
ar
X

iv
:c

s.
D

C
/0

40
40

13
 v

1
 5

 A
pr

 2
00

4

Tycoon: a Distributed Market-based
Resource Allocation System

Kevin Lai Bernardo A. Huberman Leslie Fine
{klai, bernardo.huberman, leslie.fine}@hp.com

HP Labs

September 8, 2004

Abstract

P2P clusters like the Grid and PlanetLab enable in prin-
ciple the same statistical multiplexing efficiency gains
for computing as the Internet provides for networking.
The key unsolved problem is resource allocation. Exist-
ing solutions are not economically efficient and require
high latency to acquire resources. We designed and im-
plementedTycoon, a market based distributed resource
allocation system based on anAuction Shareschedul-
ing algorithm. Preliminary results show that Tycoon
achieves low latency and high fairness while providing
incentives for truth-telling on the part of strategic users.

1 Introduction

A key advantage of peer-to-peer clusters like the Grid
and PlanetLab is their ability to pool together compu-
tational resources that can then be shared among peers.
This allows increased throughput because of statistical
multiplexing and the fact that users have a bursty uti-
lization pattern. Sharing of nodes dispersed in the net-
work structure allows lower delay because applications
can store data close to potential users. Sharing allows
greater reliability because of redundancy in hosts and
network connections. Finally, sharing allows all of this
at lower cost than a comparable private system.

The key problem for sharing resources in distributed
systems is allocation. Allocation is an issue because de-
mand grows to fill the available capacity. The resource
demands of data mining, scientific computing, render-
ing, and Internet services have kept pace with hardware
improvements. Problems in resource allocation are: the
existence ofstrategic users who act in their own in-
terests, a rapidly changing and unpredictable demand,
and hundreds or thousands of unreliable hosts which

are physically and administratively distributed. In this
paper we compare resource allocation systems on the
basis of: a) theireconomic efficiency, which is the per-
centage ofsurplus that a system generates, where the
surplus for a transaction is the value of a resource to the
highest-valuing recipient minus the cost to the lowest-
cost provider; b) utilization, which is the percentage of
resources used; latency, which is the time to complete a
task; c) risk, which is the lower bound on the resources
a task obtains in a time interval; and d) fairness; which
is the correlation between the actual distribution of util-
ity to users to the desired distribution.

The common approach to this problem is to use a
Proportional Share[11] scheduler, where users have no
incentive to honestly report the value of their tasks. As
a result, unimportant tasks get as much resources as
critical jobs. Without further mechanisms, this causes
economic efficiency to decrease as load increases (see
Figure 1), eventually going to zero. To mitigate this,
users engage in “horse trading” where one user agrees
not to run a unimportant jobs when another user is run-
ning a critical one in exchange for the return favor in
the future. This process imposes excess latency and
work on users. Another approach is to use combinato-
rial optimization algorithms [5] to compute a schedule.
However, optimal algorithms are NP-hard and share the
Proportional Share problem of not eliciting users’ true
value for tasks.

We use an economic approach based on auctions.
Economic approaches explicitly assume that users are
strategic and that supply and demand vary significantly
over time. We use astrategyproof mechanism to en-
courage users to reveal their true need for a resource,
which allows the system to maximize economic effi-
ciency.

However, existing economic resource allocation sys-

1

tems vary in how they abstract resources. The Spawn
system [13] abstracts resources as reservations for spe-
cific hosts at fixed times. This is similar to the way that
airline seats are allocated. Although reservations allow
low risk and low latency, the utilization is also low be-
cause some tasks do not use their entire reservations.
Service applications (e.g., web serving, database serv-
ing, and overlay network routing) result in particularly
low utilization because they typically have bursty and
unpredictable loads. An alternative is to combine Pro-
portional Share with a market mechanism [1]. This of-
fers higher utilization than reservations, but also higher
latency and higher risk.

Our contributions are the design and implementa-
tion of Tycoon, a distributed market-based resource al-
location architecture, and ofAuction Share, a local re-
source scheduler.Tycoondistinguishes itself from other
systems in that it separates the allocation mechanism
(which provides incentives) from the agent strategy
(which interprets preferences). This simplifies the sys-
tem and allows specialization of agent strategies for
different applications while providing incentives for
applications to use resources efficiently and resource
providers to provide valuable resources.Tycoon’sdis-
tributed markets allows the system to be fault-tolerant
and to allocate resources with low latency.Auction
Share is the local scheduling component ofTycoon.
As we show, it distinguishes itself from market-based
reservations and proportional share by being high uti-
lization, low latency, low risk, and fair.

