
Building StorageRegistersfr om Crash-Recovery Processes
�

SvendFrølund,Arif Merchant,YasushiSaito,SusanSpence,andAlistair Veitch
HPLabs,PaloAlto, CA 94304

Abstract—This paper definesa new type of reg-
ister, called a storageregister, to representblocks
of a replicatedlogical volume built from a distrib-
uted collection of disks. We give a formal specifi-
cation of storageregistersand, in doing so, we ex-
tend linearizability to a crash-recovery model. Ex-
isting algorithmsthat implementregisterson top of
message-passingprimitivestypically assumea crash-
stopfailure model. Our work illustratesthe difficul-
ties in moving to a more generalfailure modeland
presentsanefficient implementationof storageregis-
tersin amessage-passingsystemwith crash-recovery
processes.

1 Intr oduction

This paperpresentsa new replication algorithm
suitablefor high-performance,highly availablelogi-
cal disk systems.We envisagea logical disk system
architecturewherea disk volumeis stripedandrepli-
catedacrossanumberof bricks, or intelligentstorage
devicescontainingdisks,a CPU, NVRAM andnet-
work cards.

We modeleachlogical disk block asa read-write
register. Thebrickscollectively emulatethefunction-
ality of a multi-writer, multi-readerregister for each
logical block. Our register implementationsuperfi-
cially resemblestraditionalatomic-registerconstruc-
tionsfor a message-passingmodel[1, 11, 12]. How-
ever, where theseatomic register constructionsas-
sumeacrash-stopmodel,our implementationhandles
processrecovery as well. We extend existing work
on shared-memoryabstractionsin the following di-
rections.

� We develop an extension to linearizability [7]
that enablesreasoningabout safety in a crash-
recovery model.
�
PublishedasHPLabsTechnicalReportHPL-SSP-2003-14

� We definea new abstractioncalleda storage reg-
ister. A storageregisterexploits thefactthatcon-
current accessto the samelogical block is ex-
tremelyrare in real-world storagesystems:1 the
readandwrite methodson a storageregisterare
allowed to “abort” if they are invoked concur-
rently. We definepreciselivenesspropertiesfor
a storageregisterthat limit thepossibilityof per-
petualabortto runswith perpetualconcurrency.

� We give an efficient implementationof a stor-
ageregisterin anasynchronousmessage-passing
modelwith processcrashandrecovery. Our al-
gorithm ensuresthat if a processthat startsan
operationcrashesbeforecompleting,that oper-
ation is linearizedbeforeany operationsissued
after processrecovery. Moreover, our algorithm
runsreadoperationsmoreefficiently thanexist-
ing atomicregisterconstructions:in the normal,
failure-freecase,our algorithm completesreads
in a single round-trip, as opposedto the two
round-tripsrequiredby traditionalalgorithms.

Ouralgorithmisbasedonthenotionof quorum[6],
where any majority of replicas constitutesa quo-
rum. Dataconsistency is alwaysmaintainedandthe
algorithm makes progresswhenever a majority of
processesareableto communicate.

1.1 Recovery is the hard part

Bricks in a logicaldisksystemdo restartafterthey
crash—thequestionis not whetherto handlerecov-
ery, but how. We arguethatdisk replicationdemands
supportfor acrash-recoverymodel.Adoptingacrash-
stopalgorithmandimplementingrecovery asthead-
dition of a new nodeis impractical,as it would re-
quireusto performa full statetransferfrom existing

1In fact, we have found no instanceof concurrentaccesses
in any of the workloadswe have studied. We discussthis issue
furtherin Section6.1.

1

nodesfor thebillions of blocksthata brick stores.In
thefollowing, wediscusstheramificationsof reason-
ing about,andimplementing,read-writeregistersin a
crash-recovery model.

Addressingprocessrecovery demandsa new set
of safetyconditionsfor registerabstractions.Tradi-
tional linearizability[7] allowsonly thelastoperation
in eachper-processhistory to be partial, becauseit
assumescrash-stopprocesses.To supportrecovery,
we definean extensionto linearizability, in which a
per-processhistorymaycontainanarbitrarynumber
of partialoperations.We demandthateach(possibly
partial)operationexecuteatomically:a partialopera-
tion mayor maynottakeeffect,but if it does,its place
in the linearizedhistorymustbecompatiblewith the
inherentpartialorderof eventsin thedistributedsys-
tem.

Processrecoverycomplicatesthealgorithmdesign,
particularlyregardingpartialwrites,whereareplica �
invokesa write operationandthencrashesbeforethe
operationcompletes. A partial write shouldappear
atomic,andit mustappearto take effect, if at all, be-
fore � recovers.

Correctly handling partial writes in a crash-
recovery model createsread-writeconflicts that are
not presentin a crash-stopmodel. Considerthe sit-
uationwhereprocess� startsa write operation,man-
agesto storethenew valueonly on a sub-majorityof
replicasbeforecrashing,andthenanotherprocess���
startsreading.Process� � mayreturnthe“old” value
of the register, but it must prevent the partial write
from takingeffect afterthereadcompletes.Thus,the
readmust“abort” thepartialwrite, andre-enforcethe
old value. But sincea readcannotdistinguisha slow
write from a partialwrite, readoperationsmayabort
in-progresswritesaswell, which createsa read-write
conflict.

Thepresenceof read-writeconflictsillustratesthe
difficulties in adaptingthe algorithmsin [1, 11, 12]
to acrash-recovery model—itis notsufficient to sim-
ply storekey variablesin stablestorage. The pres-
enceof read-writeconflictsalsoimplies that a tradi-
tional atomicregister[9] is not a goodfit asa regis-
ter abstractionfor logical disk systems.To provide
the semanticsof an atomic read-writeregister in a
crash-recovery model,wehave to guaranteethatcon-
flicting read-writeoperationsare always serialized,

e.g.,throughsomenotionof leaderelection,by keep-
ing additionalcontrol information,or by someother
means. Paying the cost of employing theseserial-
izationmechanismsis particularlytroublesomein the
context of storagesystems,becauseconcurrentac-
cessto thesamelogicalblockis overwhelminglyrare.
If we were to useconventionalatomic registers,we
would effectively pay for a conflict-resolutioncapa-
bility thatwenever need.

