
A Classification-Based Approach to Policy 
Refinement

Yathiraj B. Udupi
Department of Computer Science
North Carolina State University
Raleigh, NC, 27695-8206, USA

ybudupi@ncsu.edu

Akhil Sahai, Sharad Singhal
UIM, ESSL

Hewlett Packard Laboratories
Palo Alto, CA, 94304, USA

{akhil.sahai, sharad.singhal}@hp.com

Abstract— Systems are typically designed based on certain 
high-level goals, such as performance and availability. On the 
other hand, during operation, usually only low level metrics 
(e.g., CPU utilization) are measured, and system 
administrators or experts use domain knowledge to implicitly 
map bounds on these lower level metrics such that the high-
level performance goals are met. The objective of this research 
is to create an automated and domain independent approach to 
derive policy bounds on the low level metrics such that the high 
level goals are met. These low-level policies may be also be used 
for monitoring the system for goal assessment purposes. The 
refinement is carried out using a combination of data 
classification and test & development approaches. A system is 
deployed within a test-and-development environment and a 
data set containing values of low-level metrics is collected by 
placing appropriate workloads on the system. The policy 
bounds are derived by applying classification techniques on
this dataset. The classification rules are further refined using
statistical distributions to arrive at certain low level rules that 
are useful for system monitoring and to check the system 
health when it is deployed and running. We show the validity 
of our approach for an e-commerce auctioning system (RubiS).

Keywords- policy refinement, system design, monitoring, SLA 

I. INTRODUCTION 

Policies can be specified for system design and to control 
the system behavior. Currently system administrators and 
other experts are provided with certain high-level goals or 
policies while designing systems. The experts normally 
apply their domain knowledge and best-practice rules or 
policies to design the system. These policies can be very 
complicated and designers depend on their past experience to 
arrive at good policies. During system operation, however, 
normally low-level metrics are monitored and maintained 
within bounds specified as low-level policies by system 
operators. Again, system operators use past experience with 
specific applications to determine the policy bounds 
necessary on these metrics to ensure that the overall system 
goals are met. 

In Quartermaster, Singhal et al., visualized policy as the 
entire set of strict (enforced) constraints and desirable 
directives that control the behavior of a target entity towards 
achieving a goal [2]. By formulating policies as constraints 
on system behavior (as opposed to conditions that arise as a 
result of system operation), Quartermaster applied the 
concept of policy to system management in a different 

manner. Quartermaster considered the managed system as a 
set of related entities. Each entity was characterized by a set 
of attributes and values taken by those attributes, along with 
actions that were available to the management system to 
change the attribute values. Policies were then defined as 
constraints that limit the values that the attributes may take in 
order for the entity (and the system composed from those 
entities) to behave within an acceptable range.

Quartermaster applied this approach to design and
configuration policies [4]. It used policies for automatic 
selection of resources and for generation of a design 
specification [1, 5], that could then be deployed. However, it 
is also important to monitor the system in order to ensure 
that the system behaves as per the design goals. The 
monitoring system can help assess compliance with the 
overall design goals and also to perform a proactive goal 
assessment.

In this paper, we address the question of generating low-
level policies that can be used for monitoring the application 
as part of the design process. The end-user specifies high-
level goals and during the test-and-development phase, the 
management system generates the low-level policies that are 
relevant and that may be used to proactively assess the 
system behavior, as well as used for subsequent design.

A typical SLA may specify various service requirements 
that include metrics such as availability, response time, 
throughput, security, and so on. A SLA is composed of a set 
of Service Level Objectives (SLOs). A SLO specifies what 
constitutes an acceptable service and is a combination of one 
or more constraints on component measurements. A set of 
example high-level SLOs defining the performance aspects 
of an SLA are listed below:

• “service response time < 85 ms between 8 AM 
and 5PM M-F”

• “service availability > 99.95% between the 
hours of 8AM and 8PM”

• “overall compliance > 97% over a period of a 
calendar month”

• “transaction workload < 100 transaction/sec”
Any system design involves many components, each

potentially affecting the overall performance of the system. 
Hence any high level constraint specified on the system 
potentially relates to all low-level system components. By 



defining the low-level policies for “healthy” ranges on the 
various low-level metrics during system design, it becomes 
easier for the system operator to proactively avoid potentially 
costly SLA violations without the need to guess proper 
ranges for the low-level metrics. Hence there is a need for 
deriving low-level policies from the high level SLAs.

