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Abstract—This paper definesa new type of reg-
ister, called a storageregister to representblocks
of a replicatedlogical volume built from a distrib-
uted collection of disks. We give a formal specifi-
cation of storageregistersand,in doing so, we ex-
tend linearizability to a crash-receery model. Ex-
isting algorithmsthat implementregisterson top of
message-passimgimitivestypically assumea crash-
stopfailure model. Our work illustratesthe difficul-
ties in moving to a more generalfailure model and
presentsan efficientimplementatiorof storageregis-
tersin amessage-passirmystemwith crash-receery
processes.

1 Intr oduction

This paperpresentsa new replication algorithm
suitablefor high-performancehighly availablelogi-
cal disk systems.We ervisagea logical disk system
architecturevherea disk volumeis stripedandrepli-
catedacrossa numberof bricks orintelligentstorage
devices containingdisks,a CPU, NVRAM and net-
work cards.

We modeleachlogical disk block asa read-write
register Thebrickscollectively emulatethefunction-
ality of a multi-writer, multi-readerregisterfor each
logical block. Our registerimplementationsuperfi-
cially resembledraditionalatomic-rejister construc-
tionsfor amessage-passimgodel[1, 11, 12]. How-
ever, where theseatomic register constructionsas-
sumeacrash-stopnodel,ourimplementatiorhandles
processrecovery aswell. We extend existing work
on shared-memonrgbstractionsn the following di-
rections.

e We develop an extensionto linearizability [7]
that enablesreasoningabout safetyin a crash-
recovery model.
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o We definea new abstractiorcalleda storage reg-
ister. A storageegisterexploitsthefactthatcon-
currentaccessto the samelogical block is ex-
tremelyrarein real-world storagesystems: the
readandwrite methodson a storageregisterare
allowed to “abort” if they are invoked concur
rently. We definepreciselivenesspropertiesfor
a storageregisterthatlimit the possibility of per
petualabortto runswith perpetuatoncurreng.

e We give an efficient implementationof a stor
ageregisterin anasynchronousessage-passing
modelwith processcrashandrecovery. Our al-
gorithm ensureghat if a processthat startsan
operationcrashesbefore completing, that oper
ation is linearizedbeforeary operationsissued
after procesgecovery. Moreover, our algorithm
runs readoperationamore efficiently than exist-
ing atomicregisterconstructionsin the normal,
failure-freecase,our algorithm completeseads
in a single round-trip, as opposedto the two
round-tripsrequiredby traditionalalgorithms.

Ouralgorithmis basednthenotionof quorum[6],
where ary majority of replicas constitutesa quo-
rum. Dataconsisteng is alwaysmaintainedandthe
algorithm makes progresswhen&er a majority of
processeareableto communicate.

1.1 Recovery isthe hard part

Bricksin alogical disk systemdo restartafterthey
crash—theguestionis not whetherto handlerecov-
ery, but how. We arguethatdisk replicationdemands
supporfor acrash-receery model. Adoptingacrash-
stopalgorithmandimplementingrecovery asthe ad-
dition of a new nodeis impractical,asit would re-
quireusto performa full statetransferfrom existing

In fact, we have found no instanceof concurrentaccesses
in ary of the workloadswe have studied. We discussthis issue
furtherin Section6.1.



nodesfor the billions of blocksthata brick stores.In
thefollowing, we discusgheramificationsof reason-
ing about,andimplementingread-writeregistersin a
crash-receery model.

Addressingprocessrecorery demandsa new set
of safetyconditionsfor registerabstractions.Tradi-
tionallinearizability[7] allows only thelastoperation
in eachperprocesshistory to be partial, becauset
assumegrash-stoprocesses.To supportrecovery,
we definean extensionto linearizability in which a
perprocesshistory may containan arbitrary number
of partial operations We demandhateach(possibly
partial) operationexecuteatomically: a partial opera-
tion mayor maynottake effect, butif it doesjts place
in the linearizedhistory mustbe compatiblewith the
inherentpartial orderof eventsin the distributedsys-
tem.

Processecovery complicateghealgorithmdesign,
particularlyregardingpartialwrites,whereareplicar
invokesa write operationandthencrashedeforethe
operationcompletes. A partial write shouldappear
atomic,andit mustappeato take effect, if atall, be-
forer recovers.

Correctly handling partial writes in a crash-
recosery model createsread-write conflicts that are
not presentn a crash-stopmodel. Considerthe sit-
uationwhereprocesy startsa write operationman-
agesto storethe new valueonly on a sub-majorityof
replicasbeforecrashing,andthenanotherprocesg’
startsreading. Proces®’ may returnthe “old” value
of the register but it must prevent the partial write
from taking effect afterthereadcompletesThus,the
readmust“abort” the partialwrite, andre-enforcehe
old value. But sincea readcannotdistinguisha slow
write from a partial write, readoperationsnay abort
in-progresswritesaswell, which createsa read-write
conflict.

The presencef read-writeconflictsillustratesthe
difficulties in adaptingthe algorithmsin [1, 11, 12]
to acrash-receery model—itis not sufiicientto sim-
ply storekey variablesin stablestorage. The pres-
enceof read-writeconflictsalsoimpliesthat a tradi-
tional atomicregister[9] is not a goodfit asa regis-
ter abstractionfor logical disk systems. To provide
the semanticsof an atomic read-writeregisterin a
crash-receery model,we have to guarante¢hatcon-
flicting read-write operationsare always serialized,

e.g.,throughsomenotionof leaderelection,by keep-
ing additionalcontrol information, or by someother
means. Paying the cost of emplg/ing theseserial-
izationmechanismss particularlytroublesomen the
contet of storagesystems,becauseconcurrentac-
cesdothesamdogicalblockis overwhelminglyrare.
If we wereto usecorventionalatomicregisters,we
would effectively pay for a conflict-resolutioncapa-
bility thatwe never need.

We thusdefinea new abstractioncalleda storage
register, that betterreflectsthe propertiesof logical
disk systemsLike anatomicregister a storageregis-
tersupportgeadandwrite methodsUnlike anatomic
register however, thesemethodsmay returnan error
if invoked concurrently If anoperationreturnsaner
ror, it is thenup to the storagesystemclient (e.g.,a
client-sideSCSildriver) to retry the operation.An un-
successfuteadhasno effect on the register An un-
successfulvrite may or may not updatethe register
Howeverif afailedwrite doesupdatetheregister the
effectis equialentto thatof asuccessfulvrite.

1.2 Overview of the algorithm

We run instancesof the algorithm independently
for eachlogical disk block. The local property of
linearizability [7] ensureghat operationson a logi-
caldisk arelinearizable providing thatoperationon
eachlogical block are linearizable. A reador write
operationcanbeinvoked by ary replicaof aregister
We call this replicathe coodinator of the operation
(differentoperationsanhave differentcoordinators).
Thevaluestoredin aregisteris a disk block (usually
1KB). Valuesare storedon disk, while timestamps
canbekeptin memory(NVRAM).

