A State-Space Approach to SLA based Management

Vibhore Kumar, Karsten Schwan, Subu Iyer',Yuan Chen', Akhil Sahai'

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Large complex systems (such as Enterprise systems) are
often composed of several interacting, independent compo-
nents. In many such systems, although the behavior of the
constituent components is well characterized, the behav-
ior that results from interaction between such components
is more or less intractable; making it hard for the admin-
istrators to efficiently manage the system in conformance
with the service level agreements or the SLAs. This paper
presents an approach for deriving component-level objec-
tives from system-level objectives or agreements, which if
conformed to, imply conformance to the higher-level SLA.
Our approach partitions the system’s state-space into ho-
mogeneous sub-spaces, creates micro-models for such sub-
spaces, and then uses such micro-models to translate the
higher-level objectives to component-level objectives. We
have implemented a system, termed Pranaali, for evaluating
our approach in realistic settings.

1. Introduction

The need for increased automation, better integration
with internal processes and flexibility in interacting with ex-
ternal partners is creating increasingly complex IT systems
and applications in today’s large enterprises. Examples of
such systems include those supporting enterprise websites,
inventory or revenue management subsystems [1], and dis-
tributed information systems supporting a company’s daily
operations [8]. Typically, such systems are constructed as
collections of components and/or independent software ar-
tifacts like web-servers, database systems, and local or re-
mote application services, which interact with each other in
many unpredictable patterns when providing the function-
ality required by the enterprise end users. Further issues
include dynamic changes in resource usage and availability,
caused by natural system behaviors and failures. Other fac-
tors such as resource migration and consolidation also con-
tribute to such behaviors in today’s virtualized enterprise.
As a result, even when the behavior of constituent compo-
nents can be well characterized and controlled, it is typically

Hewlett Packard Labs’
1501 Page Mill Road
Palo Alto, CA 94304

intractable to precisely characterize or limit the dynamic
behaviors of the composed enterprise systems and applica-
tions. This intractability makes it difficult, if not impos-
sible, for system administrators to efficiently achieve con-
formance to Service Level Agreements(SLAs) with internal
or external enterprise partners. In many cases, systems are
over-provisioned to meet SLAs. One such example is the
extensive use of over-capacity to guarantee time limits on
search requests for the flight search services offered by one
of our industry partners, Worldspan [14].

This paper addresses the complexities arising from dy-
namic component interactions in large-scale enterprise ap-
plications by deriving component-level objectives from
high level business goals such as SLAs. The solution is
based on the assumption that a system’s constituent com-
ponents or subsystems can be individually monitored and
managed to the extent needed to attain desired runtime com-
ponent behaviors. Our approach, as shown in Figure 1
starts by constructing meaningful state-spaces for enterprise
system, based on runtime monitored variables. Scalability
and manageability are achieved by dynamically partitioning
the enormous state-space generated from typical application
runs into smaller homogeneous sub-spaces. These homoge-
neous sub-spaces, which are representative of typical appli-
cation behavior, are then modeled using probabilistic mod-
eling techniques to create micro-models. For example there
may be a micro-model capturing the steady state-behavior
of the system, while another micro-model may correspond
to the system state in which the back end is being updated
by a new batch of updates. These micro-models are then
used to derive component-level objectives that characterize
a component’s contribution to the high level goal. In this
way, we dynamically determine the possible set of compo-
nent level objectives for constituent components, which if
conformed to, imply conformance to the higher-level goal.
An example is the dynamic determination of CPU shares for
a database server in a three tier application for meeting an
end-to-end SLA in a given system state sub-space. Determi-
nation of the component-level objectives can then be used
for designing the overall system or for proactively monitor-

SL4 : f(Vy) € { compiiance = L, viclation = 0} where ¥y ¥ (the system state space)‘

== AT

Enterprise System

Monitored System
Variables

(]

Firawall

Monitored Component
Variables

O

‘ System State Space V' = (V5 V2 ¥2 Vi V5 V6 V2 Ve ¥, VIo VL VI2 V2 VE& VES « « < o« o v ot mn et et s a ettt et e et e e et e et e e e e V) ‘