The proposed approach provides an automated and 
domain independent approach to derive these low-level 
policies given the high-level SLA goals. We have to identify 
relevant low-level attributes as well as policies that define 
ranges within which those attributes have to be maintained 
for system health. The key contribution here is to identify the 
relevant low-level attributes and create policies that define 
bounds on them based on high level policies. The policy 
refinement is carried out using a combination of data 
classification and test & development approach. A system is 
deployed and data is collected on both the low level metrics 
and the high-level SLOs. Policies are then derived by 
applying classification techniques on this dataset. The 
classification rules are further refined using statistical 
distributions to arrive at certain low level rules that are useful 
both for checking system health when it is deployed and 
running, as well as for creating subsequent configurations.

The rest of this document is organized as follows.
Section 2 describes in detail our classification-based 
approach to policy refinement. Section 3 provides the 
experimentation details and the lists collected with the help 
of an example scenario. Section 4 describes the related 
literature on policy refinement and monitoring policies and 
their validation. Section 5 concludes with a summary of our 
contributions and future work.

II. POLICY REFINEMENT: A CLASSIFICATION-BASED 
APPROACH

Policy refinement involves breaking the high-level SLA 
goals into smaller low-level policies that feature several low 
level system attributes and metrics. A policy specifying a 
constraint at a high level can be affected by several low level 
metrics and the challenge is to optimally constrain the low 
level metrics just enough to satisfy the high level metrics.
For example, a high-level policy rule can specify that 
“service response time < 85 ms”. This can be affected by 
several metrics at various tier levels in the system. Policies 
can be specified to constrain each of the low level metrics 
that affect the high level metric. But the actual thresholds for 
the various low level metrics can vary in different scenarios
and for different possible workloads specified. The policy 
refinement mechanism should identify all the important low-
level attributes and their policies, and refine them to specify 
the most optimal constraint thresholds for the relevant 
metrics. We explain the detailed mechanisms of policy 
refinement applied in this work below. The main steps are 
listed below and explained in detail in the following 
subsections and summarized in Figure 1.

1. Test and Development Phase 
2. Classification Phase
3. Policy Derivation and Refinement Phase

A. Testing and Development Phase: Data Collection 
and Preprocessing
An ad hoc system configuration is first created on the 

basis of the given high-level SLA goals. Now we use a Test 
and Development environment to record values for the low-
level system attributes by placing workloads on the system 
that are spread around the ranges of the target workload.

Figure 1 The policy refinement approach
Next, we preprocess the data for classification.

Depending on the observed variation, a few metrics can be 
eliminated if they do not significantly vary for different 
workloads. The elimination process can be performed by 
looking at the distribution statistics of the variables, and is 
later explained with example results in Section III. 

B. Classification Phase
This phase involves applying a classification algorithm 

on the dataset collected above, and deriving the policies that 
are useful for our purposes. In the dataset collected above, 
for classification purposes we include the target variable 
computed from the evaluation of the high-level SLA metrics.
So the target variable is a Boolean value taking either TRUE 
or FALSE as the possible values depending on whether the 
high-level SLA goals are satisfied or not. Classification 
techniques such as decision tree classification methods are 
applied on the dataset for the given target. All the TRUE 
rules are collected which are relevant for our purposes. For 
example, in the case of the decision tree approach for 
classification, all the paths leading to TRUE leaves provide 
us the required rules on low-level metrics.

C. Policy Derivation and Refinement Phase
This phase includes the processes of deriving policies 

from the output of the classification phase. In the case of a 
decision tree approach for classification, we derive policies 
from all the TRUE paths, i.e., the paths leading to TRUE 
leaves. These TRUE policies are a conjunction of 
inequalities on various attributes that are picked by the 
classification phase. A refinement strategy that is applied at 
this level uses the distribution statistics of the attributes on 
these TRUE paths. For all attributes in the TRUE tuples 
(tuples in the dataset that correspond to a TRUE high-level 



SLA value), the distributions statistics such MINIMUM and 
MAXIMUM values are computed. The inequalities of 
attributes that appear on the TRUE policies are further 
refined by appending the MINIMUM and MAXIMUM 
values giving definite bounds for the attributes, resulting in 
the required TRUE REFINED policies. This process results 
in a set of TRUE REFINED policies, which can be used for 
monitoring system health as as for designing subsequent 
configurations.