We thusdefinea new abstraction,calleda storage
register, that betterreflectsthe propertiesof logical
disksystems.Likeanatomicregister, astorageregis-
tersupportsreadandwritemethods.Unlikeanatomic
register, however, thesemethodsmayreturnanerror
if invokedconcurrently. If anoperationreturnsaner-
ror, it is thenup to the storagesystemclient (e.g.,a
client-sideSCSIdriver) to retry theoperation.An un-
successfulreadhasno effect on the register. An un-
successfulwrite may or may not updatethe register.
However if a failedwrite doesupdatetheregister, the
effect is equivalentto thatof asuccessfulwrite.

1.2 Overview of the algorithm

We run instancesof the algorithm independently
for eachlogical disk block. The local propertyof
linearizability [7] ensuresthat operationson a logi-
cal disk arelinearizable,providing thatoperationson
eachlogical block are linearizable. A reador write
operationcanbeinvokedby any replicaof a register.
We call this replicathe coordinator of the operation
(differentoperationscanhavedifferentcoordinators).
Thevaluestoredin a registeris a disk block (usually
1KB). Valuesare storedon disk, while timestamps
canbekeptin memory(NVRAM).

Our algorithm runs a “read” operationoptimisti-
cally: withoutconcurrentrequestsandfailures,aread
operationinvolvesa singledisk readat thecoordina-
tor anda singleround-tripof messagesbetweenthe
coordinatoranda majority of replicas.Themessages
contain timestampinformation only, not the actual
value. In the presenceof concurrency and failures,
areadoperationmayrequiretwo additionalroundsof
communicationbetweenthecoordinatorandamajor-
ity of replicas.This “slow read”phaseinvolvesadisk
readandwrite atamajorityof replicas.Thewrite op-
erationalwaysinvolvestwo roundsof communication

2

betweenthe coordinatorand a majority of replicas,
with adisk write at amajorityof replicas.

1.3 Relatedwork

Thealgorithmin [1] pioneeredtheimplementation
of atomicregistersin amessage-passingmodel.How-
ever, theimplementationassumesacrash-stopfailure
modelandonly supportsa singlewriter. The algo-
rithms in [11, 12] implementanatomicmulti-writer,
multi-reader register in a message-passingmodel.
However, a readoperationin thesealgorithmsalways
involvesa two-phaseinteractionwith a quorum:one
phaseto reada � value,timestamp� pair from replicas,
andthe secondphaseto write the � value,timestamp�
pair with thehighesttimestampbackto a quorum.In
contrast,our optimisticreadoperationinvolvesa sin-
gle disk readonly. Furthermore,thesealgorithmsdo
notsupportstablestorageandprocessrecovery.

Like storageregisters,Lamport’s safeandregular
registers[9] provide thesemanticsof anatomicregis-
ter only in theabsenceof concurrency. However, op-
erationson safeandregular registerdo not indicate,
perse,if they areinvoked concurrently, whereasop-
erationson storageregistersdo (they returna distinct
errorvalue). The 	 Registerin [3] alsoreturnsa dis-
tinct valuein thepresenceof concurrency. However,
where 	 Registerallows non-concurrentprocessesto
agreeonasinglevalue,astorageregisterallows non-
concurrentprocessesto sharedataover time.

An alternative approachis to modeleachblock of
storageasa statemachine[8], andusea total-order
broadcastmechanism,suchas Paxos[10], to apply
read and write operationsin the sameorder at all
replicas. Fundamentally, sincetotal-orderbroadcast
is equivalent to consensus[2], it cannotbe imple-
mentedin anasynchronoussystem[4], whereasatom-
icity can. Furthermore,total-orderbroadcastis more
expensive bothin termsof spaceandstorage.For ex-
ample,with Paxos,thedeliveryof any request(reador
write) requiresat leasttwo roundsof communication
andtwo disk I/Os.

Severalrecentalgorithms[5, 13] demonstratehow
to implementPaxoson top of storage-areanetworks
with unreliabledisks.Thegoalof thesealgorithmsis
to decoupleprocessingandstorageto (a) toleratethe
crashof moreprocessingunits [5] and(b) to handle
infinitely many processingunits[13]. By contrast,our

storagebricks containboth processingand storage,
andour goal is to build betterstorage-areanetworks
that provide the illusion of a single,highly-available
disk.

1.4 Structureof the paper

In Section2, we introducethe model that we as-
sumefor thealgorithm.Section3 definesstoragereg-
istersandspecifiesthe correctnesscriteria of our al-
gorithm, including extendedlinearizability. We de-
scribethealgorithmin detail in Section4 andsketch
thecorrectnessproof in Section5. To reviewers: the
full proof appears in AppendixA. Section6 discusses
practical issuesthat arise when applying our algo-
rithm to real-world disksystems.Section7 concludes
anddescribesfuturework.

2 Model

We considera systemof
 processes,��������������� ,
thatcollectively emulatea storageregister. Processes
fail by crashing,i.e., they do not behave maliciously.
A processmayrecover later. A correctprocessis one
thateithernever crashesor eventuallystopscrashing.
A faulty processis a processthat is not correct. We
assumeamajorityof correctprocesses;i.e.,
���������
, where� is thenumberof faultyprocesses.

Processesare fully connectedby a network and
communicateby messagepassing. The system
is asynchronous: there is no bound on message-
transmissiontimes,andthereis noboundon thetime
it takes a processto executea stepin its algorithm.
Channels,however, are assumedto have a fair-loss
property:

FAIR LOSS: If aprocess��� sendsamessage� anin-
finitenumberof timestoacorrectprocess� � , then
� � receives � aninfinite numberof times.

NO CREATION: If aprocess� � receivesamessage�
from � � , then� � sent� .