In § 2, we review related work in cluster resource
allocation and scheduling. In§ 3, we describe theTy-
coonarchitecture. In§ 4, we describe theAuction Share
scheduler. We conclude in§ 5.

2 Related Work

In this section, we describe related work in resource al-
location. There are two main groups: those that con-
sider the problem of strategic users (the economic ap-
proach) and those that do not (the computer science ap-
proach).

Examples of systems that use the economic approach
are Spawn [13], the Millennium resource allocator [1],
and work by Stoica, et al. [9]. These systems are
strategyproof. A strategyproof mechanism forces truth-
telling to be the dominant strategy for each entity re-
gardless of the behavior of other entities. This ensures

that rational entities will tell the truth about their pref-
erences (e.g., how important particular resources are to
them) and allow the overall system to be economically
efficient. As a result, these systems mitigate the effect
of strategic users. These systems differ in how they ab-
stract resources. Spawn uses a reservation abstraction
that results in low latency, low risk and low utilization
(as described in§ 1. The Millennium resource alloca-
tor uses Proportional Share, described in more detail
below. Stoica, et al. use a centralized priority queue of
tasks that is not suitable for a P2P system like Planet-
Lab.

Proportional Share (PS) [11] is one of the non-
economic resource allocators. Each PS processi has a
weight wi. The share of a resource that processi re-
ceives over some intervalt wheren processes are run-
ning is

wi

n−1∑

j=0

wj

. (1)

PS maximizes utilization because it always provides re-
sources to needy processes. Most recent work [14] [8]
on PS has focused on computationally efficient and fair
implementations, where fair is defined as having a min-
imal difference between the actual allocation and the
ideal one. We show in§ 4.2 that the Auction Share
(AS) scheduler is fair and computationally efficient.
One problem with PS is its high risk, where risk is de-
fined as the lower bound on the resources a process can
obtain in a time interval. A process’s share goes to zero
as the sum of weights increases. Stoica, et al. [7] show
that a PS scheduler can fix the shares of processes that
need controlled risk while varying the shares of other
processes. This is the approach we use in the AS sched-
uler to control risk.

Another issue is latency. Any one process must wait
for all the others run. This delay makes no difference
to a batch application like a renderer, but could signif-
icantly affect a service application like a web server.
As described in§ 4.2, PS scheduling can increase la-
tency by a factor of 10 even for four processes. Bor-
rowed Virtual Time (BVT) [2] schedulers are a form
of PS scheduler that addresses this problem. Our Auc-
tion Share (AS) scheduler is similar to BVT in that it
considers scheduling latency and uses admission con-
trol to reduce risk. However, AS is a simpler abstraction
than BVT. BVT processes must specify three variables:

2

a warp value, a warp time limit, and an unwarp time
requirement. In contrast, AS processes only need to
specify one: an expected number of processor-seconds
needed during an interval (the interval is the same for
all the processes if none are part of a distributed ap-
plication, as BVT assumes). Also, if an application in-
correctly sets its BVT parameters, it can significantly
affect the performance of other applications. In§ 4.2,
we show that if an AS process sets its parameter incor-
rectly, it only affects its own performance.

Lottery scheduling [14] is a PS-based abstraction that
is similar to the economic approach in that processes
are issued tickets that represent their allocations. Sulli-
van and Seltzer [10] extend this to allow processes to
barter these tickets. Although this work provides the
software infrastructure for an economic mechanism1,
it does not provide the mechanism itself.

Similarly, SHARP [3] provides the distributed in-
frastructure to manage tickets, but not the mechanism
or bartering agent strategies. In addition, SHARP and
work by Urgaonkar, et al. [12] use an overbooking re-
source abstraction instead of PS. An overbooking sys-
tem promises probabilistic resources to applications.
Overbooking has essentially the same risk as PS be-
cause in the worst case, unexpected demand can deprive
an application of its resources.