D. ALLOWABLE and RESTRICTED Ranges
We provide certain further refined categories of policies 

by aggregating the different policies generated to arrive at 
rules on individual attributes. We arrive at two kinds of 
AGGREGATE RANGES for the attributes:

1. ALLOWABLE RANGES: The allowable ranges of 
attributes are derived by considering all the TRUE 
refined policies, and aggregating the inequalities of the 
attributes from each of the policies they appear in, by 
performing a UNION operation on their individual 
ranges. This composite range forms the ALLOWABLE
RANGE for an attribute.

2. RESTRICTED RANGES: They are computed in a 
similar fashion as the Allowable ranges, but an 
INTERSECTION of all the individual ranges of 
attributes from different policies is performed to arrive 
at a single restricted range for the attribute.

III. EXPERIMENTATION AND RESULTS

We performed a workload analysis using the RUBIS [3]
testbed – an auction platform implemented as a multi-tier 
application. For the current purposes, we considered a two-
tier application having an apache web server tier and a mysql 
database tier. The RUBIS framework offers two kinds of 
workload mixes – a browsing mix (read-only interactions), 
and a bidding mix (includes 15% read-write). We can vary 
the workload by specifying different numbers of clients 
running of RUBIS, and by specifying different kinds of 
workload mixes. We considered three different high-level 
SLA goal parameters in our experiments namely: No. of 
Clients, Response Time, and Throughput. For the purposes 
of the experiments illustrated in the example below, the 
following SLA goals were considered: No. of Clients < = 
400, Response Time < = 24 ms, and Throughput >= 17 
req/sec.

We ran experiments with workloads around the above 
specified high-level SLA goal, varying the number of clients 
from 100 to 900, for four different mixes. The example 
results shown in the following sections are for an experiment 
with a bidding mix. We collected the low-level system 
metrics such as CPU utilization, Net_Stats (packets info),
IO_Stats (bytes read and written), and the mysqladmin 
extended-status metrics (a total of 33 metrics). We can 
potentially collect many other metrics including some 
metrics from the apache server and other system metrics.

Table 1 provides a list of the 33 low-level metrics that we 
thought were relevant and that significantly affect the system 
behavior. The first 18 from wwwCPU till dbRxBR are the 

metrics that include CPU utilization, net_stats, and the 
io_stats of both the apache web server and mysql database 
tiers. The remaining 15 from Aborted_clients_psec to 
open_tables are a few important metrics selected from the 
list of mysqladmin extended-status returned values. 

wwwCPU dbCPU wwwRBR
dbRBR wwwRCR dbRCR

wwwWCR dbWCR wwwWBR
dbWCR wwwTxBR dbTxBR

wwwTxPR dbTxPR wwwRxPR
dbRxPR wwwRxBR dbRxBR
Aborted_clients_
psec

Aborted_connect_
psc

Bytes_Rcvd_psec

Bytes_Sent_psec Connections_psec Cache_hit_ratio
Key_W_key_W_
request_ratio

Max_used_connectns Open_files

Queries_psec Threads_connected Threads_created

Threads_running Tmp_tables_created_
ps

Open_tables

Table 1 Low-level metrics collected

A. An Example Policy Refinement Scenario 
We illustrate the policy derivation and refinement 

mechanism using an example scenario. For the purposes of 
this example, we consider a dataset containing the tuples and 
the corresponding high-level target SLA boolean values for 
the first 18 metrics. We perform a decision tree classification 
on this dataset using the Random Tree classification (RT) as 
well as the J48 algorithm. The results are shown in Figures 2 
and 3.

Figure 2 A decision tree generated using Random Tree 
classification algorithm

We observe (Figure 2) that for this example, the RT 
algorithm has resulted in a tree with 16 leaves out of which 8 



are TRUE leaves and the rest are FALSE leaves. We are 
interested in the paths starting from the root node till the 
TRUE leaves. This results in eight TRUE policies that are 
conjunctions of inequalities consisting of certain relevant 
low-level system attributes. We compute the distribution 
statistics such as the MINIMUM and the MAXIMUM values 
of the attributes that appear in the TRUE policies, and 
append them in the TRUE policies to get the REFINED 
TRUE policies.