Eachprocessprovidesa non-blockingtimestamp-
generationprimitivecalled !#"%$'&�(thatreturnsavalue
in a totally orderedset (we useoperators“) ”, “ * ”,
and “ + ” to comparetimestamps). We assumethat
!#"%$'&�(satisfiesthefollowing properties:

3

UNIQUENESS: Any two invocationsof !,"%$-&-((pos-
sibly by different processes)return different
timestamps.

ORDER: Successive invocations of !#"%$'&�(by a
process � produce monotonically increasing
timestamps.

PROGRESS: Assume that a process� � receives a
timestamp. from !,"%$-&-(. If aprocess� � receives
an infinite numberof timestampsfrom !,"%$-&�(,
then�/� will eventuallyreceiveatimestamp. � with
.0�1*2. .

Wealsoassumethatthereis a smallesttimestamp,
called 34!53 673 8:9 &�(. For any value . returnedby !,"%$-&�(,
.;*<34!53 6=3>8?9 &�(. We discussthe practicalaspectsof
implementingtimestampgenerationin Section6.1.

Eachprocesshaspersistentstoragethat survives
crashes.The @A6CB5DE"?F varG primitive atomically writes
thecurrentvalueof variablevar to thepersistentstor-
age. When a processrecovers, it automaticallyre-
trievesthemostrecentlystoredvaluefor eachvariable
andassignsthisvalueto thevariable.

A processhasaccessto a timer to wait for an in-
determinateperiodof time. Processesusetimers to
implementmessagere-transmission:after sendinga
message,a processusesa timer to wait before re-
sendingthemessage.Theamountof timespentwait-
ing affects the performance,but not the correctness,
of the system. For correctness,we rely only on the
factthattimerseventuallyexpire.

3 Storageregisters

A storageregister is a read-writeregister that (a)
cancrashandrecover, (b) behaveslikeaconventional
atomic register when accessedin a non-concurrent
manner, and (c) may abort concurrentoperations.
This sectiondefinesstorageregistersformally. We
first introducetheconceptsof operationsandeventsin
Section3.1. Section3.2 definesthesafetyof storage
registers.Weextendlinearizability[7] in two waysto
handleprocessrecovery: (a) treatprocesscrashasan
unsuccessfulcompletionof an operation,and(b) al-
low non-successfuloperationsto leavethesystemin a
non-deterministicyet well-definedstate.Section3.3
definesthelivenesspropertiesby combiningtheusual

notionof non-blockingbehavior with aconstraintthat
limits the possibility of abortonly to situationswith
concurrency.

3.1 Operations,events,and histories

We usethe term operation to refer to a particular
invocationof thereador write methodonaregister. A
write operationtakesa valueandreturnseitherOK or
NOK. A readoperationreturnsa valueor NIL, which
indicatesanerror. We usea specialvalue H to repre-
sentthe initial stateof a register. Thus,readmayre-
turn H , but weassumethatwrite is neverinvokedwith
H asparameter. If a write operationreturnsOK, or if
a readoperationreturnsa non-NIL value (including
H), theoperationis saidto besuccessful.If anoper-
ationreturnsNOK or NIL, theoperationis unsuccess-
ful.2 For simplicity, we assumethata processissues
readandwrite operationsoneat a time (but multiple
processescanissueoperationsconcurrently).

We usethreetypesof eventsto model the execu-
tion of a system.An invocationeventhappenswhen
a processstartsa reador write operation. A return
eventhappenswhenanoperationcompletes.A crash
eventhappenswhenaprocesscrashes.

A run of our algorithmresultsin a history, or se-
quenceof events. We assumethat the orderingof
eventswithin ahistorycomplieswith theinherentpar-
tial orderof eventsin a distributedsystem[8]. For a
history I anda process� , we define IKJL� to be the
historyderivedby extractingonly theeventsthathap-
penat � .

3.2 Linearizability

Roughlyspeaking,ahistory I is linearizablewhen
(1) its eventsindicatethatoperationshappeninstanta-
neouslyin sometotal order, (2) this apparenttotal or-
derof operationsis compatiblewith theinherentpar-
tial orderof eventsin adistributedsystem,and(3) the
apparenttotal order is consistentwith the sequential
specificationof our register[7].

Beforewe canusethe formalismin [7] to define
safetyfor a storageregister, we needto fill two gaps.
First, linearizabilitydoesnot definethesemanticsof
failed operations;we give a sequentialspecification

2As wedefinein Section3.2.2,wealsotreatoperationswhose
coordinatorhascrashedasbeingunsuccessful.

4

for suchoperationsin the next section. Second,lin-
earizabilitydisallows the appearanceof a partial op-
erationin the middle of a per-processhistory. Sec-
tion 3.2.2definesa way to transforma history with
anarbitrarynumberof partialoperationsinto a well-
formedone.

3.2.1 A sequentialspecificationfor storageregis-
ters

The sequentialspecificationof a shareddataobject,
suchasa read-writeregister, capturesthe semantics
of theobjectin theabsenceof concurrency andrepli-
cation. For example,the sequentialspecificationfor
a conventional read-write register simply demands
thata readoperationreturnthemostrecentlywritten
value. For storageregisters,however, we cannotrely
onthenotionof “written value”,becauseawrite oper-
ationmaynot alwayscompletesuccessfully. Instead,
wedefinethesequentialspecificationof astoragereg-
isterin thefollowing manner:

� A successfulwrite operationstoresits valuein the
register.

� An unsuccessfulwrite operationmayor maynot
storeits valuein theregister.

� A successfulreadoperationreturnseither(a) the
valuemostrecentlystoredin theregisteror (b) H
if novaluehasbeenstoredin theregister.