Another class of non-economic algorithms are those
based on combinatorial optimization [4] [5]. This ap-
proach assumes that the load is deterministic and uses a
centralized NP-hard algorithm to compute the optimal
algorithm. As a result, it would perform poorly with the
rapidly changing and unpredictable loads typical on the
Grid and PlanetLab. In addition, the centralized opti-
mizer would impose bottlenecks and decrease the reli-
ability of an otherwise decentralized system.

3 Tycoon

In this section, we describe theTycoondesign prin-
ciples and architecture and provide some preliminary
simulation results demonstrating its properties.

3.1 Design Principles

We use two design principles in the design of theTy-
coonarchitecture: separation of mechanism and strat-

1By mechanismwe mean the system that provides an in-
centive for users to reveal the truth (e.g., an auction)

egy and distribution of allocation. Separation of mech-
anism and strategy is important because they have dif-
ferent requirements and consequences for complexity,
security, and efficiency.

A strategy interprets a user’s and an application’s
high level preferences for how an application should
be run into valuations of resources. For example,
web server may be more concerned with latency than
throughput and is therefore willing to consume a few
resources on many hosts in the hope one of its hosts
will be close to a new client. A database server or a ren-
dering application is willing to make a different trade-
off. Such preferences may not even be be technical: an
application distributing sensitive information may wish
to avoid hosts in certain countries. As a result of this
diversity of preferences, strategies that are specialized
to particular users and applications are more efficient
than those that are not. However, if a resource alloca-
tion system were to incorporate strategies as part of
its mechanism, it would either have to limit the pref-
erences of applications or increase the complexity of
its mechanism. Examples of the former approach are
the system by Urgaonkar, et al. [12], which optimizes
for throughout and shortest-job-first allocation, which
optimizes for latency.

A mechanism provides incentives for users to truth-
fully reveal their values for resources and for providers
to provide desirable resources. The mechanism also
needs to provide primitives for expressing preferences.
Tycoonallows applications to specify on which hosts
they wish to run and theAuction Sharescheduler allows
them to specify how they wish to tradeoff throughput,
latency, and risk. The mechanism is critical to the secu-
rity and efficiency of the system, so it must be simple
to understand and implement.

By separating strategy and mechanism, we allow the
mechanism to be simple while not limiting the prefer-
ences expressed by users and applications. Instead,Ty-
coonprovides incentives for users and application writ-
ers to specialize and optimize strategies. This principle
is similar to the original conception of how functional-
ity should be split between an operating system kernel
and applications (and was applied again with microker-
nels) and the end-to-end argument [6] for how function-
ality should be split in computer networks.

The otherTycoondesign principle is distribution of
allocation. Since our motivation is to allocate resources
for very large systems like the Grid or PlanetLab, we

3

distribute the allocation of resources as much as pos-
sible (the bank is still centralized, as described below).
This increases reliability because the failure of one host
will not prevent allocating resources on another. In ad-
dition, distribution mitigates accidental or malicious
misbehavior by one host (e.g., charging credits with-
out providing resources). Users or parent agents (see
below) will eventually notice that some hosts have poor
price/performance and run on other hosts. Finally, dis-
tributed allocation reduces the latency to change allo-
cations because all allocation decisions are made local
to a host.

3.2 Architecture

Using the principles described in the previous section,
we splitTycooninto the following components: Parent
Agent, Child Agent, Auctioneer, Service Location Ser-
vice, and Bank. The Parent Agent and Child Agent im-
plement the strategy, while the Auctioneer implements
the mechanism. The Service Location Service and the
Bank are infrastructure.

• Parent Agent: The parent agent does all high-
level distributed resource management on behalf
of a user. Its two main tasks are budgeting and
managing child agents. Budgeting is important be-
cause it removes the burden of managing budgets
from the user (at the cost of some flexibility). Par-
ent agents should be specialized for specific appli-
cations, but our current implementation includes
a sample parent agent for batch application. The
user specifies a number of credits, a deadline, and
number of hosts to run on. If the user specifies to
spend $700 for 100 minutes on seven hosts, then
the batch parent agent budgets $1 for each host per
minute.

Managing the child agents is important because
some hosts may be more cost-effective than oth-
ers. This may be because heterogeneity in the
host platform or because one host is more lightly
loaded than another. The batch parent agent mon-
itors progress and costs associated with candidate
hosts by querying the child agents. If a child agent
has a low performance to cost ratio, it kills the
child agent and associated application process run-
ning on that host. It replaces that child agent with a
randomly selected host in the hopes that it will per-
form better. The key concern with this algorithm

is the overhead associated with copying code to a
new host, especially if it is not significantly better
than the old candidates. We are still evaluating the
effectiveness of this algorithm.