Figure 3 A decision tree generated using J48 algorithm

For example, consider the TRUE path leading to Leaf 
#29. After the first iteration we arrive at this UNREFINED 
TRUE policy: 

“(dbCPU >= 7.03) AND (wwwCPU < 27.2) AND 
(wwwRXPR >= 8769.72) AND (dbTXPR < 9666.55) AND 
RBR >= 10477.8) AND (dbTXPR >= 3790.93) AND 
(wwwWCR >= 11424.7) => Target = TRUE”

In the next iteration, we combine attributes that appear 
more than once in the path and also append their distribution 
statistics, to get the REFINED TRUE policy:

“(7.03 <= dbCPU <= 12.434) && (3.61269 <= wwwCPU < 
27.2) && (8769.72 <= wwwRXPR <= 183002.0) && 
(3790.93 <= dbTXPR < 9666.55) && (10477.8 <= dbRBR 
<= 154804.0) && (11424.7 <= wwwWCR <= 12352.3) => 
Target = TRUE”

By looking this policy and the other TRUE REFINED 
policies, we observe that we arrive at constraint rules that 
specify certain inequalities on the potential values those low-
level metrics can take while the system is running healthy 
and the high-level SLA goals are being satisfied. From the 
set of all refined TRUE policies we can arrive at 
ALLOWABLE RANGES (by performing an UNION), and 
RESTRICTED RANGES (by performing an 
INTERSECTION) for all the attributes that appear in these 
policies. For example, Table 2 provides ALLOWABLE
RANGES for two datasets (one with the first 18 metrics, and 
the other with the remaining 15 metrics from the list of 33 
metrics provided earlier).

MYSQL (15 metrics dataset) CPU, IO, Net_Stats (18 
metrics data set

Tmp_tables_
created_psec : [0.01, 0.67]

key_reads_key_
read_req_ratio : [0.05, 0.24]

key_write_key_
write_req_ratio : [0.0, 1.0]

Threads_created :
[1.0,31.0]

Open_tables : [6.0, 48.0]

Bytes_received_
psec : [0.62, 70.67]

Open_files : [13.0, 62.0]

Connections_psec : [0.03, 
0.38)

dbTXBR :
[2136061.67, 3051843.91]

wwwCPU : [3.61269, 
27.2)

dbCPU : [1.08, 
12.434]

wwwRXPR :
[8769.72, 183002.0]

dbRBR : [0.0, 
154804.0] 

dbTXPR : [1084.2, 
31681.5]

wwwWBR : [6917.29, 
10855.67) U [20496.45, 
61201.95)

wwwWCR :
[11424.7, 12352.3]

Table 2 ALLOWABLE Ranges created using the RT 
classifier

B. Classification Algorithms 
We tried different decision tree classification algorithms 

to arrive at different sets of policies. The factors we used to 
evaluate these classification approaches for our purposes are 
mainly the number of TRUE policies selected, and the 
number of attributes appearing in these TRUE policies. In 
addition to the above, the standard classification algorithm 
evaluation techniques such as number of incorrectly 
classified instances, error rate and so on can be used. The 
three decision tree algorithms we selected are J48, REP, and 
Random Tree. Figure 3 shows the decision tree computed on 
the same data set as that of Figure 2, but using the J48 
algorithm. Policies using the J48 algorithm can be derived 
from the decision tree in a manner similar to the RT 
algorithm.

Algorithm No. of 
Metrics

No. of 
TRUE 
Policies

Number of 
attributes 
picked

33 2 3

18 2 3

J48

15 2 3

33 4 6

18 8 8

Random 
Tree

15 8 9

Table 3 Number of attributes bounded by different 
classification algorithms

Table 3 illustrates the number of TRUE policies and the 
number of selected attributes for the dataset collected in the 



above example. We observe that the Random Tree algorithm 
provides a larger number of TRUE policies and the number 
of attributes picked. While at first glance, this may suggest 
that the Random Tree algorithm is more suitable, this is not 
necessarily true without taking into account the error 
characteristics of the algorithms. For this analysis, we 
segmented the data into a training set (to generate the 
decision trees) and a test set (for testing performance of the 
classifiers). We used a 75-25 split and a 80-20 split of the 
data into the training and test sets for this analysis. Table 4 
shows the results of the analysis.