State Space Partitioning (Vi ¥z Vs, Vg Vs Vo V7 ¥y Vg Y10 Vg V12 V1% Vi VI5 « w v oo e ee e eee o e bk e e e e e e e o e e e e e, V)
® The number of relevant
variables per partition is reduced
o Within a partition the system | | (Vin ¥ 0 Ve 95 1o Vs Vo Vo0 Vil 11t Vi U Vi Vi e e V)
exhibits I behavior
(Vi V20 V3 Ve V5 Vi V5 Yo [0 Vi VI Vo Vi3 Vi) Uim o oo et e e e e e e e e ey V)
State Sub-Spaces

Probabilistic System Mo deling

o Calculates the range of values of
variables in cach partition that lead
to SLA conmpliance

® These ranges are then distributed to

individual components to enable

7 (V;mpom:)=1=f(V,)=1

i 11
> system

enabling component-wise
decomposed SLA management

:

SLA far each campanent

Compliance to decomposed SLA by every
component implies SLA compliance

Allowed Ranges

of Values

decentralized management

Figure 1. Determining Component-Level Objectives from Service-Level Agreements

ing the system to ensure compliance to a given SLA.

We make the following contributions in this paper. First,
we have built an innovative state space partitioning solution
that can model the behavior of complex enterprise applica-
tions under varying conditions. Second, we use the state
spaces to derive component level objectives matching high
level goals. Third, we use the information gathered regard-
ing component level objectives in different state spaces to
control the application behavior to meet the high level goals.

The following sub-section describes a real-world sce-
nario, provided to us by one industry collaborators, that
highlights the need for SLA-decomposition.

1.1 Motivating Example

This work is largely motivated by the needs of one of our
industry collaborators, Worldspan [19], a leading provider
of information services to the travel industry. The average
number of passenger name records in Worldspan’s system
is around 41.5 million. In the month of March, 2006 alone,
their system processed around 9.2 billion messages. To add
to the complexity of their enterprise is the 1400 node server
farm which searches a frequently updated massive data
blob (4GB for domestic and 13GB for international flights)
to provide ticket availability and ticket pricing information
to their customers, which includes many leading travel
portals. One of the critical service level objectives for
Worldspan is the responseTime of their system. In
order to attain this, they typically over-provision their farm
to deal with varying workloads. However, given the rate at
which the airline industry is expanding, they are predicting
that very soon they will need some alternative approaches
to ensure compliance to the SLAs. In our collaboration

with them, we are trying to develop techniques that au-
tomatically, based on previous observations and current
operating conditions (like timeOfDay, updateSize),
determine the relationships between controllable com-
ponent level variables like cacheRefreshTime,
allocatedServers, searchDepth and the system-
level objectives of responseTime and accuracy.
The idea is to determine ranges for more controllable
component-level variables, which if conformed to will
ensure compliance to the system level SLA.

2. Solution Overview

In the following sub-sections we formally describe the
state-space model that is used by our approach, and provide
an outline of the solution.

2.1 System Model & SLA Representation

The following convention is used to describe the SLA
and the system state-space model. We use boldface capital
letters such as, V, S to denote sets, and assignment of val-
ues to variables in these sets is denoted by regular capital
letters such as V1, S;. Similarly, we use boldface lower case
letters such as, v;, 0, to represent variables that occur in the
sets, and regular lower case letters such as, vi, 07 denote
specific values taken by those variables.

We consider a system whose state can be represented by
a set V of n variables {vy,...,v,}, which are not neces-
sarily independent. Out of these n variables the system’s
compliance or non-compliance to a SLA can be determined
by using only a subset V (an example variable in such a
subset would be the delay experienced by the users of an
enterprise’s website) of the state variables in V. Therefore,

V, is the set of variables of interest as far as the system’s
operational status is concerned.

A SLA consists of one or more Service Level Objectives
(SLOs). We use a tuple (o;, vf(i)) to represent a SLO where
o, represents the objective specification (say an acceptable
operational range), A\(i) represents the mapping between
the objective o, and the variables in V4 and consequently
vf(i) is the variable over which the objective is defined.
The SLA can then be represented as a set Sy, of m SLOs
{(017Vf(1)) (0m7v)\
~v(0;, v) that returns true 1f the value represented by v? A(0)
is in conformance with the objective specified as o;, and is

false otherwise. The SLA compliance or non-compliance
can then be represented as

)} We also define a function

m

[Tr(ei v (1)

