
Tycoon: A Market-Based Resource
Allocation System

Kevin Lai, Lars Rasmusson,
Stephen Sorkin, Li Zhang,

Bernardo Huberman

Information Dynamics Lab
HP Labs

page 211/1/04

Motivation

• Distributed shared clusters
– Grid, PlanetLab, the internal clusters of companies

• Applications:
– scientific applications, databases, web servers, email servers, etc.

• Sharing distributed computers potentially
– increases throughput (statistical multiplexing)

– lowers delay (geographic dispersion)

– increases reliability (redundancy in hosts, network connections, etc.)

page 311/1/04

Problem

• Currently, shared resources (CPU cycles, disk, etc.) are
– Poorly utilized (not given to the most important task)

– Slow to adapt (adapt = reallocate resources)

– Expensive to manage (in user time)

page 411/1/04

Tycoon

• market-based system for resource allocation
– distributed markets allocate local resources

– users bid continuously for virtualized, proportional resources

– users only pay for resources consumed

• low overhead, low latency markets
– agility: can shift all resources in system in < 10 seconds

– scalability: current platform scales to (active users)(hosts) = 12,000

• arbitrarily more efficient utilization than Proportional Share
– more efficient even when users do not actively bid

• removes need for users to negotiate resource allocation

page 511/1/04

Common Non-Economic Approaches

• over-provision
– expensive, complementary solution

• manual allocation
– time-consuming and/or inefficient to manage more than 100's of

machines, 10's of active users

• scheduling
– assumes truthful task valuation

– produces optimal offline schedule using NP-hard algorithm

– online algorithms using heuristics are not optimal

• Proportional Share

page 611/1/04

Proportional Share

• Administrator sets weights, e.g.,
• System with r resources allocates to user i a share of

 e.g., Alice gets 2r/3, Bob gets r/3

• Economically Inefficient
– no incentive to truthfully differentiate importance of jobs

• Slow to adapt
– changing weights requires involvement of administrator

• And/or expensive
– Alice and Bob negotiate (communication costs of)

• Easy to use

– run whenever you want, no bidding required

w alice

� 2 w bob

� 1

r � w i�

w i

n 2

page 711/1/04

Economic Related Work

• Auction
– method for accurately determining value of something

– explicitly assumes strategic behavior

– opens: bidding starts

– closes: bidding stops, resource assigned to winner

– different forms induce different bidding behavior

• frequency of auction
– infrequent

• high delay between wanting a resource and close → poor agility, ease-of-use

• speculation: early winner can sit on resource denying it to a later user who values
it more

– frequent: can't hold a resource for very long → poor predictability

page 811/1/04

Auction Issues, continued

• delay between auction close and resource use
– long: poor agility, ease-of-use

– short: poor predictability

• winner's curse
– user wins auction, does not want resource at clearing price

– difficult to accurately predict application resource consumption

• deterministic workload: e.g., given scene to render, variance of estimate is ~50%

• non-deterministic workload: extremely difficult

• Auctions require significant modifications to be used in a
resource allocation context

page 911/1/04

Outline

• Service Model

• Interface

• Architecture
– Auctioneer

– Agent

• Experiments
– Agility

– Overhead

page 1011/1/04

Service Model

• Users have a limited budget of credits

• Users bid for resources
– bid = (h, i, e, b, t)

– h: host, i : user, e: resource type, b: amount of credits,
t: bidding interval in seconds

– continuous bid

– ssh into host to use resources

• auctioneer on h allocates resources
– in proportion to user i's weight =

– independently of other auctioneers

– only charges users for resources consumed

– cost of resources can change at any time

b i
e �

t i
e

page 1111/1/04

Prototype User Interface

• Create an account on a host
– tycoon create_account host0 10

• Run
– ssh klai@host0 my_program

• Optionally:
– Transfer more credits into account

• tycoon fund host0 cpu 10 1000

– Change bidding interval
• tycoon set_interval host0 cpu 2000

– Determine current balance, resources allocated, etc.
• tycoon get_status host0

page 1211/1/04

Architecture

• Hosts do independent allocation

• 3 is relatively expensive, 4 is less expensive alternative

Host 0

Auctioneerclient
agent

Service
Location
Service

5. Allocate resources
based on funds
transferred

Bank2b. li
st

of a
ucti

oneers

3a. transfer

3b. receipt 3c. fund (w/ receipt)

1. register2a. query

client
A app

client
B app

4. set_interval

page 1311/1/04

Auctioneer: Allocating Resources

• bid = (h: host, i : user, e: resource type, b: amount of credits, t: bidding interval)