Random Tree Classifier

75%-25% data 
split

80%-20% data 
split

Number of 
instances

45 36

Correct 
classifications 

41 (91%) 32 (89%)

Incorrect 
classifications

4 (9%) 4 (11%)

Kappa statistics 0.82 0.78

J48 Classifier

75%-25% data 
split

80%-20% data 
split

Number of 
instances

45 36

Correct 
classifications 

44 (98%) 35 (97%)

Incorrect 
classifications

1 (2%) 1 (3%)

Kappa statistics 0.96 0.94

Table 4 Classifier performance observed for the 
different classification algorithms

We find that the random tree classifier has a much higher 
error rate as compared to J48 decision tree classifier. Since 
J48 classifier provides better classification and lower error 
rates we find it to be a better classifier for policy refinement 
because even though it generates lesser number of policies, 
they will be more reliable.

The effects and relevance of these policies can be further 
evaluated by actually configuring a system based on the 
policies generated and testing for their consistency, and will 
be considered as future work. 

C. Distribution Correlation Study 
We observe the distribution characteristics of some of the 

variables by varying the number of clients. These 
distributions help us in two ways. First we can eliminate 
some of the attributes that do not vary with workload, and 
hence are not important for the purposes of the required 
policies. After eliminating the non-varying attributes we 

arrived at a list of 33 metrics. The second use of studying the 
distributions helps us see the patterns of attributes value 
variation.

From Figure 4 we see that the CPU utilization of apache 
web server and mysql database server are uniformly 
increasing with the number of users. The 9 regions in the 
graph correspond to the 9 different workloads with number 
of users being 100, 200, 300, and so on. As can be seen in 
the Figure, CPU utilization of both the web tier and the 
database tier increases with the number of number of clients. 
The tested classification algorithms also select the CPU 
utilization as an important metric to observe.

Figure 4 Plot of CPU Utilization of WWW server and 
DB server for varying workload

Figure 5 Plot of Written IO Bytes for WWW and DB 
servers for varying workload

Figure 6 shows WBR (Written Bytes Rate) as workloads 
are changed from 100 to 900 clients. There does not appear 



to be a strong correlation of this metric with workload, and it 
is eliminated by the decision tree algorithm. Similarly, we 
also observed that attributes that do not correlate with one
another also do not appear together in the generated policies. 
Hence we infer that the refined policies obtained using our 
approach are better indicators of SLA performance than 
policies that create thresholds on the distribution statistics of 
the low-level attributes independently of such correlations.

This correlation study can also be applied to perform a 
“bottleneck analysis” by running a bigger system for a wider 
range of workload and will be considered as future work.

IV. RELATED WORK 

The area of policy refinement has become very important 
recently with a growing interest in policy-based approaches 
to systems management. Darimont and Lamsweerde studied 
formal refinement patterns for a goal-driven requirements 
elaboration using the KAOS language [6]. Several formal 
patterns were identified for refining goals into subgoals.
These patterns can be reused from a library structured 
according to weakening/ strengthening relationships among 
patterns.

These formal refinement patterns became the basis for 
many techniques of policy refinement involving temporal 
logic and event calculus approaches [7, 8]. Policy refinement 
has been studied on several domains and researchers have 
considered a domain-knowledge based refinement. Bandara 
and others study refinement on DiffServ QoS management 
domain [9], while Albuquerque and others have studied 
policy modeling and refinement for network security systems 
domain [10]. In contrast, the proposed approach considers a 
test and development and a classification-based approach to 
policy refinement, and we present an automated, generic 
approach of refinement mainly for performance related 
goals. 

Feather and others integrated the KAOS goal-driven 
specification methodology and the FLEA runtime event-
monitoring system [11] to identify runtime deviations from 
requirements specifications [12]. Their approach is capable 
of monitoring the system requirements at runtime to 
reconcile the requirements and the system’s runtime 
behavior. The proposed approach provides runtime 
monitoring policies for the system to detect any anomalous 
behavior and to perform a proactive goal assessment.