i=1

I'(Sv,) =

However, in large enterprise systems it is often not
possible to deterministically steer the variables in V4 to
ensure SLA compliance at all the times. A commonly
used approach to facilitate the management of such sys-
tems is to simplify and express the SLOs contained in
SLA Sy, in terms of component-specific system variables
V., C V that are more easily controllable (an example
of such a variable would be the response time for a well
managed database backend, or even the CPU allocation
to the middle-tier). We call these variables the control-
lable variables and this simplification results in each SLO
(oi,vf\’(i)) € Sv, being expressed as a set of ¢ distinct
SLOs {(o’i,vj\,(l)) i))} C Sv._, where X' ()
represents the mapping between the new objectives 0;'» and

the variables in V.. For each new simplified SLO, the fol-
lowing equation should hold true

, (0}, v,

Q

y(04, v)\(z) H 2

Now, if the new snnphﬁed SLOs are grouped together
by the component to which the variable v{ i) belongs, the

resulting groups of SLOs are the ObjeCthGS for the corre-
sponding components. The component-level objectives are
useful for simplifying and decentralizing the task of SLA
management.

To put the above discussion in context, such a system
model can be readily applied to the example described in
Section 1.1. The set of variables monitored by the enter-
prise constitute the set V, and the SLA is described over
the two monitored variables {responseTime, accuracy},
which constitute the set V4. Since both the mem-
bers of the set V¢ cannot be easily controlled, we
resort to finding the relation between them and the
more easily controllable variables in the set V. such as

{cacheRefreshTime, searchDepth, allocatedServers}.
The component-level objectives essentially determine the
allowed ranges of values for the variables in V. given
the SLA Sy, and the current operational conditions as
represented by V.

2.2 Outline of the Solution

Our solution is based on the state-space model described
above. The solution requires us to identify the overall sys-
tem variables 'V, variables V, over which the SLA is de-
fined and identify the variables V. that are more easily con-
trollable. Once such variables are identified and the under-
lying enterprise system is provisioned to monitor the sys-
tem variables, our approach for determining sub-SLAs can
be put into use for the underlying enterprise system.

Our approach consists of two phases. In the first phase,
we monitor the system for a sufficiently large amount of
time, encompassing a variety of operational conditions and
collect monitoring data. In the second phase, we analyze
the data. The resulting data is a collection of several in-
stances I = {Vy,...,V,,} of the state-space set V (usually
|I| ~ 10%). Now, in order to simplify and express the SLA
Sv B in terms of V. one must use the set I to build the
translation function. However, given the scale of the enter-
prise systems and the fact that such a translation function
is intuitively dependent on the prevailing operational condi-
tions, determining the function is not straight-forward. To
address this problem, our solution makes use of a novel
state-space partitioning algorithm [11] that partitions the
state-space into several smaller ‘homogeneous’ regions that
have a reduced number of controllable variables. As a re-
sult, we are able to limit both the number of observations
and the number of variables from the set V. (the newly
created partitions have several state-space variables that do
not vary within the partition) that need to be considered for
determining the translation function, contributing to scala-
bility and dynamism. Our solution then makes use of tree
augmented naive Bayesian networks or TANs to build the
per-partition system models, termed micro-models, which
act as the functions that translate the SLOs. The TAN mod-
els return the sub-SLA Sv/_, along with a probability p that
represents the confidence of our TAN model in the returned
sub-SLA in achieving the SLA Sy, . The probability p can
be compared against a threshold to control the admittance
of sub-SLAs. Finally, by building state-space partitions that
have lesser cardinality of relevant variables we are also able
to limit the overheads imposed by our approach.

3. Algorithms

In this section we describe in detail the various algo-
rithms used by our approach. We start with the system state-
space partitioning algorithm and thereafter we describe our
algorithm for constructing micro-models and determining
component-level objectives.

3.1 System State-Space Partitioning

The system state-space partitioning algorithm aims to
achieve two goals

e Better System Models - It is often too hard to build a sin-
gle monolithic model for the entire state space because
their behavior is dependent on the prevailing conditions.

o Limiting the number of Controllable variables - Creat-
ing partitions with limited number of controllable vari-
ables that can be modified makes the problem of finding
sub SLAs more tractable.