3.2.2 Linearizing crash-recovery histories

For a history I to bewell-formed,eachper-process
history IMJL� mustbesequential—thatis, in IMJL� , each
invocationevent,exceptpossiblythelast,mustbefol-
lowed immediatelyby a returnevent [7]. In our per-
processhistories,any invocationevent (not just the
last) may be followed by a crashevent. If a crash
eventfollowsaninvocationeventin aper-processhis-
tory, we replacethecrasheventwith anunsuccessful
returnevent. If a crashevent follows a returnevent,
we simply discardthecrashevent. This way, we ob-
taina well-formedhistory, andcanusetheformalism
in [7] to reasonabouthistories.Moreover, our trans-
formationpreservesthesemanticsof histories:a par-
tial writeoperationmayor maynotupdatethesystem,
which is exactly the semanticsof a write operation
thatreturnsNOK.

3.3 Specificationof storageregisters

Wecannow specifythepropertiesof astoragereg-
ister as the set of historiesthat may occur when

processesinteractwith it. Any history I in this set
satisfiesthefollowing constraints:

CONSISTENCY: I is linearizable.

TERMINATION: For any process� , if IKJL� contains
an invocationevent, then IMJL� either containsa
subsequentreturn event or a subsequentcrash
event.

PROGRESS: If only a singleprocess� hasa history
IMJL� that containsan infinite numberof invoca-
tion events,andif � is correct,then IMJL� contains
aninfinite numberof successfulreturnevents.

TheTERMINATION propertystatesthatoperations
shouldbe non-blocking,that is, they shouldeventu-
ally return (unlessthe caller crashes). Notice that
TERMINATION only insiststhatoperationsreturn,not
thatthey returnsuccessfully. Without thePROGRESS

property, an algorithm that simply returns NIL for
every invocationof read,andNOK for every invoca-
tion of write, wouldbecorrect.ThePROGRESS prop-
ertyprecludessuchtrivial solutions.

4 Algorithm

4.1 Overview

In oursystem,readandwrite operationscanbeco-
ordinatedby any process.Eachprocessprovidesreg-
istermethodsread()andwrite(val) thatcommunicate
asynchronouslywith otherprocessesto coordinatean
operation;similarly, eachprocessprovides message
handlersthatrespondto requestsfrom a coordinating
process.

Eachreadandwrite operationcontactsa majority
of replicas. The term “quorum” denotesthe set of
replicasthatparticipatein a particularoperation.

Becausea write quorum and a subsequentread
quorummay be different, the latter setmay contain
replicaswith differentregistervalues. To determine
thecurrentvalue,we associatea timestampwith val-
ues. This timestampreflects the (logical) time at
which thevaluewaswritten. Thebasictaskof a read

5

a

b

c

〈v,t〉 〈v',t'〉

〈v,t〉

〈v,t〉

〈v',t'〉

〈v,t〉〈v,t〉

〈v,t〉

Operation w:
write v' with
timestamp ts'

Operation r1:
read v

Operation r2:
read ??

Figure 1: Executionwith a partial write operationwith
threereplicas N , O , and P . Time flows to the right. QLR:SUTWV
indicatesthata processstoresvalue R andtimestampT .

operationis thento pick themostrecentvaluein the
readquorum,ensurethata majority storesthis value,
andreturnthevalueasthecurrentregistervalue.The
basictaskof awriteoperationis to storethenew value
in a quorumwith a timestamphigherthanany of the
quorum’s currenttimestamps.

A key complexity of thealgorithmstemsfrom the
handling of a partial write operation,which stores
a value in only a minority of replicas, either be-
causethecoordinatorcrashesor proposestoo smalla
timestamp.After apartialwrite,areadoperationcan-
notsimplypick thevaluewith thehighesttimestamp,
sincethis mayleadto a non-linearizablesequenceof
write and read operations. Figure 1 shows an ex-
ample. Initially, all threereplicasstorevalue X with
timestamp. . A write operationY , coordinatedby Z ,
storesvalue X � with timestamp. � (.[)\. �) only on Z
(e.g., becauseZ crashesimmediatelyafterward). A
readoperation� � thenreadsX from] and ^ . Finally, Z
recoversandrunsareadoperation��_ on Z and] . Con-
sidernow a history where Y , � � and � _ arecausally
connected(say, throughthe sameexternalclient) in
thetemporalorderY , �5� , ��_ . SinceY fails,theregister
stateis unknown after Y ; however, since�5� returnsX ,
thehistory indicatesthat Y did not take effect. Thus,
for consistency, � _ mustreturn X eventhoughit finds
thevalue X � with ahighertimestamp.

Oneway to ensurelinearizability in the presence
of partial writes is to have every readoperationup-
datetimestamps.For example,in Figure1, by having
� � updatethetimestampin] and ^ , � _ will seeX hav-
ing a timestampgreaterthanthatof X?� . However, we
implementa moreefficient schemewherereadoper-

ationsupdatethe timestampsonly whenthey detect
partialwrites. To allow this detection,we run a write
operationin two phases.In thefirst phase,awrite op-
erationinformsamajorityabouttheintentionto write
a value; in the secondphase,a write operationactu-
ally writesthevalue.A readoperationcanthendetect
a partial write as an unfulfilled intention to write a
value.

We cannow run readoperationsoptimistically in
a singleroundtrip. A readoperationfirst checksif a
majorityhasthesametimestampandhasseennopar-
tial write; if so, it simply returnsits own value. Fail-
ing theoptimisticphase,thereadoperationpicksthe
valuein amajoritythathasthehighesttimestamp,and
storesthechosenvaluein amajoritywith atimestamp
that is greaterthan the timestampof any previous
write operation, including any partial write opera-
tions.

4.2 Detaileddescription

Eachreplicakeepsthreepersistentvariables:val,
val-ts, andord-ts, with initial valuesof H , 34!53 6=3>8?9 &�(,
and 3`!?3 673 8:9 &-(, respectively. Variableval holdsthecur-
rentvalueof theregister. Timestampval-ts shows the
logicaltimeatwhichval waslastupdated.Timestamp
ord-tsshowsthelogical timeatwhichthemostrecent
write operationwasstarted,establishingits placein
the orderingof operations.val-ts) ord-tsindicates
thepresenceof apartialwrite operation.