Our algorithmruns a “read” operationoptimisti-
cally: withoutconcurrentequestandfailures,aread
operationinvolvesa singledisk readat the coordina-
tor and a singleround-tripof messagebetweenthe
coordinatoranda majority of replicas.Themessages
contain timestampinformation only, not the actual
value. In the presenceof concurreng and failures,
areadoperatiormayrequiretwo additionalroundsof
communicatiorbetweerthe coordinatoranda major
ity of replicas.This“slow read”phasdnvolvesadisk
readandwrite atamajority of replicas.Thewrite op-
erationalwaysinvolvestwo roundsof communication



betweenthe coordinatorand a majority of replicas,
with a disk write at a majority of replicas.

1.3 Relatedwork

Thealgorithmin [1] pioneeredheimplementation
of atomicregistersin amessage-passimgodel. How-
ever, theimplementatiorassumesa crash-stogailure
model and only supportsa singlewriter. The algo-
rithmsin [11, 12] implementan atomic multi-writer,
multi-readerregister in a message-passingodel.
However, areadoperationin thesealgorithmsalways
involves a two-phasénteractionwith a quorum:one
phaseto reada (value,timestamjyppair from replicas,
andthe secondphaseto write the (value,timestamyp
pairwith the highesttimestampbackto a quorum.In
contrastour optimisticreadoperationinvolvesa sin-
gle disk readonly. Furthermorethesealgorithmsdo
not supportstablestorageandprocessecorery.

Like storageregisters,Lamports safeandregular
registerg[9] provide thesemantic®f anatomicregis-
teronly in the absencef concurreng. However, op-
erationson safeandregular register do not indicate,
per se,if they areinvoked concurrentlywhereaop-
erationson storageregistersdo (they returnadistinct
errorvalue). The ARegisterin [3] alsoreturnsa dis-
tinct valuein the presencef concurreng. However,
where AReggisterallows non-concurrenprocesse$o
agreeonasinglevalue,a storageregisterallows non-
concurrenprocesseto sharedataovertime.

An alternatve approachis to modeleachblock of
storageas a statemachine[8], and usea total-order
broadcasmechanismsuchas Paxos[10], to apply
read and write operationsin the sameorder at all
replicas. Fundamentallysincetotal-orderbroadcast
is equivalent to consensug2], it cannotbe imple-
mentedn anasynchronousysteni4], whereastom-
icity can. Furthermoretotal-orderbroadcasts more
expensve bothin termsof spaceandstorage For ex-
ample with Paxos thedelivery of ary reques{reador
write) requiresat leasttwo roundsof communication
andtwo disk 1/Os.

Severalrecentalgorithms[5, 13] demonstrat&on
to implementPaxoson top of storage-areaetworks
with unreliabledisks. The goalof thesealgorithmsis
to decoupleprocessingandstorageo (a) toleratethe
crashof more processingunits [5] and(b) to handle
infinitely mary processinginits[13]. By contrastpur

storagebricks contain both processingand storage,
andour goalis to build betterstorage-areaetworks
that provide the illusion of a single, highly-available
disk.

1.4 Structure of the paper

In Section2, we introducethe modelthat we as-
sumefor thealgorithm. Section3 definesstoragereg-
istersand specifiesthe correctnesgriteria of our al-
gorithm, including extendedlinearizability We de-
scribethe algorithmin detailin Section4 andsketch
the correctnesgroofin Section5. To reviewers: the
full proofappeas in AppendixA. Section6 discusses
practicalissuesthat arise when applying our algo-
rithm to real-world disk systemsSection7 concludes
anddescribeduturework.

2 Model

We considera systemof n processesp1, - - -, pn,
thatcollectively emulatea storageregister Processes
fail by crashingj.e., they do notbehae maliciously
A processnayrecover later A correctprocesss one
thateithernever crashe®r eventuallystopscrashing.
A faulty processs a procesghatis not correct. We
assumemajority of correctprocesses;e.,n > 2f +
1, wheref is thenumberof faulty processes.

Processesre fully connectedby a network and
communicateby messagepassing. The system
is asynchronous:there is no bound on message-
transmissiortimes,andthereis no boundon thetime
it takes a processo executea stepin its algorithm.
Channels however, are assumedo have a fair-loss

property:

FAIR LOSS: If aproces®; sendsamessagen anin-
finite numberof timesto acorrectprocesg;, then
pj recevesm aninfinite numberof times.

NO CREATION: If aprocesy; recevesamessagen
from p;, thenp; sentm.

Eachprocesgprovidesa non-blockingtimestamp-
generatiomprimitive callednewTS thatreturnsavalue
in atotally orderedset(we useoperators'<”, “>",
and“=" to comparetimestamps). We assumethat
new TS satisfieghefollowing properties:



UNIQUENESS: Any two invocationsof newTS (pos-
sibly by different processes)return different
timestamps.

ORDER: Successie invocations of newTS by a
process p produce monotonically increasing
timestamps.

PROGRESS: Assumethat a processp; receves a
timestamp fromnewTS. If aproces®; receves
an infinite numberof timestampsrom newTS,
thenp; will eventuallyreceve atimestamg’ with
t' >t

We alsoassumehatthereis a smallestimestamp,
calledinitial TS. For ary valuet returnedby newTS,
t > initialTS. We discussthe practicalaspectsof
implementingimestampenerationn Section6.1.

Each processhas persistentstoragethat survives
crashes. The store(var primitive atomically writes
thecurrentvalueof variablevar to the persistenstor
age. When a processrecorers, it automaticallyre-
trievesthemostrecentlystoredvaluefor eachvariable
andassignghis valueto thevariable.

A processhasaccesdo atimer to wait for anin-
determinategperiod of time. Processessetimersto
implementmessagee-transmissionafter sendinga
messagea processusesa timer to wait beforere-
sendinghe messageTheamountof time spentwait-
ing affectsthe performancebput not the correctness,
of the system. For correctnesswe rely only on the
factthattimerseventuallyexpire.

3 Storageregisters

A storageregisteris a read-writeregisterthat (a)
cancrashandrecover, (b) behaeslike acornventional
atomic register when accessedn a non-concurrent
manney and (c) may abort concurrentoperations.
This sectiondefinesstorageregistersformally. We
firstintroducetheconcept®f operationandeventsin
Section3.1. Section3.2 definesthe safetyof storage
registers.We extendlinearizability[7] in two waysto
handleprocessecorery: (a) treatprocessrashasan
unsuccessfutompletionof an operation,and(b) al-
low non-successfudperationgo leave thesystenin a
non-deterministig/et well-definedstate. Section3.3
defineghelivenesgpropertiedy combiningtheusual

notionof non-blockingoehaior with aconstrainthat
limits the possibility of abortonly to situationswith
concurreng

3.1 Operations, events,and histories

We usethe term opeiation to referto a particular
invocationof thereador write methodon aregister A
write operationtakesa valueandreturnseitherok or
NOK. A readoperationreturnsa valueor NiL, which
indicatesanerror We usea specialvalue | to repre-
senttheinitial stateof aregister Thus,readmayre-
turn L, butwe assumehatwrite is neverinvokedwith
1 asparameterlf awrite operationreturnsok, or if
a readoperationreturnsa nonNiL value (including
1), the operationis saidto be successfullf anoper
ationreturnsNOK or NIL, theoperationis unsuccess-
ful.? For simplicity, we assumeéhata processssues
readandwrite operationneat a time (but multiple
processesanissueoperationsoncurrently).