• : total amount of resource e, : amount of e used by user i per second

• auctioneer on h allocates resources
– user i's weight:

– amount of e allocated to user i per second:

– amount user i pays per second:

– bid is automatically recomputed:

– currently recomputed every 10s → mean 5s to reallocate

– only charged for resources used → don't have to withdraw bids

– credits last a very long time → don't have to update bids

b i
e �

t i
e

r i
e � b i

e �

t i
e

�

b e �

t e
R e

R e q i
e

s i
e � min

q i
e

r i
e

, 1
b i

e

t i
e

b i
e 	 b i

e
 s i
e

page 1411/1/04

Using Continuous Bids
re

so
ur

ce
s

us
ed

cr
ed

it
ba

la
nc

e

time

program runs

bidding interval
changes

user deposits
credits

• separation of credit
amount from bid interval
allows user to control
frequency of deposits

– less interaction
required

– less load on bank

page 1511/1/04

Client Agent: Distributed Bidding

• Manual bidding in 1000's of markets is not practical
– Resources available on hosts varies

– Demand for resources on hosts varies

– ideally user just specifies a total budget of X

• simple algorithms can be far from optimal

• Best Response Algorithm
– user i has a preference for resource e on host j

– is the amount bid by user i for resource e on host j

– is the amount bid by all users except i for resource e on host j

– maximize s.t.

– use Lagrangian multipliers

p i
e j

x i
e j

y i
e j

n�

j � 1
p i

e j
x i

e j

x i
e j
 y i

e j

n�

j � 1
x i

e j � X

page 1611/1/04

Best Response Algorithm

• Requires O(n log n) time

• results in multiple Nash equilibria
– some have very low economic efficiency

• preliminary simulation shows that its mean efficiency is
~90%
– simulation details requires a separate talk

page 1711/1/04

Verification

• potential auction pitfall: auctioneer cheats

• possible solutions

– trusted computing platform

– audit log

• Tycoon solution

– substitute application-layer cost-effectiveness metric for preference instead
of generic resource

• e.g., (frames rendered / s) / credit instead of CPU cycles / s

– best response algorithm will automatically favor hosts that have a high
application cost-effectiveness

• hosts that have a poor (frames rendered / s) / credit will get dropped

– treats cheaters as hosts with poor cost-effectiveness

– reduced spending by agents → reduced incentive to cheat

page 1811/1/04

Experiments

• Prototype implementation
– only manages CPU cycles because of limitations in VServer

• Runs on 20 hosts
– 8 in Bristol, U.K.

– 450 Mhz - 1 Ghz x86

– RedHat Linux 9.0

page 1911/1/04

Agility

• progress of a scene being
rendered on cluster using
Maya 6.0

• frames are distributed to
different hosts in cluster

• user changes bid by
changing bidding interval on
all hosts at 185s

page 2011/1/04

Agility

• hosts begin reallocating
in < 10s

• last bid change finishes
at 211s

– limited by client host,
application structure

• agility key for
unpredictable server
applications

– 3-tier ecommerce

– media serving

– web, email, etc.

page 2111/1/04

Compared to Proportional Share

page 2211/1/04

Compared to Proportional Share

page 2311/1/04

Overhead

• VServer overhead
– CPU bound process: ~3%

– system call-heavy process: ~10%

• Protocol overhead
– one centralized Service Location Service with 100Mb/s Ethernet

supports at most 75,000 hosts

– one centralized 450MHz bank supports
(active users)(hosts per user) = 12,000

• e.g., 24 active users, 500 hosts per user

• assumes users deposit funds every 20 minutes

• limiting operation is DSA public key authentication

• protocol could be optimized to include several deposits in one message

• centralized bank is not likely limit scalability in practice

page 2411/1/04

Miscellaneous Topics

• Virtualization

– Linux VServers + PlanetLab plkmod

• Security protocols

– all messages are signed + nonces

• Predictability of resources

– agents can reserve credits to be used in case prices rise

• Scalable communications with auctioneers

– can use application-layer multicast to distribute bids to auctioneers

• Multiple resources
– auctioneer periodically re-balances separate credit reservoirs for each resource

• Different allocation algorithms

– future work

page 2511/1/04

Summary

• continuous bids
– easy to use

• don't need to plan ahead

• don't need to update

– computationally efficient

– low latency to change allocation

• distributed markets
– agile: only manage local resources

– fault-tolerant