• Child Agent: Child agents bid for resources on
hosts and monitor application progress. Although
we describe a child agent as “bidding”, a child
agent actually transfers a lump sum to the auction-
eer which then does the fine-grained bidding itself
(described in more detail in§ 4. This is more effi-
cient than communication between the child agent
and the auctioneer and removes the need to com-
municate frequently with the bank. Child agents
monitor application progress by maintaining ap-
plication specific statistics, e.g., the latency and
throughput of transactions on a web server or the
rate of frames rendered for a rendering applica-
tion.

• Auctioneer: Auctioneers schedule local resources
in a way that approximates proportional share,
but allows flexibility for latency-sensitive and
risk-averse applications. Auctioneers do efficient
first or second price sealed bid auctions for fine-
grained resources, e.g., 10 ms CPU timeslices.
This allows for high utilization and the agility to
adapt very quickly to changes in demand and/or
supply. We describe this mechanism in more de-
tail in § 4.

• Bank: The bank maintains account balances for
all users and providers. The two key issues with
the bank are security and funding policy. The se-
curity problem is counterfeiting of currency. We
deal with this problem by only allowing transfers
between accounts. Users pay providers by directly
transferring funds from one account to another.
This prevents counterfeiting, but involves the bank
in all transactions, which could limit scalability.
We intend to examine this, but we do not believe
it will be a problem in practice because (as de-
scribed above) transfers only occur when a child
agent 1) initially funds its application, 2) refreshes
those funds when they are exhausted, and 3) the
parent agent’s budget changes.

Funding policy determines how users obtain
funds. We defineopen loopandclosed loopfund-
ing policies. In an open loop funding policy, users

4

receive an allotment of funds when they join and
at set intervals. The system administrators set their
income rate based on exogenously determined
priorities. Providers accumulate funds and return
them to the system administrators. In a closed loop
(or peer-to-peer) funding policy, users themselves
bring resources to the system when they join. They
receive an initial allotment of funds, but they do
not receive funding grants after joining. Instead,
they must earn funds by enticing other users to
pay for their resources. A closed loop funding
policy is preferable because it encourages service
providers to provide desirable resources and there-
fore should result in higher economic efficiency.

• Service Location Service (SLS): Parent agents
use the SLS to locate particular kinds of resources
and auctioneers use it to advertise resources. Al-
though we currently use a simple centralized soft-
state server, we can use any of the distributed SLSs
described in the literature. The key point is thatTy-
coon does not require strong consistency. Parent
agents monitor and optimize the end-to-end per-
formance of their applications, so stale informa-
tion in the SLS will simply delay the parent agent’s
from converging on an efficient set of resources.

3.3 Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

M
ea

n
U

til
ity

 /
Ti

m
e

Task Mean Interarrival

No Market, Obedient
No Market, Strategic

Market, Strategic

Figure 1:The utility of different user behaviors and mecha-
nism as a function of system load.

We have preliminary simulation results. These re-
sults show that a market for computational resources ef-
fectively maintains a high utility despite strategic users.
For the simulations in this section, we use a market-
based proportional share instead of theAuction Share

described in§ 4. We use a separate simulator for the
Auction Sharescheduler. This is our initial approach
because theTycoonsimulator simulates events on many
hosts on large timescales while theAuction Sharesimu-
lator simulates events on one host on small time scales.
We are working on merging the simulators.

The simulation results are of 100 users submitting
tasks with a Poisson inter-arrival time. The simulation
runs for 1000 seconds. There are ten hosts available for
running tasks. We assume in the simulation that there
is no overhead for distributing and starting tasks. The
size and deadline of the tasks are also from a Poisson
distribution. Each task has a value selected uniformly
at random from(0, 1]. If a task completes by the dead-
line, then the user receivesvalue ∗ size utility, other-
wise nothing. We simulate three different user behav-
iors: obedient, strategic without a market, and strate-
gic with a market. Obedient users assign a Proportional
Share weight to their tasks equal to the task’s value.
Non-market strategic users assign the maximum possi-
ble weight to all their tasks. Market strategic users have
a limited budget for assigning weights. These users
have an income of $1 per time unit. They can save this
income or spend it by assigning some of it as the weight
of one of their tasks.