We usethreetypesof eventsto modelthe execu-
tion of a system.An invocationeventhappensvhen
a processstartsa reador write operation. A return
eventhappensvhenanoperationcompletesA crash
eventhappensvhenaprocessrashes.

A run of our algorithmresultsin a history; or se-
quenceof events. We assumethat the ordering of
eventswithin ahistorycomplieswith theinherentar
tial orderof eventsin a distributed system[8]. For a
history H anda procesy, we define H| p to be the
historyderivedby extractingonly the eventsthathap-
penatp.

3.2 Linearizability

Roughlyspeakingahistory H is linearizablevhen
(1) its eventsindicatethatoperation$iapperinstanta-
neouslyin sometotal order (2) this apparentotal or-
derof operationds compatiblewith theinherentpar
tial orderof eventsin adistributedsystemand(3) the
apparentotal orderis consistentith the sequential
specificatiorof our register[7].

Beforewe canusethe formalismin [7] to define
safetyfor a storageregister we needto fill two gaps.
First, linearizability doesnot definethe semanticof
failed operations;we give a sequentiakpecification

2As wedefinein Section3.2.2,we alsotreatoperationsvhose
coordinatohascrashedsbeingunsuccessful.



for suchoperationsn the next section. Second|in-

earizabilitydisallons the appearancef a partial op-
erationin the middle of a perprocesshistory Sec-
tion 3.2.2definesa way to transforma history with

anarbitrarynumberof partial operationsnto a well-

formedone.

3.2.1 A sequentialspecificationfor storageregis-
ters

The sequentiakpecificationof a shareddataobiject,
suchas a read-writeregister captureghe semantics
of the objectin theabsencef concurreng andrepli-
cation. For example,the sequentiakpecificationfor
a cornventional read-write register simply demands
thatareadoperationreturnthe mostrecentlywritten
value. For storageregisters,however, we cannotrely
onthenotionof “written value”, becausawrite oper
ationmay not alwayscompletesuccessfullylnstead,
we definethesequentiaspecificatiorof astorageeg-
isterin thefollowing manner:

e A successfulvrite operatiorstoredts valuein the
register

e An unsuccessfulvrite operationmay or may not
storeits valuein theregister

e A successfuteadoperationreturnseither(a) the
valuemostrecentlystoredin theregisteror (b) L
if novaluehasbeenstoredin theregister

3.2.2 Linearizing crash-recovery histories

For a history H to be well-formed,eachperprocess
history H| p mustbesequential—thas, in H| p, each
invocationevent,exceptpossiblythelast,mustbefol-
lowed immediatelyby a returnevent[7]. In our per
processhistories,ary invocationevent (not just the
last) may be followed by a crashevent. If a crash
eventfollows aninvocationeventin aperprocessis-
tory, we replacethe crasheventwith anunsuccessful
returnevent. If a crasheventfollows a returnevent,
we simply discardthe crashevent. This way, we ob-
tain awell-formedhistory andcanusetheformalism
in [7] to reasomabouthistories.Moreover, our trans-
formationpreseresthe semantic®f histories:a par
tial write operatiormayor maynotupdateghesystem,
which is exactly the semanticsof a write operation
thatreturnsNnoK.

3.3 Specificationof storageregisters

We cannow specifythe propertieof a storageeg-
ister as the set of historiesthat may occurwhenn
processeinteractwith it. Any history H in this set
satisfieghefollowing constraints:

CONSISTENCY: H islinearizable.

TERMINATION: For ary process, if H|p contains
an invocationevent, then H| p either containsa
subsequenteturn event or a subsequentrash
event.

PROGRESS: If only a singleprocessp hasa history
H| p that containsan infinite numberof invoca-
tion events,andif p is correctthen H| p contains
aninfinite numberof successfuteturnevents.

The TERMINATION propertystateghatoperations
shouldbe non-blocking,thatis, they shouldeventu-
ally return (unlessthe caller crashes). Notice that
TERMINATION only insiststhatoperationgeturn,not
thatthey returnsuccessfullyWithout the PROGRESS
property an algorithm that simply returnsNiL for
every invocationof read,and NOK for every invoca-
tion of write, would becorrect. The PROGRESS prop-
erty precludesuchtrivial solutions.

4  Algorithm

4.1 Overview

In our systemyeadandwrite operationsanbeco-
ordinatedby ary processEachprocesgrovidesreg-
istermethodgsead()andwrite(val) thatcommunicate
asynchronouslyvith otherprocesset coordinatean
operation;similarly, eachprocessprovides message
handlerghatrespondo requestsrom a coordinating
process.

Eachreadandwrite operationcontactsa majority
of replicas. The term “quorum” denotesthe set of
replicasthatparticipatein a particularoperation.

Becausea write quorum and a subsequentead
quorummay be different, the latter setmay contain
replicaswith differentregistervalues. To determine
the currentvalue,we associatea timestampwith val-
ues. This timestampreflectsthe (logical) time at
which thevaluewaswritten. The basictaskof aread
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Figure 1: Executionwith a partial write operationwith
threereplicasa, b, andc. Time flows to theright. (v,t)
indicatesthata processtoresvaluev andtimestamy.

operationis thento pick the mostrecentvaluein the
readquorum,ensurethata majority storeshis value,
andreturnthevalueasthe currentregistervalue. The
basictaskof awrite operatioris to storethenew value
in a guorumwith atimestamphigherthanary of the
guorums currenttimestamps.

A key compleity of the algorithmstemsfrom the
handling of a partial write operation,which stores
a value in only a minority of replicas, either be-
causethe coordinatorcrashe®r propose$oo smalla
timestamp After a partialwrite, areadoperatiorcan-
not simply pick the valuewith the highesttimestamp,
sincethis mayleadto a non-linearizablesequencef
write and read operations. Figure 1 shavs an ex-
ample. Initially, all threereplicasstorevaluev with
timestampt. A write operationw, coordinatedy a,
storesvaluev’ with timestampt’ (t < ¢') only ona
(e.g.,becausar crasheammediatelyafterward). A
readoperationr; thenreadsy from b ande. Finally, a
recosersandrunsareadoperationry ona andb. Con-
sidernow a history wherew, r; andry are causally
connectedsay throughthe sameexternal client) in
thetemporabrderw, r1, ro. Sincew fails, theregister
stateis unknavn afterw; however, sincer; returnsv,
the historyindicatesthatw did not take effect. Thus,
for consisteny ro mustreturnv eventhoughit finds
thevaluev’ with a highertimestamp.

Oneway to ensurelinearizability in the presence
of partial writes is to have every readoperationup-
datetimestampsFor example,in Figurel, by having
r1 updatethetimestamgn b andc, r» will seev hav-
ing atimestampgreaterthanthatof +’. However, we
implementa moreefficient schemewnvherereadoper

ationsupdatethe timestampsonly whenthey detect
partialwrites. To allow this detectionwe run a write
operationin two phasesin thefirst phaseawrite op-
erationinformsamajority abouttheintentionto write
avalue;in the secondphase a write operationactu-
ally writesthevalue.A readoperatiorcanthendetect
a partial write as an unfulfilled intentionto write a
value.