Algorithm1 describestheregistermethodsandAl-
gorithm 2 the register messagehandlers. Methods
“read” and“write” arepublicmethodsthatcanbein-
vokedby any replicaat any time. Theinternalproce-
dure“majority” repeatedlysendsarequestto all repli-
casuntil the coordinatorreceivesrepliesfrom a ma-
jority. Weassumethatthereis awayfor thecoordina-
tor to matchrequestsandreplies,e.g.,by embedding
auniqueidentifierin eachrequestandreply.

Thewrite methodtriggersa two-phaseinteraction
with a majority. In the first phase,the coordinator
sends“[Order,..]” messagesto replicaswith a newly
generatedtimestamp.A replicaupdatesits ord-tsand
respondsOK if it hasnotalreadyseenarequestwith a
highertimestamp.Thisestablishesaplacefor theop-
erationin theorderingof operationsin thesystemand
preventsa concurrentwrite operationwith an older
timestampfrom storinga new valuebetweenthefirst

6

Algorithm 1 Registermethods

1: procedure read()
2: replies a majority([Read,val-ts])
3: if thestatusin all repliesis true then return val
4: elsereturn recover()

5: procedurewrite(val)
6: ts a\bdcfehgji ()
7: replies a majority([Order, ts])
8: if any statusin a reply is false then return NOK

9: replies a majority([Write,val, ts])
10: if thestatusin all repliesis true then return OK

11: elsereturn NOK

12: procedure recover()
13: ts a\bdcfehgji ()
14: replies a majority([Orderk Read,ts])
15: if any statusin a reply is false then return NIL

16: val a thevaluewith highestval-ts from replies
17: replies a majority([Write,val, ts])
18: if thestatusin all repliesis true then return val
19: elsereturn NIL

20: proceduremajority(msg)
21: Sendmsgto all, retransmittingperiodically
22: await receive(rep)from l=mon�pqsr processes

suchthatrepmatchesmsg
23: return setof receivedreplies

Algorithm 2 Registermessagehandlers

24: when receive[Read,ts] from coordinator
25: statusa (ts t val-tsand ts u ord-ts)
26: reply [Read-R,status] to coordinator

27: when receive[Order, ts] from coordinator
28: statusa (ts v max(val-ts, ord-ts))
29: if statusthen ord-ts a ts; wWxzy|{4c (ord-ts)
30: reply [Order-R, status] to coordinator

31: when receive[Write, new-val, ts] from coordinator
32: statusa (ts v val-tsand ts u ord-ts)
33: if statusthen
34: val a new-val; wzxzy|{}c (val)
35: val-ts a ts; wzxzy|{}c (val-ts)
36: reply [Write-R, status] to coordinator

37: when receive[Orderk Read,ts] from coordinator
38: statusa (ts v max(val-ts, ord-ts))
39: if statusthen ord-ts a ts; wWxzy|{4c (ord-ts)
40: reply [Orderk Read-R,val-ts, val, status]

andsecondphases.In the secondround,thecoordi-
natorsends“[Write,..]” messagesandstoresthevalue
in a (possiblydifferent)majority.

The readmethodfirst optimistically assumesthat
a majority of replicas have the same value and
timestamp,and that thereare no partial writes. If
this assumptionturnsout to betrue, thereadmethod
returns in line 3 after a single round-trip without
modifying the persistentstateof any replica. Oth-
erwise, the two-phaserecovery methodis invoked,
which workslike thewrite method,exceptthat it dy-
namicallydiscovers the valueto write. In the “[Or-
der&Read...]” phase,a majority return their current
val-ts andval. After this phase,thecoordinatorpicks
thevaluewith thehighestval-ts andwritesit backto
a majorityusing“[Write,...]” messages.Thismethod
ensuresthat, on recovery, the completedreadopera-
tion appearsto happenafterthepartialwriteoperation
andthatfuturereadoperationswill returnvaluescon-
sistentwith this history.

Ouralgorithmdoesnot rely ontheassumptionthat
an updateoperationstoresboth val and the val-ts
timestampasa singleatomic operation. Thus, it is
correcteven if a replicawrites val to stablestorage,
but crashesbeforewriting val-tsto stablestorage.Re-
covery will detectandresolve any resultingdisparity
betweentimestampsat different replicasand return
thestoredvaluecorrectly.

5 Proof sketch

This sectiongivesa sketchof a proof that our al-
gorithm maintainslinearizability, asdefinedin Sec-
tion 3.2. Thefull proof of linearizabilityandliveness
will appearin a separatetechnicalreport. To review-
ers: thefull proof appears in theappendixof this pa-
per.

To simplify thepresentation,we assumethateach
write triesto write auniquevalueandignorethehan-
dling of the initial value H . In additionto the event
historiesdefinedin Section3.2, we alsoconsiderin-
ternalstore events. A storeevent happenswhenwe
storethevariableval in stablestoragein Line 34. A
storeevent @A6�F~X�o�~��G correspondsto a storeoperation
whereval hasvalue X and val-ts hasvalue �~� . For
a history I , ��� is the setof values(a) successfully
returnedby a readrequest,or (b) for which a write

7

methodreturnedOK. For value X������ , we define
�~�o� to be the smallesttimestampthat is part of any
storeeventfor X .

Wedefineatotalorderingamong��� in thefollow-
ing way:

X�)2X �/� �~����)��~� �=� � (ORDER)

We claim that our algorithm linearizesreadand
write requestsin the orderdefinedabove. We prove
our claim in two steps. Proposition1 first proves
thattheorderdefinedabove “conforms”to history I .
Proposition4 shows that existenceof a conforming
totalorderis sufficient for ahistoryto belinearizable.

Proposition1 Givena history I , thetotal order de-
finedby (ORDER) satisfiesthefollowingproperties.