Market strategic users use abudgetingstrategy. They
assign weights at each host at each time unit to be

balance ∗ value

num hosts ∗ (deadline − now)

where balance is the user’s current credit balance,
value is the value of the user’s currently most valu-
able task,num hosts is the number of hosts to run on,
deadline is the deadline of the currently most valuable
task, andnow is the current time.

Figure 1 shows the simulation results. The y-axis is
the mean utility per host per time unit. This cannot ex-
ceed 1.0, but the only way for that to be the maximum is
if there is always a value 1.0 task in the system, which is
not true in most cases. The y-axis shows the mean inter-
arrival of tasks in the system and is a measure of overall
system load. Each point in the graph is a run of the sim-
ulator. As the load increases to the left, the obedient
users without a market are able to maintain a high level
of utility. In contrast, the non-market strategic users are
able to maintain a high level of utility when the sys-
tem is moderately loaded (from 120 to 100), but when
the load saturates the system, utility drops to zero. This

5

is because the system wastes resources running tasks
that never meet their deadlines and therefore provide no
utility. As the number of tasks increases, this becomes
more likely. In a system without a mechanism or signif-
icant social pressure, this is inevitable. With the market
mechanism, the strategic users are forced to truthfully
reveal the value of their tasks and the system can main-
tain a high utility.

4 Auction Share Scheduling

In this section, we describe theAuction Shareschedul-
ing component ofTycoonand use simulations to com-
pare it with Proportional Share scheduling.

4.1 Algorithm

TheAuction Sharescheduler achieves the high utiliza-
tion of a proportional share scheduler, the low latency
of a Borrowed Virtual Time scheduler, the low risk
of reservations, and the strategyproofness of a market
scheduler. In addition, it is fair and computationally ef-
ficient.

While we only describe the use of the auction
scheduling algorithm for CPU scheduling, it has a
straightforward extension to other resources like net-
work bandwidth and disk storage. For CPU scheduling,
the resources are 10ms timeslices of the processor. The
algorithm consists of child agents that bid for resources
for an application process and an auctioneer that re-
solves the bids, allocates resources, and collects cred-
its. In a typical operating system like Linux, part of the
auctioneer resides in the kernel’s processor scheduler.

Each child agenti has a balance ofbi credits, an
expected funding interval ofE(ti), and an expected
number of processor-seconds needed duringE(ti) of
qi. A parent agent funds its child agents periodically in
proportion to their importance to it (§ 3 describes this
budgeting process in more detail).E(ti) is the average
amount of time between such fundings. We assume that
E(ti) is on the order of seconds and therefore large rel-
ative to the timeslice size.

The child agent of a batch application setsqi to be
E(ti) in processor-seconds because batch application
want to run as much as possible. The child agent of a
delay-sensitive application setsqi to be less thanE(ti)
because the application is willing to sacrifice some
processor-seconds for lower delay. For example, a web

server is willing to sleep sometimes in return for hav-
ing priority when a request comes in. More willing an
application is to trade throughput for delay, the smaller
its qi is relative to itsE(ti).

To allocate a timeslice, the auctioneer computes the
bid of each threadi as bi/qi. The auctioneer allo-
cates the timeslice to the thread with the highest bid.
After elapsed elapsed seconds, the running thread is
context-switched either because its allocation finished
or because another thread with a higher bid becomes
runnable. At this point, the thread pays its bid to the
auctioneer in proportion to the amount of elapsed time:

elapsed

timeslice
∗

bi

qi

The auctioneer then deducts this amount from the win-
ning process’s balance. Alternatively, the auctioneer
can charge the winning process the second highest bid-
der’s bid. We are still investigating the tradeoffs of us-
ing the first or second price.

This algorithm is strategyproof because it corre-
sponds to a series of first or second price sealed bid auc-
tions. The only difference is that theAuction Shareauc-
tioneer automatically computes bids for the clients in-
stead of having them do it. If they wish, clients can mi-
cromanage the bidding by changingqi, but only clients
that wish to change their latency-throughput tradeoff
gain anything from doing so.