We cannow run readoperationsoptimistically in
asingleroundtrip. A readoperationfirst checksif a
majority hasthesametimestampandhasseemo par
tial write; if so,it simply returnsits own value. Fail-
ing the optimistic phasethe readoperationpicksthe
valuein amajority thathasthehighestimestampand
storeghechoservaluein amajority with atimestamp
that is greaterthan the timestampof ary previous
write operation,including ary partial write opera-
tions.

4.2 Detaileddescription

Eachreplicakeepsthreepersistentariables: val,
val-ts andord-ts with initial valuesof L, initial TS,
andinitial TS, respectiely. Variableval holdsthecur
rentvalueof theregister Timestampval-ts shavs the
logicaltimeatwhichval waslastupdated Timestamp
ord-tsshawvsthelogicaltime atwhichthemostrecent
write operationwas started establishingts placein
the orderingof operations.val-ts < ord-tsindicates
the presencef a partialwrite operation.

Algorithm 1 describesheregistermethodsandAl-
gorithm 2 the register messagehandlers. Methods
“read” and“write” arepublic methodghatcanbein-
voked by ary replicaatary time. Theinternalproce-
dure“majority” repeatedlyendsarequesto all repli-
casuntil the coordinatorrecevesrepliesfrom a ma-
jority. We assumehatthereis awayfor thecoordina-
tor to matchrequestsaindreplies,e.g.,by embedding
auniqueidentifierin eachrequestndreply.

The write methodtriggersa two-phasenteraction
with a majority. In the first phase,the coordinator
sends’[Order,..]” message®o replicaswith a newly
generatedimestamp A replicaupdatests ord-tsand
respond®K if it hasnotalreadyseerarequestvith a
highertimestamp This establishea placefor theop-
erationin the orderingof operationsn thesystermand
preventsa concurrentwrite operationwith an older
timestamgfrom storinga new valuebetweerthefirst



Algorithm 1 Registermethods

1
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:pr
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11:

12
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13:
14:
15:
16:
17:
18:
19:

20

:pr

21:
22:

23:

ocedureread()

replies+ majority([Read val-ts])

if thestatusin all repliesis true then return val
elsereturn recover()

ocedure write(val)

ts + newTS()

replies« majority([Order ts])

if ary statusin areplyis false then return NOK
replies< majority([Write, val, ts])

if thestatusn all repliesis true then return ok
elsereturn NOK

ocedurerecover()

ts < newTS()

replies« majority([Orde&Read s])

if ary statusin areplyis false thenreturn NIL
val « thevaluewith highestval-tsfrom replies
replies« majority([Write, val, ts])

if thestatusin all repliesis true thenreturn val
elsereturn NIL

ocedure majority(msg)

Sendmsgto all, retransmittingperiodically

await receve(rep)from [ 2] processes
suchthatrepmatchesnsg

return setof recevedreplies

Algorithm 2 Registermessagéandlers

24: whenreceve[Read,ts] from coordinator
25:
26:

status« (ts = val-tsand ts > ord-t9
reply [Read-R statu$ to coordinator

27: whenreceve[Order, ts] from coordinator
28:
29:
30:

31

37

status« (ts > max(val-ts ord-t9)
if statusthen ord-ts+ ts; store(ord-ts
reply [OrderR, statu$ to coordinator

: whenreceve [Write, new-val, ts] from coordinator
32:
33:
34:
35:
36:

status« (ts > val-tsand ts > ord-t9
if statusthen

val < new-val; store(val)

val-ts « ts; store(val-ts)
reply [Write-R, statu$ to coordinator

: whenreceve [Order&Read ts] from coordinator
38:
39:
40:

status« (ts > max(val-ts ord-t9)
if statusthen ord-ts+« ts; store(ord-ts)
reply [Orde&Read-Ryval-ts val, statu$

andsecondphases.In the secondround, the coordi-
natorsends|[Write,..]” messageandstoreghevalue
in a (possiblydifferentymajority.

The readmethodfirst optimistically assumeshat
a majority of replicas have the same value and
timestamp,and that there are no partial writes. If
this assumptionturnsout to betrue, the readmethod
returnsin line 3 after a single round-trip without
modifying the persistentstate of ary replica. Oth-
erwise, the two-phaserecorery methodis invoked,
which workslike thewrite method,exceptthatit dy-
namically discorersthe valueto write. In the “[Or-
der&Read...]” phasea majority returntheir current
val-tsandval. After this phasethe coordinatoipicks
thevaluewith the highestval-ts andwritesit backto
amajority using“[Write,...]” messagesThis method
ensuredhat, on recovery, the completedreadopera-
tion appearso happerafterthepartialwrite operation
andthatfuturereadoperationsill returnvaluescon-
sistentwith this history

Ouralgorithmdoesnotrely ontheassumptiorthat
an updateoperationstoresboth val and the val-ts
timestampas a single atomic operation. Thus, it is
correctevenif areplicawritesval to stablestorage,
but crashedeforewriting val-tsto stablestorage Re-
covery will detectandresohe ary resultingdisparity
betweentimestampsat different replicasand return
thestoredvaluecorrectly

5 Proofsketch

This sectiongivesa sketch of a proof that our al-
gorithm maintainslinearizability asdefinedin Sec-
tion 3.2. Thefull proofof linearizabilityandliveness
will appeaiin a separatéechnicalreport. To review-
ers: thefull proof appeas in the appendixof this pa-
per

To simplify the presentationwe assumehateach
write triesto write auniquevalueandignorethe han-
dling of theinitial value L. In additionto the event
historiesdefinedin Section3.2, we alsoconsidern-
ternalstore events A storeevent happensvhenwe
storethevariableval in stablestoragen Line 34. A
storeeventst(v, ts) correspondso a storeoperation
whereval hasvaluev and val-ts hasvalue ts. For
a history H, Vy is the setof values(a) successfully
returnedby a readrequest,or (b) for which a write



methodreturnedok. For valuev € Vg, we define
ts, to be the smallesttimestampthat is part of ary
storeeventfor v.

We defineatotal orderingamongVy in thefollow-
ing way:

v<v & ts, < tsy. (ORDER)

We claim that our algorithm linearizesread and
write requestsn the orderdefinedabore. We prove
our claim in two steps. Propositionl first proves
thatthe orderdefinedabove “conforms”to history H.
Propositiond shavs that existenceof a conforming
total orderis suficientfor ahistoryto belinearizable.

Proposition1 Givena history H, thetotal order de-
finedby (ORDER) satisfieghefollowing properties.

write(v) — g write(v') Av,v' € Vg = v < v'(1)
read(v) — g read(v') = v <'(2)

write(v) — g read(v') Av € Vg = v < 0/(3)
read(v) — g write(v') Av' € Vg = v < v'(4)

(Whee oper; — g oper, Whenthe“r eturn” of oper;
happendefoe the“in vocation” of oper, in H.)

Dueto spaceconstraintsye only prove the prop-
erty (1) in this section.Proofsof otherpropertiesare
similar. We first stateseveralusefullemmas.