3.1.1 The State-Space Partitioning Algorithm

A system state V; can be defined as the binding of appro-
priate values to the variables contained in the set V. Let,
I = {Vy,..,V,} be the set of many such observed sys-
tem states contained in the unpartitioned system state-space.
The partitioning algorithm aims to partition many such ob-
served system states into smaller sets to achieve the objec-
tives mentioned in the previous section. A partition inher-
its the sets V and V4 from the unpartitioned system state-
space but the set of variables in V., can vary between the
partitions. We define the range p for any discrete or contin-
uous state variable v € 'V as follows -

continuous

_f max(v,I)—min(v,I)
plv.1) = { discrete

unique(v,I)

where unique(v, I) implies the number of discrete unique
values the variable v takes in the set I. The normalized dis-
tance ¢ between any two instances vi, vy of the state vari-
able v is defined as follows, given p(v,I) > 0.

(v1—v2)

continuous
p(V’I) . .
o(vy,v2) = 0 if vi = vy discrete
1 . .
ICA) if v1 # vo discrete

We use the operators defined above to define an operator
®gr that calculates the normalized distance between any
two instances si, so of the set V along the dimensions R,
where R C V. Finally, the partitioning distance v between
any two system states is defined as follows.

v(s1,82) =1 X Py(s1,s2) + u X Pyv_(s1,82) (3)

where, n and p can take values from the range [0,1] and
these are used to configure v for the two objectives men-
tioned in the previous section. To evaluate if we need to
partition a given system state-space I, we try find a subset
V! of V such that

Z 5V.,.7V/T(sia sj) S A7na:n (4)

Vsi,s; €1

V<o)

where A, is a user defined parameter that represents the
maximum allowed representation error for the controllable
variables and ¢ represents the maximum number of allowed
controllable variables per partition. We employ a greedy
approach for finding V’, i.e. we add the member of V. to
V! which causes the greatest reduction in the L.H.S. of the
equation 4. We repeat the above process until the L.H.S.
becomes lesser than A,,,,.., at this point we look at the car-
dinality of the set V' - if the cardinality is less than ¢ we do
not partition the system state-space, otherwise we proceed
to partition the system state-space. The V! so determined
becomes the V. for the partition. We start by finding a pair
of states s and s5 from the set of all such pairs contained in
the set I such that v(s1, s2) is maximized. The pair s; and
s9 acts as the seed for the two new system state sub-spaces
I, and I, that will be created. We then iterate through the
remaining operational states in the set I, adding the opera-
tional state s; to Iy if v (s;,81) < dv(ss, s2), otherwise
s; is added to the partition I. One can alternatively use the
centroid of existing operational states in the evolving par-
titions to determine the membership. Once the two new
partitions I; and I, have been created, we find the set V ;
for them using the greedy approach described above. If the
criteria defined by A4, and ¢ is not met by any partition
then we repeat the above scheme for that partition.

Once the system state-space has been partitioned we
build a system micro-model corresponding to each parti-
tioned sub-space. A system model in our framework con-
sists of several micro-models each one of which models a
sub-space of possible system states. The micro-model to
be applied is determined based on the current system state.
Since, we attempt to model only a small partition of the en-
tire system state-space at a time we are able to build mod-
els even for systems with a very high number of variables.
This makes our approach highly scalable. A similar ap-
proach was presented in [21], which made use of an ensem-
ble of probabilistic models to detect SLO violations, and
was shown to perform significantly better than the approach
which used a single monolithic model. The approach works
by adding new models when the existing models do not ac-
curately capture the current system behavior.

3.2 Constructing Micro-Models

We want to create micro-models such that they can pre-
dict the range of acceptable values for the variables in V ;
given the values for the variables in V — V.. To find such
ranges we resort to making use of probabilistic modeling
techniques. We use a variant of the Bayesian network [9]
called the Tree Augmented Naive Bayes [6] or TANs to
probabilistically model the system state-space. A Bayesian
network is represented as an acyclic graph whose vertices
encode random variables and the edges represent statistical
dependence relations among the variables and local proba-