$�D�3 6C"5F~X/G�� � $�D�3 6C"5F~X � G��[X�AX � ��� ��� X�)2X � (1)

DL"o8,��F~X�G��K��DL"o8,��F~X � G � X��2X � (2)

$�D�3 60"5F~X�G�� � DL"o8,��F~X � G��[X���� ��� X��2X � (3)

DL"o8,��F~X�G��K�2$�D�3 60"5F~X � G���X � ����� � X�)2X � (4)

(Where B/�5"|D � �K��B/�5"|D _ whenthe“r eturn” of B/�5"|D �
happensbefore the“in vocation” of B/�5"|D _ in I .)

Dueto spaceconstraints,we only prove theprop-
erty (1) in this section.Proofsof otherpropertiesare
similar. Wefirst stateseveralusefullemmas.

Lemma 2 For anyprocess� thevaluesof val-tsand
ord-tsincreasemonotonically. (Proofis omitted.)

Lemma 3 Assumethat $�Dz3 6C"5F~X/G��2I , and X������ ,
and the coordinator of $�D�3 6C"5F~X/G usestimestamp�~� .
Then,(a) someprocessexecutes@A6dF~X�o�~�|G , and (b) a
majorityhasstored �~� astheir ord-tsat somemoment
during $�D�3 60"5F~X�G .

PROOF SKETCH: (a) is derived from the NO CRE-
ATION propertyof the channel. (b) is true, because
thecoordinatorcouldnot have sent“Write” message
beforeamajority respondingOK to “Order”. �
PROOF SKETCH OF PROPERTY (1)

FromLemma3, a majority ¢¡A£ � hasstored�~��� as
their ord-ts at somemoment. The samecanbe said
for X?� aboutamajority ¤¡C£ � � and �~� �f� . Now, consider

a process���K ¤¡C£ �¦¥ ¤¡C£ �f� . Because$�D�3 60"5F~X�G¦�K�
$�Dz3 6C"5F~X?�LG , � musthave stored.A§�� to theord-tsbefore
storing .A§ � � . FromLemma2, .A§o��)2.C§ � � . �

Proposition4 Anyhistory I is linearizable.

PROOF SKETCH:We constructa sequentialhistory ¨
from I , suchthat (a) ¨ containsall theeventsin I ,
and(b) for valuesX[)©X?� in I , ¨ ordersall eventsthat
involve X beforeeventsthat involve X?� . ¨ is clearly
equivalent to I in the sensedefinedin [7]. It then
sufficesto show that ¨ is legal, i.e., a readoperation
in ¨ returnsthelatestvaluestoredin theregister.

Assumethat DL"o8,�ªF~X/G is in ¨ . From (4), we can
concludethat $�D�3 6C"5F~X/G«�K¬DL"o8,��F~X�G . We now have
to show that thereis no operation$�D�3 6C"5F~X?�LG between
$�Dz3 6C"5F~X/G and DL"o8,��F~X/G in ¨ . Assumefor acontradiction
that such $�D�3 60"5F~X � G exists. From (1), we know that
X)®X:� . At the sametime, we know from (3) that
X � �2X , which is impossible. �

6 Practical considerations

6.1 Generatingtimestamps

Sofar, wehaveassumedthatanodewill eventually
generatesufficiently large timestampsto ensurethe
system’s theoreticalsafetyand liveness.In practice
however, the timestampsgeneratedby nodesshould
besynchronizedin ordertoenablequickprogress.We
uselooselysynchronizedreal-timeclocksfor thispur-
pose.

We have analyzedmany traces,from a variety of
real-world systemsandapplications,in order to de-
terminetheI/O behaviors exhibited. In particular, we
areinterestedin thetime differentialsbetweenwrites
to the sameblock of storage,as this determinesthe
tightnessof time synchronizationrequired. Table1
shows thepropertiesof someof theseworkloads.

Cello: A file systemmanagedby an 8 processor
HP9000N4000 for 20–30researchers,with 16
GB of RAM, andanHPXP512diskarray.

SAP: SAP ISUCCS and Oracle supporting 3000
usersandseveralbackgroundbatchjobsrunning
onanHPV2500with anHPXP512diskarray.

8

OpenMail: An HP9000K580 server with 6 CPUs,
3.75GB of RAM, andanEMC 3700Symmetrix
diskarray. Approximately2000usersaccesstheir
emailduringthecourseof thetrace.

As even the smallesttime differentialsobserved
are on the order of several hundredmicroseconds,
andmoderntime synchronizationprotocols,suchas
NTP, canusuallysynchronizeclockson the orderof
10us[14], we believe that thesystemwill handlethe
vastmajorityof requestswithout rejection.

6.2 Reducingthe sizeof control information

Sincewe targetstoragesystemswith largecapaci-
ties(up to petabytesof storagecapacity),theamount
of control information per register is an important
complexity measure.

We can reduceour control information from two
persistenttimestampsper register to one. The ord-
ts is only neededto captureinformation about in-
progressupdateoperations. Onceord-ts and val-ts
areequal,we know that the placefor this operation,
reserved in the orderingof eventsby the ord-ts, has
beenconfirmedby theupdatingof theval-ts. At any
point in time, we expect the numberof in-progress
updateoperationsto bedramaticallysmallerthanthe
total numberof blocksin thesystem.Thus,thecon-
trol information embodiedby the ord-ts timestamp
canbestoredin adynamiclog. Becausethereis noth-
ing inherentlycomplicatedaboutusinga log instead
of a secondtimestamp,the secondtimestampord-ts
is usedin this paperto simplify presentationof our
algorithm.

We can further reduceour control informationto
eliminatetimestampsin the casewhereno replicas
have failed. Theval-ts is neededto captureinforma-
tion about locally appliedupdateoperations. Once
theval-ts is thesameatall replicas,weknow thatthe
updateoperationhassucceededat all replicas.Thus,
thecoordinatorcanrun anextra phaseon completion
of anupdateoperationwhere,if all replicashave re-
portedsuccessfulcompletionof thewrite, thereplicas
mayremove val-ts.

6.3 Algorithm complexity

Table2 comparestheperformanceof ouralgorithm
andstate-of-the-artatomic-registerconstructionsthat

perform two-roundmessagingfor both readingand
writing [11, 12]. Weimprove thepreviouswork espe-
cially in thecommoncaseof readingfrom a register
in theabsenceof failuresor concurrentaccesses.