Lemma?2 For anyprocessp thevaluesof val-tsand
ord-tsincreasemonotonically (Proofis omitted.)

Lemma3 Assumehatwrite(v) € H, andv € Vy,
and the coodinator of write(v) usestimestampts.
Then,(a) someprocessexecutesst(v, ts), and (b) a
majority hasstored ts astheir ord-tsat somemoment
during write(v).

PROOF SKETCH: (a) is derived from the NO CRE-
ATION propertyof the channel. (b) is true, because
the coordinatorcould not have sent“Write” message
beforea majority respondingok to “Order”. m|

PROOF SKETCH OF PROPERTY (1)

FromLemmag3, amajority maj, hasstoredts, as
their ord-ts at somemoment. The samecan be said
for v' aboutamajority maj,, andts,s. Now, consider

aprocesy € maj, N maj,, . Becausevrite(v) — g
write(v'), p musthave storedts, to the ord-tsbefore
storingts,,. FromLemmaz, ts, < ts,. O

Proposition4 Anyhistory H is linearizable

PROOF SKETCH:We constructa sequentiahistory S
from H, suchthat(a) S containsall the eventsin H,
and(b) for valuesv < v’ in H, S ordersall eventsthat
involve v beforeeventsthatinvolve +'. S is clearly
equivalentto H in the sensedefinedin [7]. It then
sufiicesto shav that S is legal, i.e., areadoperation
in S returnsthe latestvaluestoredin theregister
Assumethat read(v) is in S. From (4), we can
concludethat write(v) —g read(v). We now have
to shav thatthereis no operationwrite(v') between
write(v) andread(v) in S. Assumefor acontradiction
that suchwrite(v') exists. From (1), we know that
v < v'. At the sametime, we know from (3) that
v < v, whichisimpossible. O

6 Practical considerations

6.1 Generatingtimestamps

Sofar, wehave assumedthatanodewill eventually
generatesuficiently large timestampgo ensurethe
systems theoreticalsafetyandliveness.In practice
however, the timestampgeneratedy nodesshould
besynchronizedh orderto enablequick progressWe
uselooselysynchronizedeal-timeclocksfor thispur-
pose.

We have analyzedmary traces,from a variety of
real-world systemsand applications,in orderto de-
terminethe I/O behaiors exhibited. In particular we
areinterestedn thetime differentialsbetweenwrites
to the sameblock of storage,asthis determineghe
tightnessof time synchronizatiorrequired. Table 1
shavs the propertieof someof theseworkloads.

Cello: A file systemmanagedby an 8 processor
HP9000N4000 for 20—-30researchersyith 16
GB of RAM, andanHP XP512disk array

SAP: SAP ISUCCS and Oracle supporting 3000
usersandseveral backgroundatchjobsrunning
onanHP V2500with anHP XP512disk array



OpenMail: An HP9000K580 sener with 6 CPUs,
3.75GB of RAM, andan EMC 3700Symmetrix
diskarray Approximately2000usersaccessheir
emailduringthe courseof thetrace.

As even the smallesttime differentialsobsered
are on the order of several hundredmicroseconds,
and moderntime synchronizatiorprotocols,suchas
NTPR, canusuallysynchronizeclockson the order of
10us[14], we believe thatthe systemwill handlethe
vastmajority of requestsvithoutrejection.

6.2 Reducingthe sizeof control information

Sincewe tamget storagesystemswith large capaci-
ties(up to petabytesof storagecapacity) theamount
of control information per register is an important
compleity measure.

We canreduceour control information from two
persistentimestampgper registerto one. The ord-
ts is only neededto captureinformation aboutin-
progressupdateoperations. Once ord-ts and val-ts
areequal,we know thatthe placefor this operation,
resered in the orderingof eventsby the ord-ts has
beenconfirmedby the updatingof the val-ts At ary
point in time, we expectthe numberof in-progress
updateoperationgo be dramaticallysmallerthanthe
total numberof blocksin the system.Thus,the con-
trol information embodiedby the ord-ts timestamp
canbestoredin adynamiclog. Becausehereis noth-
ing inherentlycomplicatedaboutusinga log instead
of a secondtimestamp the secondtimestampord-ts
is usedin this paperto simplify presentatiorof our
algorithm.

We can further reduceour control informationto
eliminate timestampsn the casewhereno replicas
have failed. The val-tsis neededo captureinforma-
tion aboutlocally applied updateoperations. Once
theval-tsis thesameatall replicaswe know thatthe
updateoperationhassucceededt all replicas. Thus,
the coordinatorcanrun anextra phaseon completion
of anupdateoperationwhere,if all replicashave re-
portedsuccessfutompletionof thewrite, thereplicas
mayremove val-ts

6.3 Algorithm complexity

Table2 comparesheperformancef ouralgorithm
andstate-of-the-aratomic-rgjisterconstructionghat

perform two-round messagindgor both readingand
writing [11, 12]. Weimprove thepreviouswork espe-
cially in the commoncaseof readingfrom aregister
in theabsenc®f failuresor concurrenficcesses.

7 Conclusionsand futur e work

We have describedh new replicationprotocolsuit-
ablefor logical disk systemsThemaincontrilbutions
of the paperarethefollowing:

e The extensionto linearizability to model crash-
recoserabledataobjects.

e Thespecificatiorof astorageegisterthatreflects
the propertiesof logical disk systems.

e An implementationof this register thatis more
efficient than existing atomic-reister construc-
tions.

We have implementeda prototypeof this proto-
col on a clusterof PCs. (we referto the whole asa
Federatedirray of Bricks, or FAB). We arecurrently
studyingthesystem$ehaior andperformanceinder
varioussituationsjncludingfailuresandoverloads.

We have identifiedtwo majorareasof futurework.
Oneis dynamicvolumereconfiguratiorafter failures
or to improve performance. We plan to adaptthe
techniqueof [12], by superimposinga nenv quorum
configuratiomasynchronous)yransferringcontentgo
new bricks, andgarbagecollectingold quorumcon-
figurationsin thebackground.

The other is reducing the storage overhead of
quorum-basedeplication using withessesand wit-
nesspromotion. We adaptthe timestamp-discarding
scheméntroducedin Section6.2to create'witness”
replicasthat only keep timestamps,but no actual
block values(at leastin the long term). By replicat-
ing a logical sggmenton only f + 1 normalreplicas
and f additionalwitnessesthe segmentcantolerate
f failureswith little spaceoverhead.
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A Correctness

A.1 Histories

In accordancaith themodelin Section3, weusea
historyof invocationandreturneventsto representhe
interactionbetweerprocesseandan instanceof our
registerduringaparticularunof ouralgorithm.Since
thereareno partialoperationsn our histories(we re-
placecrasheventswith unsuccessfuleturneventsas
necessary)pur historiesare well-formed and com-
pleteaccordingto thedefinitionin [7].

Ratherthanrefer to individual invocationand re-
turn eventsin a history we usea notionof operation,
which is anaggregationof aninvocationeventanda
returnevent. Whereeventsaretotally ordered,oper
ationsareonly partially ordered(they may overlap).
If the returneventof anoperationoper precedeshe
invocationevent of anotheroperationoper’ in a his-
tory H, we saythatoper happendeforeoper’ andwe
write thisasoper — 5 oper’.