bility distributions for each variable given values of its par-
ents. The main advantage of using a Bayesian network (or
one of its variants) is that their representation provides and
easy way to inspect the relationships between the involved
variables. This allows an expert to embed her knowledge or
the common wisdom into the self-management framework
by proposing an initial model, which can be further refined
using learning techniques. Furthermore, by simple inspec-
tion an expert can single out any faults in the learnt sys-
tem model. Our choice for making use of TANs was driven
by the fact that unrestricted forms of Bayesian network are
computationally very costly to build as they need to evaluate
all the dependencies amongst the set of random variables. A
TAN, on the other hand allows only a tree structured depen-
dence amongst the set of random variables (other than the
class variable) and is therefore cheaper to build and has been
shown to perform almost as well as the unrestricted version.
A TAN model when used as a classifier is able to determine
the following probability

p = Pr(claj,as,...,a,) (6)
for the set {ay, ag, ..., a,, ¢}, from a given training set. The
variable c assumes a special status in this equation and is
called the class variable and the other variables are called
the attributes.

To create the micro-model for our partitions, we desig-
nate the output o from the system status function I'(Sv,,)
(refer equation 1) as the class variable and the variables in
the set V are designated as the attributes. The resulting
micro-model is able to determine the following probability

p= Pr(alV) ©)
the above equation determines the probability of SLA com-
pliance or violation given the system state. To determine
the suitable range of values that the variables in V. can
take while ensuring SLA compliance, we make use of the
following procedure. If a SLA violation is detected or if
the current system state, say V,,,,, requires a change of the
micro-model to be used, we recalculate our sub-SLAs. We
retrieve the set V ;. for the micro-model under consideration
and generate an exhaustive enumeration of the possible val-
ues {V7, ..., V] } that the controllable variables can take. We
then generate a set of possible system states {V1, ..., V,,} by
substituting into V,,,,, the values for the controllable vari-
ables from the set constructed earlier. We set the value of o
to SLA-compliance and evaluate the probability p for each
possible system state. The ones with probability p greater
than x (which is a user defined confidence-threshold) are
recorded in set N for determining the sub-SLAs.

3.3 Component Level Objectives

The problem of finding healthy ranges for sub-
components requires us to segregate the controllable vari-
ables according to sub-components and find range of values

for each controllable variable such that they are independent
of the value taken by other controllable variables. The per-
component controllable variables along with the respective
ranges constitute the sub-SLA for the component. How-
ever, finding the allowed independent range of values from
the set N is not straight-forward. For [N| = 1, this prob-
lem is trivial and each controllable variable is assigned the
values that appears in the solution Vy. For larger values of
|N|, the solution to finding appropriate ranges is based on
finding a clique [7]. All distinct values taken by the con-
trollable variables in the set N are denoted as vertices of a
graph, all such vertices which belong to the same variable
are connected so as to form a clique between them. We also
form cliques between the set of controllable variable val-
ues corresponding to each V; € IN. In the resulting graph,
we find all the possible cliques and choose the clique which

.. V. .
maximizes the product H‘j 1' n;, where n; is the number of

values for the v7 that appear in the clique. The set of values
that appear corresponding to a variable in the chosen clique
constitute the acceptable range of values for the component
variable in question.

4. Implementation: Pranaali

We have implemented our approach in a system termed
Pranaali'. Pranaali is implemented in C++ and it relies
on jBNC [10] (a Java based open-source implementation of
Bayesian Network) for constructing the TANs. The system
during the training phase takes as input a set of data points
which contains monitoring information observed from the
system under consideration, service level objectives, and
additional metadata including the type and name of the
monitored variables and details regarding the controllable
variables. Every state in the input data set is augmented
with SLA conformance/violation information based on the
suppplied SLOs. The user also needs to provide values for
the partitioning parameters 7, i, A4, and @ as defined in
Section 3.1.1. The module partitions the training data set
and after discretization and conversion to C4.5 format sub-
mits it to the jJBNC Classifier for generating TANs. Each
TAN is then associated with a centroid from the data parti-
tion that was used for its construction. This marks the end
of the training phase. The real-time component of the mod-
ule provides regular updates about the monitored system re-
garding its state. If a SLA violation is detected the module
recalculates the value ranges for various controllable vari-
ables and passes them on to respective components.

5. Experimental Evaluation

Our goal was to study the suitability of our approach in
determining more tractable component-level objectives for
large enterprise scale systems. In this section, we present
our findings based on the experiments conducted using

!Pranaali is a Sanskrit word meaning Mechanism

the well-known RUBIS [15] application running within the
Xen [2] virtual machine environment. Our approach, for
instance, was able to recognize an overload at the backend
database server and as a result were able recalculate a new
set of per component thresholds to maintain conformance
to the overall SLA. We start with a description of our RU-
BiS/Xen testbed, which is followed by a brief description of
the workload. We present our experimental results starting
from Section 5.3.

