 arithmetic integer operations.
In case of V, one CPU achieves 0.9CPI and 0.53 clocks per arith-
metic integer operation. Thus, a 500MHz CPU achieves 952M10PS
here.

polation, empty space skipping and early ray termination with the
transl ucency threshold set to 1/256. The raypoint distance was set to
0.75 grid units.

For Figures 11a-c, empty spacewas defined as the set of voxelswith
values below 30. Thresholds for the four different tissue types cere-
brum, cerebellum, brain stem and all remaining tissuewere {25, 21,
23,-} (Figure11d), {25, 21, 23, 41} (Figure1le) and{51, 16, 6, 38}
(Figure 11f).

For the engine data set, each raypoint in non-empty space requires
three accessestothe AT Tsand eight accesses to the volume data set.
The CLUT isonly accessed for raypoints whose values after tri-lin-
ear interpol ation exceed the threshold.

For the MRI-head, each raypoint in non-empty space first requires
threeaccessesto the ATTs and oneto the volume data set in order to
determinethematerial identifier of theraypoint. If the materia isnot
switched off, another three accessesto the AT Tsand eight to thevol-
ume data set follow. Since no materials are switched off in Figures
1leandf, column 4 = 6xcolumn 3 and column 6 = 9xcolumn 3. This
doesn’t hold for Figure 11d, since raypointsin non-empty space can
still bein disabled material. Again, the CLUTsare only accessed for
raypoints exceeding the corresponding threshol d.

Ascanbeseenin Table2, themechanismtovirtually lock dataitems
in the cache works very well. Note that columns 5 and 11 show the
total number of cache missesduring frame generation for accessesto
the ATTs and CLUTS, respectively. In many cases the numbers
imply that table elements are read from memory only once.
Equally important is the very high cache hit rate for accesses to the
volumedatasetinmain memory, which can exceed 98% (column 8).
These results demonstrate the efficiency of the spread memory lay-
out and the cubic-interleaved address function, and give reason to
hope that the performance of the ULTRAV S system will scale well
with the CPU clock frequency.

4.6 Frame Rates

The frame rates were measured using the high-resolution perfor-
mance counter of the PC. The rendering parameterswerethe sameas
above, except that both CPUs were used. Subsampling during
motion was disabled. Table 1 summarizes the ULTRAVIS perfor-
mance on our test machine.

Fig. Voxeltype Frames/s Typ. Range
1la v 10 6-14
11b v 2.2 15-25
11c GV 8 6-11
11d 1Y 6.2 4-7
1le v 1.7 15-25
11f IGV 2.2 1.7-3

Table 1: Frame Rates (Examples)

5 CONCLUSIONS AND FUTURE WORK

While it is undisputed that special-purpose hardware accelerators
will always be superior in performance, efficient use of advanced
features of general-purpose CPUs can still result in auseful volume
rendering system. Furthermore, substantial performance leaps can
be anticipated for the CPUs and PC systems of the near future, from
which the ULTRAVIS system will benefit automatically.

It is planned to include support for additional voxel types such as
RGB, RGBa and IRGBa, aswell as support for the mixed rendering
of polygonal and volume data.



1 2 3 4 5 6 7 8 9 10 11
Bytes
ngpoints Cache Cache Hit read Accesses | Cache
o, | e | ren [eseee | wses || e | S o | e
Space L1/L2 L1/L2 (%) Data Set CLUTs L1/L2
(KB)
11a \% 378,156 1,134,468 58/58 3,025,248 32,169/ 17,501 98.9/99.4 547 270,712 29/29
11b 2,588,550 g 7,765,650 57 /57 |§20,708,400 | 232,244 /116,385 | 98.9/99.4 3,637 2,173,670 | 29/29
11c GV 319,143 957,429 124/ 58 2,553,144 98,185/ 56,125 96.2/97.8 1,754 211,059 29/29
11d \% 674,783 3,538,812 90/90 4,713,351 61,980 / 49,952 98.7/98.9 1,561 497,921 48 /48
11le \Y, 2,416,976 | 14,501,856 | 118/118 21,752,784 | 424,562/ 268,059 | 98.0/98.8 8,376 1,886,104 | 91/68
11f IGV 1,064,492 § 6,386,952 | 239/119 j 9,580,428 | 363,976/184,496 | 96.2/98.1 5,766 627,973 61/60

1 Raypoints in non-empty space, belonging to enabled material: 504,821

Table 2: Cache Hit Rates

2 Measurement had to be terminated prior to image completion due to prohibitively long simulation times.
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Figure 11: Sample Images, generated from 2562 Rays
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