Eachoperatiorcontainsavaluefrom thesetValue.
We usewrite(v) to represent write operationthat
writesthevaluev. We useread(v) to represena (suc-
cessfulreadoperatiorthatreturnsy. To simplify the
presentationwe assumehat eachinvocationof the
write operatiortriesto write auniquevalue(“unique-
value” assumption Thevalue I (L € Value) repre-
sentstheinitial valueof theregister We assumehat
1 is not partof ary write operation(if write(v) isin
H,thenv # 1).

For an operationoper, we denote coord(oper)
to representthe processthat coordinates oper,
and ts(oper) to representthe timestampused by
coord(oper) (for a readoperation,coord is defined
only whenthe recover methodis executed.). Nota-
tions maj(oper), majy, (oper), maj,(oper) repre-
senta majority of processesontacteddy the coordi-
natoraftersuccessfutompletionof “Read”, “Write”,
and“Order”/“Order&Read’phasestespecirely.

For agivenhistory H, we definethefollowing sub-
setsof Value:

e Writteny is the setof all valuesthat are part of
invocationeventsfor write operationsn H.

e Commitedy is the setof all valuesthatare part
of aninvocationeventfor a write operationthat
returnastatusof ok in H.
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e Readp is the setof all valuesthat are part of a
returneventfor areadoperationn H.

We alsocall the setRead g U Commited g the ob-
servablevaluesin H, anddefine

Obsy = Ready U Commitedy.

A.2 Internal events

Historiesrepresenthe externalview of aregister:
they reflecttheview of processethatinteractwith the
register We alsoconsidelinternaleventsthathappen
during a run of our algorithm. We usetheseinternal
eventsto reasoraboutthe behaior of our algorithm,
andto justify that the algorithm implementsan ex-
ternalbehaior thatcomplieswith thespecificatiorin
Section3.

A store eventis aninternaleventthatcorresponds
to theinvocationof store, triggeredby the handlerfor
“Write” message Line 31. We usest(v, ts) to de-
notea storeeventthatwritesa valuew in the contet
of timestampis.

We useSEpR to denotethe setof storeeventsthat
happenin arun R. SEY% is the (possiblyempty)setof
storeeventsfor valuew. If SE%; # 0, we usets, to
denotethesmallestimestamphatis partof ary store
eventin SE%.3

Lemmabs ts,, if it exists, is the timestampusedby
the write methodto send“Write” messges to all
processes.

PROOF: A storeeventst(v, ts,,) may happenin two
cases:

(@) An operationwrite(v) with timestampts,, issues
the “Write” messagéLine 9). This caseproves
our claim.

(b) An operatiornread(v) executesarecorer method.
It finds a value v from somereply (from, say
processp) during the “Order&Read” phaseand
sends“Write” afterward. This caseis impossi-
ble for thefollowing reasonProces® musthave
executedst(v, ts) for sometimestampts’. More-
over, ts’ < ts(read(v)) = ts, fromLine 29. This

SAlthough ¢s,, is definedfor a particularrun, we do not para-
meterizets, with thatrunfor brevity.



contradictourassumptionhatts, isthesmallest
timestampamongstoreeventsinvolvingv. O

Lemma6 If a processexecutesst(v, ts) for some
valuev andtimestamps, thena majority hasstored
ts asthevalueof ord-ts

PROOF: Eventst(v, ts) happen®nly afterthecoordi-
natorcollectedeither“OrderR” or “Order&Read-R”

repliesfrom amajority. Thehandlerfor themessages

“Order” or “Order&Read”setord-tsto ts. O

For arun R, we defineSV g to bethesetof values
that are part of storeeventsin R. Noticethat L ¢
SV g becausel is neverwritten.

Lemma7 For anyrun R that givesrise to a history
H1
Obsy \ {J_} C SV C Writteng.

PrROOF: From NO CREATION propertyof the com-
municationchannelsandAlgorithms1 and2. O

For ary run R, we candefineatotal order<,g on
SVg U {L} in thefollowing manner:

1 <val ¥ NS SVR

v,v' € SVg

(5)
(6)

This is a well-definedtotal order becausefrom the
unique-alue assumptiondifferentvaluesarealways
storedwith differenttimestampgv # v = ts, #
tsy). In the following, we omit the subscriptfrom
<val, andsimply use“<”. With this convention,the
symbol< is overloadedo orderbothtimestampsnd
values.

As we shaw subsequent)your algorithmlinearizes
operationsn accordancevith this total order

v <yal V' & ts, < tsy

A.3 Proof of safety

We first definethe notionof a conformingtotal or-
derfor ahistory Intuitively, a conformingtotal order
for a history H is a totally-orderedset (V, <) such
that(a) V' containsall theobenablevaluesin H, and
(b) the orderingof valuesin V' correspondso theor-
deringof operationsn H.
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Definition 8 Givena history H. Atotally orderedset
(V, <) isaconformingtotal orderfor H if thefollow-
ing conditionsare satisfied:

Obsg CV C Writteny U {L} (7)
write(v) — g write(v') Av,v' €V = v < v’ (8)
read(v) — g read(v') = v <o’ (9)

write(v) =g read(v') Av € V = v < 9(10)
read(v) — g write(v') Av' € V = v < v(11)

a

Using the conceptof conformingtotal order our
safetyproof proceedsn two steps.In SectionA.3.1,
we prove that, for ary run R thatresultsin a history
H, the setof storedvaluesSVg with the total order
definedin (5) and(6) is a conformingtotal orderfor
H. Then,in SectionA.3.2, we shaw that the exis-
tenceof a conformingtotal orderfor a history H is a
sufiicient conditionfor H beinglinearizable.

A.3.1 Proving the existenceof a conforming total
order

This sectionprovesthatthetotal orderwe definedin
(6) is, in fact,a conformingtotal orderfor any history
H.

Lemma9 For any processorp, the value of val-ts
and ord-tsincreasesnonotonicallyin any history

ProOOF: Variableval-tsis modifiedonly at Line 35,
which checksbeforehandif the new timestampis
larger thanthe currentone. Variable ord-tsis mod-
ified only in Line 29, which alsochecksheforehandf
thenew timestamgs largerthanthe currentone. O

Lemma 10 Giventwodistinctvaluesv, v’ € SVg. If
there existsatimestamgs > ts,» sudthata majority
of processesxecutest(v, ts), thenevery store event
for v’ hasatimestampmallerthants: V st(v', ts') €
SE}, @ ts' < ts.

PROOF: Assumethecontrary Letts! .. bethesmall-
esttimestampor storeeventsinvolving v':

tshin = min({ts’ : ts' > ts Ast(v',ts') € SE% ).



We first aguethatthe eventst(v', ts! .. ) mustbe
triggeredby arecarer method. Thisis becausefrom
Lemmabs, only the original write methodfor v’ uses
ts,» whenstoringv’. Thus,ary storeeventst(v', ts')
with ts’ > ts,/, mustbeexecutedasapartof arecover
method.