5.1 Experimental Setup

The experimental setup consisted of 5 Emulab [5] nodes,
each with a 2800MHz Pentium-4 processor, 512MB RAM
and running the 2.6.18-4-xen-686 Linux kernel. The vir-
tual machine was started with the Xen SEDF scheduler run-
ning in non work-conserving mode. The RUBIS instance
consisted of an Apache server, two load-balanced Tomcat
servers and an instance of the MySQL server; each hosted
on a different machine. The RUBIS client along with the
monitoring program (IFLOW [12]) was configured to run
on the one remaining node. The nodes were connected by
Gigabit Ethernet links.

The 4 nodes running the RUBIiS components were instru-
mented to monitor the vmstat records and the VM statis-
tics; the Apache server status, and the Tomcat and the load
balancer status were monitored and reported using the ap-
propriate plugins (mod_status, mod_jk), mysgladmin
was used to track the status of the MySQL Server. The
response-time and throughput metrics were collected at the
client node, which also hosted the IFLOW agent for col-
lecting the monitored data. There were 137 monitored vari-
ables, collected every 5 seconds, which included quantities
like CPU and memory allocation to virtual machines, load-
balancing factor, bytes transferred, requests processed, etc.

5.2 Workload

The training data sets were generated using a synthetic
workload applied to the RUBIS instance, and during the du-
ration of the experiment an automated script was responsi-
ble for modifying the environment parameters like allocated
CPU, allocated Memory, request-rate and external load on
the Middle Tier and the Database Tier. We collected 5 such
training data sets, each for a duration of approximately 1
hour. We also collected 4 more data sets, each for a dura-
tion of 10 minutes under variety of different perturbations,
which were to serve as test data sets.

We used the EPA-HTTP web traffic trace from the LBL
Repository [13] when determining component-level objec-
tives under traffic spikes, varying transaction-mix and vary-
ing external load at the database tier. The EPA-HTTP web
trace contains traffic for an entire day. However, for the
purpose of experimentation we scaled down the trace to run
in 1 hour while preserving the shape of the workload. We
called the trace EPA-HTTP-ONE, shown in Figure 3.

Response-Time (Seconds)

Response-Time (Seconds)

Figure 2. Response-time variation with change in CPU allo-
cation in unpartitioned (a) and the partitioned (b) data-set.
Observe the more intuitive variation of response-time in (b) as com-
pared to (a). Corroborates our claim of sub-space homogeneity.

5.3 Results

In the following section we report the microbenchmark
results using the Pranaali system, followed by experiments
that evaluate the suitability of our approach in deriving the
component-level objectives.

5.3.1 Microbenchmarks

The first experiment was focused on evaluating the useful-
ness of our partitioning scheme in clustering together a set
of homogeneous states. We used TANs generated from par-
titioned and unpartitioned training data sets for the purpose
of classifying the states of the test data set as the ones caus-
ing SLA violation or conformance. In the results reported in
Table 1, we compare the accuracy of classification. Clearly,
the TANs generated from the partitioned data set are signif-
icantly more accurate at classifying the states. This can be
attributed to the partitioning scheme which aims to cluster
together a set of homogeneous states that can be modeled
more easily as compared to the entire training data set. The
experiments were performed using the following parame-
tersn = 1.0,u = 0.2, = 5. In Figure 2, we show the
actual plot of data along 3 dimensions, comparing the en-
tire training data set to the partitioned data set.

In the second experiment we analyzed the effect of set-
ting up a threshold for the classification probability. A clas-
sification was termed successful only if the TAN model re-
turned that classification with a probability higher than the
threshold. As shown in Figure 4, with increasing value
of threshold probability the accuracy of classification in-
creased. This observation is useful for fine-tuning the cor-
rectness of the component-level objectives; from stringent
(a very high value for parameter x) to relaxed. As a re-
sult of setting up thresholds for classification probability a
significant number of test data states were left unclassified,
and such numbers increased with an increase in the thresh-
old. As many as 35% of the states remained unclassified
for a threshold value of 0.95. We believe that the number
of these unclassified states can be significantly reduced by

Table 1. Effect of partitioning on classification accuracy

Original Partition
Amaz -] 04] 03] 02
Accuracy % 72.0 | 77.8 | 80.1 | 81.3
Partitions - 3 4 6

Changed Transaction Mis.