V. CONCLUSION

We have presented an automated and a non-domain 
specific approach, which we believe is a generalizable 
approach, to derive a set of low-level policies from the given 
high-level goals. This approach is a combination of a test and 
dev methodology and a classification-based policy derivation 
and refinement mechanism which provides a refined set of 
policies that can be used for generating system design 
specifications and system monitoring for a proactive goal 
assessment. We observe that not all low-level attributes are 
selected by the classification algorithm, and hence we 
conclude that only a few selected attributes correlate with 

each other and hence form relevant policies for our purposes.
This refinement is definitely better than providing just the 
distribution statistics such MINIMUM and MAXIMUM for 
all the low-level attributes. There are certain problems that 
could be associated with this approach. If the ad hoc system 
that we begin with is not a big enough system, for certain 
workload, we can observe that certain low-level attributes 
may become the bottleneck. To avoid such situations we 
propose to start our test and dev phase with a larger ad hoc 
system. While using such large systems our approach can be 
used to detect bottlenecking attributes in addition to deriving 
the refined TRUE policies. Currently, this approach works 
best for performance related high-level goals; while we 
believe that this approach is generalizable to other kinds of 
goals.

As future work, we also plan to validate our approach by 
redesigning the system based on the derived low-level 
policies and testing the results from the new system. This 
way we can see if the derived low-level policies are 
consistent. We plan to further evaluate different 
classification techniques to derive the best set of refined low-
level policies. There is another venue, where our approach 
can be beneficial, namely the root-cause detection and 
analysis. We plan to study and evaluate the potential use of 
our approach to see if the derived policies can be applied for 
a root-cause analysis in the case of a failure of the high-level
goals.

ACKNOWLEDGMENT 

We would like to express many thanks to Mustafa Uysal, 
Ira Cohen, Pradeep Padala, Xiaoyun Zhu, Vijay Machiraju, 
Kumar Goswami, Rich Friedrich, Subu Iyer, Yuan Chen, and 
others at HP Labs for their continuous feedback and 
guidance in this project. 

REFERENCES

[1] Lyle Ramshaw, Akhil Sahai, Jim Saxe, and Sharad 
Singhal. Cauldron: A Policy-Based Design Tool. In 
Proceedings of the 7th IEEE International Workshop on 
Policies for Distributed Systems and hNetworks 
(POLICY). June 2006. To appear.

[2] S. Singhal et al. Quartermaster: A Resource Utility 
System. Proceedings of the 9th IFIP/IEEE International 
Symposium on Integrated Network Management, Nice, 
France, May, 2005. pp 265—278. 

[3] RUBIS Project. URL: http://rubis.objectweb.org/. 
[4] Akhil Sahai, Sharad Singhal, Vijay Machiraju, Rajeev 

Joshi. Automated Generation of Resource 
Configurations through Policies. In HP-Labs Report 
HPL-2004-55. 2004. 

[5] Akhil Sahai, Sharad Singhal, Rajeev Joshi, Vijay 
Machiraju. Automated Policy-Based Resource 
Construction in Utility Computing Environments. In 
HP-Labs Report HPL-2003-176. 2003. 

[6] Robert Darimont and Axel van Lamsweerde. Formal 
Refinement Patterns for Goal-Driven Requirements 
Elaboration. In Proceedings of SIGSOFT, CA, USA. 
1996.



[7] Arosha K. Bandara, Emil C. Lupu, Jonathan Moffett 
and Alessandra Russo. A Goal-based Approach to 
Policy Refinement. In Proceedings of POLICY, 2004. 

[8] Javier Rubio-Loyola, Joan Serrat, Marinos 
Charalambides, Paris Flegkas, George Pavlou, and 
Alberto L. Lafuente. Using Linear Temporal Model 
Checking for Goal-oriented Policy Refinement 
Frameworks. In Proceedings of POLICY, 2005. 

[9] Arosha Bandara, Emil Lupu, Alessandro Russo, Paris 
Flegkas, Marinos Charalambides, and George Pavlou.
Policy Refinement for DiffServ Quality of Service 
Management. In Proceedings of IEEE/IFIP Integrated 
Management Symposium (IM’2005), Nice, France, 
2005.

[10] Joao Porto de Albuquerque, Heiko Krumn, and Paulo 
Licio de Geus. Policy Modeling and Refinement for 
Network Security Systems. In Proceedings of POLICY, 
2005. 

[11] D. Cohen, M.S. Feather, K. Narayanaswamy, and S. 
Fickas. Automatic Monitoring of Software 
Requirements. In Proceedings of 19th International 
Conference on Software Engineering, Boston, May 
1997. 

[12] M.S. Feather, S. Fickas, A. van Lamsweerde, and C. 
Ponsard. Reconciling System Requirements and 
Runtime Behavior. In Proceedings of IWSSD9, Isobe, 
Japan, April