Considernow the recorer method that triggers
st(v', ts],;,). Let ts” be the highesttimestampre-
turnedin a“Order&Read-R"messagé¢hatis receved
as part of this recaver methodinvocation (Line 16).

Noticethatts” > ts for thefollowing reasons.

e Considera processp € majp(st(v', ts),;.)) N
majyy (st(v, ts)) Process p cannot send
“Order&Read-R"for v' beforest(v, ts) for the
following reason: when sending“Order&Read-
R”, p's ord-ts= ts;,;, > ts. Executingst(v, ts)
afterwardsviolatesLemmag,
Thus, p must execute st(v,ts) before
“Order&Read-R”. This means that, upon
“Order&Read-R” p mustreturnatimestampsay
ts,, suchthatts, > ts. Onthe otherhand,by

definition, ts” > ts,.
e Thus,ts" > ts.

Moreover, becausgherecorer methodtriggersthe
writing of v/, v musthave timestampts” at some
process. Sincev # ©', we cannow concludethat
this processexecuteda store event st(v’, ts”) with
ts < ts" < ts". This contradictsthe assumption
thatts!,;, is thesmallestimestamiggerthants for

O

which ' is stored.

Lemmall If a run R givesrise to a history H,

and if read(v) € H with v # 1, thenther ex-

ists a timestampts sud that (a) a majority executes
st(v, ts) and (b) a majority has ¢s as their persis-
tent val-ts timestampsometimeduring the execution
of read(v).

PROOF: Assumethat H containsread(v). Thereare
two waysin whichread(v) canbeexecuted:

e read(v) only involves the invocation of a read
method.In this case processes) majp(read(v))
musthave returnedthe sametimestampts with
no pendingwrite or recover invocations(Line 3).
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Thus,a majority executedst(v, ts), anda major
ity hasts astheir val-tsduringread(v).

read(v) involves the read and recover opera-
tions. Let ts = ts(read(v)). For the recovery
to succeedmajyy, (read(v)) musthave executed
st(v, ts) andreplied“Write-R” to the coordina-
tor, in which casea majority hasts astheir val-ts
timestamp. O

Lemma 12 Givenarun R thatgivesriseto a history
H. If write(v) isin H andv € Obsg, then(a) some
processxecutest(v, ts, ), (b) thereis atimestamps
sud thata majority executest(v, ts).

PrROOF: If v € Commitedy, thenall the properties
hold vacuously Supposetherwise.

(a) Becauseead(v) isin H, someprocessnusthave
storedw to its val via a storeeventst(v, ts) for
sometimestampts (ts, is merely the smallest
amongsuchtimestamps).

(b) FromLemmall,amajority executest(v, ts) for
somets. O

Lemma 13 Givenarun R thatgivesriseto a history
H. If oper; —p oper, and both opeiation trigger
somestore eventsthenthestore eventsfor oper; have
smallertimestampshanthosefor oper,.

PROOF: Assumethe contrary: oper; — g oper,,
oper, executesst(v, ts1), oper, executesst(v’, tss),
yetts, > tso.

Since oper; executes st(v,ts), processesin
majo (oper,) storets; for ord-tsat somepointin the
history (happensn Line 29 or Line 39). Similarly,
processef maj(oper,) storetsy astheir ord-tsat
somepoint in the history Considera processp €
majo (oper;)Nmajp(opery). Sinceoper; — g opersy,
this processstorests to ord-ts beforeit storests’ to
ord-ts Sinceprocessesnly assignmonotonicallyin-
creasingvaluesto ord-ts(Lemma9), we have a con-
tradiction. |

Lemma 14 For anyrun R thatgivesriseto a history
H, theconditionholds:

write(v) — g write(v') Av,v’ € Obsy = v < o'



PROOF: Assumeotherwise:write(v) — g write(v'),
v,v' € Obs, yetv > +'. From Lemmal2, we
know that st(v, ts,) happensduring write(v) and
that st(v', ts,y) happensduring write(v').  From
Lemmal3, we concludehatts, < ts,r. O

Lemma 15 For anyrun R thatgivesriseto a history
H, thefollowing conditionholds:

read(v) — g read(v') = v < o'

PrROOF: Assumefor acontradictiorthatread(v) — g
read(v’), yet v > o'. This meansthat v #
1. From Lemmall, for sometimestampts, ei-
thermajg(read(v)) or majy(read(v)) hasts astheir
value for val-ts sometime during the execution of
read(v). Let maj, bethismajority set.

Considerfirst the casewherev’ = 1. Obsere
first thatread(L) canexecuteonly read().For aread
methodto return L, majp(read(v’)) hasinitial TS as
their value for val-ts and ord-ts Letp € maj, N
majr(read(v')). Because hasincreasingvaluesfor
its ord-ts timestamp,and becauseead(v) precedes
read(L), we have ts < initial TS, whichis a contra-
diction.

Considernext the casewherev’ # 1. From
Lemma 11, for some timestampts’, a majority
executes st(v’, ts’) and either majg(read(v')) or
majyy (read(v’)) hasts’ astheirvaluefor val-tssome-
time during the executionof read(v'). Let maj! be
this majority set. Let p € maj, N majl,. Because
read(v) precedesead(v'), and from Lemma9, we
concludethatts < ts'.

Moreover, ts, < ts, < ts < ts'. (tsy < tsy
because’ < v; ts, < ts from thedefinitionof ts,).
Sincemayj,, executest(v, ts), LemmalOimpliesthat
all storeeventsfor v have atimestamphatis smaller
thants. But this contradictsthe factthat maj!, exe-
cutesst(v’, ts') with ts < ts'. 0

Lemma 16 For anyrun R thatgivesriseto a history
H, thefollowing conditionholds:

write(v) —p read(v') Av € Obsy = v < o'

PROOF: Assume for a contradiction that
write(v) — g read(v'), v € Obsy, yetv > o'
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We first shav that thereexists a timestampts’ >
ts, suchthata majority executesst(v’, ts”). We con-
sidertwo situations:

(a) read(v') executesherecorer method.
Let ts' = ts(read(v')). We know that a ma-
jority executesst(v',ts’). Furthermore,from
Lemma 12, we know that at least one store
eventst(v, ts,) happengduring write(v). From
Lemmal3, ts, < ts'.

(b) read(v') executeonly thereadmethod.
Thenmajy(read(v')) hassometimestampts as
their valuefor both ord-tsandval-ts According
to Lemmas6 and12, maj, (write(v)) hasts, as
their value for ord-ts somtime during write(v).
Consider a processp € majg(read(v')) N
majo (write(v)). FromLemma9 andthefactthat
v # v, ts, < ts. In particular we thenknow
thatts # initial TS, andthereforethatv’ # L.
Sincev’ # L, we concludethat majy(read(v'))
executedst(v', ts).

Let ¢s be a timestampsuchthat a majority exe-
cutesst(v, ts)—Lemmal2 guaranteeshe exis-
tenceof ts. Perdefinition, we know that ¢s, <
ts. From the abore reasoning,we also have
a timestampts’ such that a majority executes
st(v', ts') andsuchthatts, < ts'.