10000

8000 |~

6000 |- |

Accuracy (%)

4000 |- | | -

requests per minute

2000 |~ /\‘\“

0

RVl

0

10

20

30
Time (minutes)

450 T T T T T

=
ClassiEtion Accufa

ﬂ

400 |- . -
350 |~ . . -
300 |- . i —
250 |- “ : i - A

. .
200 |~ L <=

Response Time (msecs)

0.75

0.80

0.85

0.90

Confidence Threshold

0.95

0 10 20 30 40

Figure 3. EPA-HTTP-ONE work-
load: Requests per minute vs time

providing a more comprehensive training data set. How-
ever, we leave this analysis as part of our future work.

The remaining experiments use the training data set from
Section 5.2 to construct the system models for deriving
component-level objectives. The high-level SLA for these
experiments was to maintain a response-time of less than 75
milliseconds. The set V ; for these experiments consisted of
8 variables which included the CPU and Memory allocated
to the 4 VMs.

5.3.2 Workload Variations

We wanted to observe and evaluate the response of our ap-
proach to variations in the workload characteristics. Specif-
ically, we observed the response of our system to sudden
spike in traffic and its response to change in workload trans-
action mix. To conduct the experiment, we modified the
EPA-HTTP-ONE trace to include a synthetic traffic spike at
the 12th minute, which lasted for 3 minutes. Furthermore,
we modified the RUBIS client to increase the ratio of re-
quest for database intensive pages for 4 minutes, starting at
the 48th minute. We ran the experiment twice - without and
with the Pranaali system in place.The Pranaali system was
able to determine at runtime the CPU and memory alloca-
tion ranges for the VMs that were hosting the RUBiS com-
ponents. All the VMs at the start of both the experiments
were configured to use 50% CPU and 365MB out of the
total 465MB of the available memory. Figure 5 shows the
variation in response time without the Pranaali system. The
Pranaali system was able detect the SLA violations and the
migration of the RUBIS system to new state-space partitions
(like the one characterized by high traffic) and was therefore
able to suggest new component-level objectives and avoid
SLA violations. The results and the new component-level
objectives for relevant variables are shown in Figure 6.

5.3.3 Variation in External Load

In this experiment we used the Pranaali system to automati-
cally detect and provision the resources to counter the delay
introduced by application of external load to the database
(like database updates or analytic queries against produc-

Figure 4. Variation of classification
accuracy with increasing <

Figure 5. Response-time for work-
load variations without Pranaali

tion database). Our modeling techniques were able to de-
tect the migration of system into a different partition and
the component-level objectives, so determined, were able
to achieve SLA conformance. The results are shown in Fig-
ure 7 and 8, the external database load (a series of complex
DB Queries) was applied at the 52nd minute and lasted for
2 minutes. Clearly, with the Pranaali system in place, we
were able to avoid SLA violation that occurred in the system
without Pranaali. The Pranaali system in this case had au-
tomatically increased the CPU and Memory allocated to the
VM hosting the database, the new component-level ranges
are also shown in the figure.

6. Related Work

Automated diagnosis of performance problems and its
application to self-healing systems is a topic of consider-
able research interest. A number of approaches have been
proposed in this domain including use of analytical mod-
els, machine learning techniques and feed-back control sys-
tems. Proactive management of Service Level Agreements
is also a topic of current research. Notable efforts in ap-
plying analytical models include the work on using perfor-
mance models to guide resource provisioning and capacity
planning [18, 20, 4]. However, these efforts, mainly focused
on multi-tier web applications, rely on making use of exe-
cution models for the underlying components to arrive at
per-tier allocation decisions. Reliance on such models, typ-
ically attained with component profiling methods, makes
it difficult to extend these approaches to other enterprise
systems that can benefit from decomposition. Further, the
performance models being used are typically based on the
steady-state behavior of constituent components and sys-
tems, which makes it impossible to use them to characterize
interesting or important conditions caused by system dy-
namics. Y. Udupi et. al [17] propose a classification based
approach to policy refinement. To the best of our knowl-
edge, our work is the first that can predict application be-
havior under normal conditions as well as under stress. Fur-
ther more, most of the existing approaches only deal with
a small subset of system and application level metrics. On