7 Conclusionsand futur e work

Wehave describeda new replicationprotocolsuit-
ablefor logicaldisk systems.Themaincontributions
of thepaperarethefollowing:

� The extensionto linearizability to model crash-
recoverabledataobjects.

� Thespecificationof astorageregisterthatreflects
thepropertiesof logicaldisksystems.

� An implementationof this register that is more
efficient than existing atomic-register construc-
tions.

We have implementeda prototypeof this proto-
col on a clusterof PCs. (we refer to the whole asa
FederatedArray of Bricks,or FAB). Wearecurrently
studyingthesystemsbehavior andperformanceunder
varioussituations,includingfailuresandoverloads.

Wehave identifiedtwo majorareasof futurework.
Oneis dynamicvolumereconfigurationafter failures
or to improve performance. We plan to adaptthe
techniqueof [12], by superimposinga new quorum
configurationasynchronously, transferringcontentsto
new bricks, andgarbagecollectingold quorumcon-
figurationsin thebackground.

The other is reducing the storageoverheadof
quorum-basedreplication using witnessesand wit-
nesspromotion. We adaptthe timestamp-discarding
schemeintroducedin Section6.2 to create“witness”
replicas that only keep timestamps,but no actual
block values(at leastin the long term). By replicat-
ing a logical segmenton only �¯� �

normalreplicas
and � additionalwitnesses,the segmentcantolerate
� failureswith little spaceoverhead.

References

[1] H. Attiya, A. Bar-Noy, andD. Dolev. Sharingmem-
ory robustly in message-passingsystems.Journal of
theACM, 42(1):124–142,1995.

9

workload date length total
data #writes #reads smallestwrite

delay
99%write
delay

Cello 9/2002 1 day 1.4TB 5,250,126 6,766,002 0.26ms 5.9ms
SAP 1/2002 15min 5 TB 150,339 4,835,793 2.0ms 5.6ms
OpenMail 10/1999 1 hr 7 TB 931,979 355,962 0.47ms 2.9ms

Table 1: Workloadcharacteristics.Dateshows whenthe tracewascollected. Smallestwrite delay is the smallesttime
betweenwrite requeststo thesamedatablock. 99%write delayshows the99%boundaryfor write delays(i.e. only 1% of
thewriteswill havea delaysmallerthanthis time).

Ouralgorithm LS97
fastread slow read write read write

latency ��° ±�° ²?° ²?° ²?°
messages �,
 ±,
 ²�
 ²�
 ²�

disk reads

�
�� � ³
 ³
diskwrites

³

Network bandwidthconsumption ´ F��,
[� � G0´
�´ �,
�´
�´

Table2: Performancecomparisonbetweenouralgorithmandtheoneby LynchandShvartsman[11]. “Fastread”refersto
theoptimisticpartof areadmethod.“Slow read”refersto areadmethodthatexecutesrecovery. µ is themaximumone-way
messagingdelay. ¶ is thenumberof replicas—wepessimisticallyassumethatall replicasareinvolvedin theexecutionof
anoperation.Whencalculatingthenumberof disk I/Os,weassumethatreadingval and wzxzy|{}c�· vaļ involvesingledisk read
andwrite, whereasts andord-tsarestoredon NVRAM (or volatile memorybackedup with a dedicatedtransactionallog
device). ¹ is thesizeof a register.

[2] T. ChandraandS.Toueg. Unreliablefailuredetectors
for reliabledistributedsystems.Journalof theACM,
43(2):225–267,1996.

[3] P. Dutta, S. Frolund,R. Guerraoui,andB. Pochon.
An efficient universal construction for message-
passingsystems.In InternationalSymposiumonDis-
tributedComputing(DISC), 2002.

[4] M. Fisher, N. Lynch, andM. Paterson. Impossibil-
ity of distributedconsensuswith onefaulty process.
Journalof theACM, 32(2):374–382,1985.

[5] E. Gafni andL. Lamport. Disk paxos. In Interna-
tional SymposiumonDistributedComputing(DISC),
2000.

[6] D. Gifford. Weightedvoting for replicateddata. In
Proceedingsof the7th.SymposiumonOperatingSys-
temsPrinciples, 1979.

[7] M. Herlihy andJ. Wing. Linearizability: a correct-
nesscondition for concurrentobjects. ACM Trans-
actions on Programming Languages and Systems,
12(3):463–492,July1990.

[8] L. Lamport.Time,clocks,andtheorderingof events
in adistributedsystem.Communicationsof theACM,
21(7),July1978.

[9] L. Lamport. On interprocesscommunication.Dis-
tributedcomputing, 1(1):77–101,1986.

[10] L. Lamport. Thepart-timeparliament.ACM Trans-
actionsonComputerSystems(TOCS), 16(2),1998.

[11] N. A. Lynch and A. A. Shvartsman. Robust em-
ulation of sharedmemory using dynamic quorum-
acknowledgedbroadcasts. In Proceedingsof the
IEEE Symposiumon Fault-Tolerant ComputingSys-
tems(FTCS), pages272–281,1997.

[12] N. A. LynchandA. A. Shvartsman.Rambo:A recon-
figurableatomic memory servicefor dynamic net-
works.In 16thInt. Conf. onDist.Computing(DISC),
October2002.

[13] D. Malkhi andG. Chockler. Active disk paxoswith
infinitely many processes.In Proceedingsof theACM
conferenceon Principles of Distributed Computing
(PODC), 2002.

[14] David L. Mills. Improvedalgorithmsfor synchroniz-
ing computernetwork clocks. In ACM SIGCOMM,
pages317–327,London,United Kingdom, Septem-
ber1994.

10

A Correctness

A.1 Histories

In accordancewith themodelin Section3,weusea
historyof invocationandreturneventsto representthe
interactionbetweenprocessesandan instanceof our
registerduringaparticularrunof ouralgorithm.Since
therearenopartialoperationsin our histories(we re-
placecrasheventswith unsuccessfulreturneventsas
necessary),our historiesare well-formed and com-
pleteaccordingto thedefinitionin [7].