We now have oneof two situations:(c) ts > ts’ or
(d) ts < ts’. For(c), we have ts, < ts' < ts, which
contradictd. emmalo. For (d), we have ts,» < ts, <
ts’, whichalsocontradictd_ emmal0. O

Lemma 17 For anyrun R thatgivesriseto a history
H, thefollowing conditionholds:

read(v) — g write(v') Av' € Obsy = v < v

PrRoOOF: Assumefor acontradictiorthatread(v) — g
write(v'), v’ € Obsy, yetv > v'. We know that
v’ # 1, andcanthereforeconcludehatv # L. There
aretwo casego considerregardingread(v):

(a) read(v) executeonly thereadmethod.
We knowv that majgp(read(v)) has some
timestampts their ord-ts and val-ts timestamps
during read(v). From Lemmas 6 and 12,



maj, (write(v’)) has ts,» as their value for
ord-ts during write(v’).  Considera process
p € majg(read(v)) N maj, (write(v')). From
Lemma9, we know that ts < ts,. Sincea
majority executesst(v, ts), ts, < ts. Thus,we
concludethatts, < ts < ts,, which contradicts
theassumptiorthaty > v'.

read(v) executesoththereadandrecorer meth-
ods.

Let ¢ts be the timestampusedin the recover
method. From Lemma 12, a store event
st(v', ts,y) happensduring write(v').  From
Lemmal3, we know thatts < ts,. As for case
(a), we cannow derive a contradictionbasedon
thefactthatts, < ts. O

(b)

A.3.2 Proof of linearizability

Proposition18 Givena history H. If there existsa
conformingtotal order for H, thenH is linearizable

PROOF: Let (V, <) be a conformingtotal order for
H. Constructasequentiahistory S thathasthesame
eventsas H and that satisfiesthe following condi-
tions:

1. (V, <) isaconformingtotal orderfor S.
2. oper; —> g Opery = Oper; —g Opery.

It is possibleto satisfy(1) by simply orderingthe
operationsin S suchthatif v < @', all operations
for v precedeall operationdor »'. Moreover, we can
satisfy (1) without violating (2). Considertwo oper
ationsoper; andoper, in H. If theseoperationsare
concurrentywe canorderthemin ary way without vi-
olating (2). If oper; — g oper,, their orderingin H
alreadyobeys theorderingof valuesin V. Thisis be-
causg(V, <) is aconformingtotal orderfor H.

Condition(2) impliesthat.S and H areequvalent
(accordingo thedefinitionof equivalencen [7]), and
thattheorderingof H is asubsebf theorderingin S.
Thus, to prove that H is linearizable,it is now suf-
ficient to shawv that S is legal (i.e., that S is in the
sequentiaspecificatiorof our register). To shawv that
S is legal, we have to shav thatall readoperationsn
S either(a) returnthe latestvaluestoredin theregis-
teror (b) return L if novalue hasbeenstoredin the
register
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Considerfirst case(b). We have to shaw that if
write(v) —g read(L) thenv ¢ Obsg. Assumefor
a contradictionthatwrite(v) —g read(.L) with v €
Obsg. We canusethefactthat(V, <) isaconforming
total order From10, we know thatv < 1. Butsince
1 is notwritten, we canconcludethatv < L, which
is acontradictiorwith (5).

Considemext (a). Assumethatread(v) € S with
v # 1. Sincew is in Readg, we know thatv € V.
From (7), we canderve thatwrite(v) € S. More-
over, from (11), we canconcludethat write(v) —g
read(v). We now have to shav thatthereis no opera-
tion write(v') betweerwrite(v) andread(v) in S. As-
sumefor a contradictionthatwrite(v) —g write(v')
andthatwrite(v') —g read(v). From(8), we know
thatv < +/. At the sametime, we know from (10)
thatv’ < v, whichisimpossible.

O

Proposition 19 (CONSISTENCY) Any run produces
a linearizablehistory

PrROOF: Givena history H. We first prove that the
setObsy with the total order < definedin (6) is a
conformingtotal orderfor H.

Lemma 7 proves (7). Lemma 14 proves (8),
Lemmal5 proves (9), Lemmal6 proves (10), and
Lemmal? proves (11). We cannow concludethat
(Obsg, <) is aconformingtotal orderfor H.

Thelinearizabilityof H thenfollows from Propo-
sition 18. O

A.4 Proof of liveness

Lemma 20 If a processnvolesthe “majority” pro-
cedue in Algorithm 1, and thendoesnot crash, the
invocationeventuallyreturns.

ProOOF: Assumethata procesw invokes“majority”

with a messagen, andthendoesnot crash. Assume
furthermorefor a contradictionthatthe invocationof

majoritydoesnotreturn,i.e.,that“majority” will send
m aninfinite numberof times. Fromthe FAIR LOSS
propertyof the channel all correctprocesseseceve
m aninfinte numberof times. Becausehereis ama-
jority of correctprocesseswe know thereis a time



t afterwhich a majority of processesloesnot crash.
Whenthis majority recevesm after ¢, eachprocess
in the majority will sendareply to p. Becausesach
processn the majority recevesm an infinite num-
ber of times, they will eachsendan infinite number
of replies. Again, by the FAIR LOSS property p will
receve aninfinite numberof repliesfrom a majority.
Thus,the await statementn Line 22 will eventually
return,leadingto a contradiction. O

Proposition 21 (TERMINATION) For any processp,

if H| p containsan invocationevent,thenH | p either
containsa subsequenteturn eventor a subsequent
crashevent.

ProoF: Assumedor acontradictiorthataprocessis-
tory H|p containsaninvocationevent, but no subse-
guentreturnnor crashevent.

Considerfirst the casewherep invokes the read
method.Because doesnotcrashafterinvokingread,
we know from Lemma20 thatall invocationsof ma-
jority duringthereadoperatiorwill eventuallyreturn.
Moreover, we know that invocationsof newTS are
non-blocking.We concludehattheinvocationof read
will eventuallyreturn,which is a contradiction. We
canderive a similar contradictionfor invocationsof
write. O

Proposition 22 (PROGRESS) If only a singleprocess
p hasa history H| p that containsan infinite number
of invocationevents andif p is correct,thenH | p con-

tainsaninfinite numberof successfuleturnevents.

PROOF: Becausep is the only processwith an infi-
nite numberof invocationevents,all otherprocesses
generateonly a finite numberof timestamps.Let ¢s
be the maximumtimestampgeneratedy processes
otherthanp.

Assumethat H| p containsan infinite numberof
unsuccessfuteturn events. From Algorithm 1, we
canobsere that eachinvocationwith an unsuccess-
ful returneventcauseshe generatiorof atimestamp.
Thus,we know thatp generategninfinite numberof
timestamps. The PROGRESS propertyof timestamp
ensureshat p eventually generates timestampts’
thatis higherthants. Because is correct,thereis
atimet suchthat(a) p doesnot crashafter¢ and(b)
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p invokesa methodaftert andgenerates timestamp
ts. thatis greaterthants. Considerthis invocation.
No replicawill reply NO during this invocationbe-
causets, is higherthanary timestampn the system.
This meansthat the invocationwill return success-
fully, whichis a contradiction. O