Auction Shareis computationally efficient because
the only work the auctioneer needs to do each timeslice
is update the previous winning processes balance and
select the highest (and possibly second highest) current
bid. The scheduler implementations of current operat-
ing systems already do similar calculations at low over-
head. A typical implementation keeps process priori-
ties in a heap which allows the selection of the highest
value inO(1) time, and updating one of the values in
O(logn) time, wheren is the number of values. Chang-
ing qi and funding (which changesbi) will also require
O(logn), but these happen infrequently.

This basic algorithm has high utilization, low la-
tency, strategyproofness, fairness, and low overhead,
but it still has significant risk. The arrival of new child
agents will reduce the resources allocated to all the
other child agents using the processor. Some risk-averse
users would prefer having a higher lower bound on the
resources they receive in an interval instead of having
more total resources in that interval. An example is a

6

Algorithm Weight Yields
CPU

Scheduling
Error

Mean
Latency

Proportional
Share

1/10 yes 0.09 81 ms

Proportional
Share

7/10 yes 0.01 4.4 ms

Proportional
Share

7/10 no 1.16 4.7 ms

Auction Share 1/10 yes 0.01 3.6 ms

Auction Share 1/10 no 0.02 96 ms

Table 1: The scheduling error and latency for different
scheduling mechanisms with different application behaviors.

real-time process like a game server that would benefit
more from processing all its requests by their deadlines
rather than finishing some very quickly and some very
slowly.

To satisfy these processes,Auction Shareoffers a
form of reservation. The idea is to use recent history
as a guide to calculate a price for the reservation. A
process can request a percentage of the processr for
a time period ofp timeslices. In some cases, the auc-
tioneer must reject the reservation immediate because
it has already sold its limit of reservations. If this is
not the case, the auctioneer calculates the price for this
reservation as

(µ + σ) ∗ r ∗ p

whereµ is the average price per timeslice, andσ is the
standard deviation of the price. The process can either
reject this price, or pay it, in which case,p begins im-
mediately. During the reservation, the auctioneer enters
a proxy bid in its own auction such that the reserving
process always receivesr of the processor.

This assumes the price in the recent past is indica-
tive of the price in the near future and that price is
normally distributed. We are still investigating meth-
ods for pricing reservations when these assumptions do
not hold. Another issue is that the auctioneer must limit
how much of the resource is reserved and the length of
reservations to maintain liquidity in its market. We have
not determined how these limits should be set.

4.2 Results

Our simulation results demonstrate thatAuction Share
achieves high utilization, low latency, and high fairness

while providing an incentive for truth-telling to ratio-
nal users. A proportional share scheduler can achieve
high utilization and either low latency or fairness, but
not both, and it does not provide incentives for truth-
telling. We simulate a latency sensitive application like
a web server running with 3 batch applications on a sin-
gle processor. The desired long term processor share for
the web-serving application is 1/10. During each times-
lice, the web server has a 10% probability to receive a
request, which takes 10ms of CPU cycles to service.
Otherwise, the web server sleeps. The batch applica-
tions are always ready to run. For the proportional share
scheduler, we initially set the weight of the web server
and batch applications to be 1, 2, 3, and 4, respectively.
For the auction scheduler, we set the income rates to be
1, 2, 3, and 4. For the auction scheduler, the processes
are not funded at precise intervals. Instead, the income
rates specify the mean interarrival times of funding. We
run 1,000 timeslices of 10ms.

Table 1 shows the latency and fairness for differ-
ent mechanisms and different application behaviors.
“Weight” is the weight (for proportional share) or in-
come rate (for auction scheduling) given the web server.
“Yields CPU” is whether the web server correctly
yields the CPU after servicing a request. “Schedul-
ing Error” measures by how much the actual CPU
time used by applications deviates from the amount in-
tended. This is computed as the sum of the relative er-
rors for each of the applications. For example, 0.09 in-
dicates that the sum of the relative errors is 9%. Fairness
is inversely proportional to the scheduling error. “Mean
Latency” is the mean latency for the latency-sensitive
application to service requests.

The second row of Table 1 shows that proportional
share scheduling provides low error, but high latency.
Note that this latency is proportional to the total num-
ber of runnable processes in the system, which is only
four in our simulations. We can reduce the latency by
increasing the weight of the web server, as shown in the
third row. This assumes that the web server yields the
processor after finishing a request. However, a rational
user will exploit the extra weight granted to his appli-
cation to do other computations to his benefit. Unfortu-
nately, as shown in the fourth row, this is at the expense
of the overall fairness of the system.