Response Time (msecs)
Response Time (msecs)

0 10 20 30 40 50 60 0 10 20
Time (minutes)

Figure 6. Response-time for work-
load variation with Pranaali

the contrary, our approach allows us to model many metrics
simultaneously. In the area of statistical and machine learn-
ing research, Chen et al. [3] analyzes run-time execution
paths of complex distributed applications to automatically
detect failures by identifying statistically abnormal paths;
faulty paths can then aid a human analyst in diagnosing the
underlying cause. Similarly, the SLIC project [16] uses sta-
tistical techniques including Bayesian networks to automat-
ically extract signatures for root cause analysis.

7. Conclusions & Future Work

In this paper we described an approach for deriving for
component-level objectives from system level objectives or
agreements. The approach offers scalability and better man-
ageability by partitioning the system state-space into more
homogeneous regions which can be more easily modeled as
compared to the entire state-space. We made use of prob-
abilistic modeling techniques to dynamically infer the re-
lationship between the variables of interest and the control-
lable variables, and used the models, so developed, to derive
component-level objectives. As part of the future work we
are trying to evaluate the usefulness of micro-models at lim-
iting the monitoring overhead and making use of dynamic
Bayesian networks to incorporate time into our models.

References

[1] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham.
E2eprof: Automated end-to-end performance management
for enterprise systems. In DSN, 2007.

[2] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, 2003.

[3] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox.
Pinpoint: Problem determination in large, dynamic, internet
services. In DSN, 2002.

[4] Y. Chen et al. SLA decomposition: Translating service level
objectives to system level thresholds. In /CAC, 2007.

[5] Emulab - network emulation testbed home. http://www.
netlab.cc.gatech.edu/, as retrieved on 09/15/2007.

30

Time (minutes)

Figure 7. Response-time for exter-
nal DB load without Pranaali

Response Time (msecs)

40 50 60
Time (minutes)

Figure 8. Response-time for exter-
nal DB load with Pranaali

[6] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine Learning, 29(2-3), 1997.

[71 M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. 1979.

[8] A. Gavrilovska, K. Schwan, and V. Oleson. A practical ap-
proach for zero’ downtime in an operational information sys-
tem. In ICDCS, 2002.

[9] D. Heckerman. A tutorial on learning with bayesian net-
works. Technical report, Microsoft Research, 1995.

jBNC: Bayesian network classifier toolbox. http://
jbnc.sourceforge.net/, as retrieved on 09/15/2007.

(10]

[11] V. Kumar, B. F. Cooper, G. Eisenhauer, and K. Schwan.
iManage: Policy-driven self-management for enterprise-

scale systems. In Middleware, 2007.

[12] V. Kumar et al. Implementing diverse messaging models

with self-managing properties using iflow. In /ICAC, 2006.
EPA-HTTP - a day of HTTP logs from the EPA WWW
server. http://ita.ee.lbl.gov/html/contrib/
EPA-HTTP.html, as retrieved on 09/15/2007.

[13]

[14] M. Mansour, K. Schwan, and S. A. Aziz. I-queue: Smart

queues for service management. In /CSOC, 2006.

RUBIS - home page. http://rubis.objectweb.
org/, as retrieved on 09/15/2007.

SLIC. http://www.hpl.hp.com/research/
slic/, asretrieved on 09/15/2007.

Y. Udupi, A. Sahai, and S. Singhal. A classification-based.
approach to policy refinement. In IM, 2007.

[15]

(16]

(17]

[18] B. Urgaonkar et al. Dynamic provisioning of multi-tier in-

ternet applications. In JCAC, 2005.

[19] Worldspan by Travelport. http://www.worldpsan.

com, as retrieved on 09/15/2007.

A. Zhang, P. Santos, D. Beyer, and H. Tang. Optimal server
resource allocation using an open queueing network model
of response time. In HP Labs Technical Report, HPL-2002-
301, 2002.

S. Zhang, 1. Cohen, J. Symons, and A. Fox. Ensembles
of models for automated diagnosis of system performance
problems. In DSN, 2005.

(20]

(21]