With auction share scheduling, the weight of the web
server does not need to be boosted to achieve low la-
tency (as shown in the fifth row). More importantly, if

7

the web server mis-estimates the resources it requires
(accidentally or deliberately), as shown in the last row,
it only penalizes its own latency. The overall fairness
of the system remains high. This provides the incen-
tive for child agents to truthfully reveal their require-
ments for resources and therefore allows the system to
achieve high economic efficiency. In addition,Auction
Sharehas the same utilization as Proportional Share be-
cause the processor is always utilized.

5 Conclusion

The contributions of this paper are theTycoon dis-
tributed market-based resource allocation architec-
ture and theAuction Sharelocal resource scheduler.
Through simulation, we show that a market-based sys-
tem has greater utility than a non-market-based propor-
tional share system. In addition, we show through simu-
lation thatAuction Shareis high utilization, low latency,
and fair.

We are planning to implementAuction Sharein the
Linux kernel. Using this, we hope to deploy our imple-
mentation ofTycoonon a large cluster and take mea-
surements of realistic workloads.

References

[1] CHUN, B. N., AND CULLER, D. E. Market-based Pro-
portional Resource Sharing for Clusters. Technical Re-
port CSD-1092, University of California at Berkeley,
Computer Science Division, January 2000.

[2] DUDA , K. J., AND CHERITON, D. R. Borrowed-
Virtual-Time (BVT) scheduling: supporting latency-
sensitive threads in a general-purpose schedular. In
Symposium on Operating Systems Principles(1999),
pp. 261–276.

[3] FU, Y., CHASE, J., CHUN, B., SCHWAB, S., AND

VAHDAT, A. SHARP: An Architecture for Secure Re-
source Peering. InACM Symposium on Operating Sys-
tems Principles (SOSP)(October 2003).

[4] PAPADIMITRIOU , C. H.,AND STEIGLITZ , K. Combi-
natorial Optimization. Dover Publications, Inc., 1982.

[5] PINEDO, M. Scheduling. Prentice Hall, 2002.

[6] SALTZER, J. H., REED, D. P., AND CLARK , D. D.
End-to-end arguments in system design.ACM Trans-
actions on Computer Systems 2, 4 (1984), 277–288.

[7] STOICA, I., ABDEL-WAHAB , H., AND JEFFAY, K. On
the Duality between Resource Reservation and Propor-
tional Share Resource Allocation. InMultimedia Com-
puting and Networking(February 1997), vol. 3020 of
SPIE Proceedings Series, pp. 207–214.

[8] STOICA, I., ABDEL-WAHAB , H., JEFFAY, K.,
BARUAH , S., GEHRKE, J., AND PLAXTON , G. C. A
Proportional Share Resource Allocation Algorithm for
Real-Time, Time-Shared Systems. InIEEE Real-Time
Systems Symposium(December 1996).

[9] STOICA, I., ABDEL-WAHAB , H., AND POTHEN, A.
A Microeconomic Scheduler for Parallel Computers.
In Proceedings of the Workshop on Job Schedul-
ing Strategies for Parallel Processing(April 1995),
pp. 122–135.

[10] SULLIVAN , D. G., AND SELTZER, M. I. Isolation
with Flexibility: a Resource Management Framework
for Central Servers. InProceedings of the USENIX An-
nual Technical Conference(2000), pp. 337–350.

[11] TIJDEMAN, R. The Chairman Assignment Problem.
Discrete Mathematica 32(1980).

[12] URGAONKAR, B., SHENOY, P., AND ROSCOE, T.
Resource Overbooking and Application Profiling in
Shared Hosting Platforms. InProceedings of Oper-
ating Systems Design and Implementation(December
2002).

[13] WALDSPURGER, C. A., HOGG, T., HUBERMAN,
B. A., KEPHART, J. O., AND STORNETTA, W. S.
Spawn: A Distributed Computational Economy.Soft-
ware Engineering 18, 2 (1992), 103–117.

[14] WALDSPURGER, C. A., AND WEIHL , W. E. Lot-
tery Scheduling: Flexible Proportional-Share Resource
Management. InOperating Systems Design and Imple-
mentation(1994), pp. 1–11.

8

	Introduction
	Related Work
	Tycoon
	Design Principles
	Architecture
	Results

	Auction Share Scheduling
	Algorithm
	Results

	Conclusion