Ratherthanrefer to individual invocationandre-
turn eventsin a history, we usea notionof operation,
which is anaggregationof an invocationeventanda
returnevent. Whereeventsaretotally ordered,oper-
ationsareonly partially ordered(they may overlap).
If the returnevent of anoperationB/�5"|D precedesthe
invocationevent of anotheroperationB/�5"|D~� in a his-
tory I , wesaythat B/�5"|D happensbeforeB/�5"|D~� andwe
write thisas B/�5"|D��K�2B/�5"|D~� .

Eachoperationcontainsavaluefrom thesetº�8:9¼»," .
We use $�Dz3 6C"5F~X/G to representa write operationthat
writesthevalue X . WeuseDL"o8,��F~X/G to representa(suc-
cessful)readoperationthatreturnsX . To simplify the
presentation,we assumethat eachinvocationof the
write operationtriesto write auniquevalue(“unique-
value” assumption). Thevalue H (H½�«º¾8:9`»#") repre-
sentsthe initial valueof theregister. We assumethat
H is not partof any write operation(if $�Dz3 6C"5F~X/G is in
I , then XÀ¿+�H).

For an operation B/�5"|D , we denote Á�B:B?DL�ªF�B/�5"|DzG
to represent the process that coordinates B/�5"|D ,
and 60@�F�B/�5"|D�G to representthe timestampused by
Á�B:B?DL�ªF�B/�5"|DzG (for a readoperation, Á�B B5DL� is defined
only when the recover methodis executed.). Nota-
tions Â�8CÃCÄ-F�B/�5"|D�G , Â�8CÃCÅ�F�B/�5"|D�G , Â�8CÃCÆÇF�B/�5"|DzG repre-
senta majority of processescontactedby thecoordi-
natoraftersuccessfulcompletionof “Read”,“Write”,
and“Order”/“Order&Read”phases,respectively.

For agivenhistory I , wedefinethefollowing sub-
setsof º�8:9¼»#" :
��È D�3 6U6C"|!|� is the setof all valuesthat arepart of

invocationeventsfor write operationsin I .
�©É B/Â�Â�3 6C"�� � is the setof all valuesthat arepart

of an invocationevent for a write operationthat
returnastatusof OK in I .

�ËÊ "o8#� � is the setof all valuesthat arepart of a
returneventfor a readoperationin I .

We alsocall theset Ê "o8,� �2Ì É B/Â�Â�3 6C"�� � theob-
servablevaluesin I , anddefine

ÍÏÎ @f��Ð Ê "o8,�:�;Ì É B/ÂÑÂÒ3 6C"��/�Ó�
A.2 Internal events

Historiesrepresenttheexternalview of a register:
they reflecttheview of processesthatinteractwith the
register. Wealsoconsiderinternaleventsthathappen
duringa run of our algorithm. We usetheseinternal
eventsto reasonaboutthebehavior of our algorithm,
and to justify that the algorithm implementsan ex-
ternalbehavior thatcomplieswith thespecificationin
Section3.

A store event is an internalevent thatcorresponds
to theinvocationof @A6CB5DE" , triggeredby thehandlerfor
“Write” messagesin Line 31. We use @A6�F~X�o�~�|G to de-
notea storeevent thatwritesa value X in thecontext
of timestamp�~� .

We use (�Ô Ä to denotethe setof storeeventsthat
happenin a run Õ . (�Ô � Ä is the(possiblyempty)setof
storeeventsfor value X . If (�Ô � Ä ¿+×Ö , we use �~�o� to
denotethesmallesttimestampthatis partof any store
eventin (�Ô � Ä .3

Lemma 5 �~��� , if it exists, is the timestampusedby
the write methodto send“Write” messages to all
processes.

PROOF: A storeevent @A6dF~X�o�~���|G may happenin two
cases:

(a) An operation$�D�3 6C"5F~X/G with timestamp�~�o� issues
the “Write” message(Line 9). This caseproves
ourclaim.

(b) An operationDL"o8,�1F~X/G executesa recover method.
It finds a value X from somereply (from, say,
process�) during the “Order&Read”phaseand
sends“Write” afterward. This caseis impossi-
ble for thefollowing reason.Process� musthave
executed@A6dF~X�o�~� � G for sometimestamp�~� � . More-
over, �~�o�1)260@�F0DL"o8,��F~X/GAG�+Ë.A§o� from Line 29. This

3Although ØÚÙAÛ is definedfor a particularrun,we do not para-
meterizeØÚÙ Û with thatrun for brevity.

11

contradictsourassumptionthat .A§o� is thesmallest
timestampamongstoreeventsinvolving X . �

Lemma 6 If a processexecutes@A6�F~X�o�~�|G for some
value X andtimestamp�~� , thena majority hasstored
�~� asthevalueof ord-ts.

PROOF: Event @A6%F~X�o�~�|G happensonly afterthecoordi-
natorcollectedeither“Order-R” or “Order&Read-R”
repliesfrom amajority. Thehandlerfor themessages
“Order” or “Order&Read”setord-tsto �~� . �

For a run Õ , we define (º Ä to bethesetof values
that arepart of storeeventsin Õ . Notice that HÝÜ�
(º Ä becauseH is never written.

Lemma 7 For any run Õ that givesrise to a history
I , ÍÓÎ @f�sÞàß,H�á�â�(º Ä â È D�3 6U6C"|!,�Ò�

PROOF: From NO CREATION propertyof the com-
municationchannels,andAlgorithms1 and2. �

For any run Õ , we candefinea total order) val on
(º Ä ÌÀß,HÑá in thefollowing manner:

Hã) val X X[�À(º Ä (5)

X�) val X � � �~�o��)��~� � � X�AX � �À(º Ä (6)

This is a well-definedtotal order because,from the
unique-valueassumption,differentvaluesarealways
storedwith different timestamps(X½¿+äX:� � �~�o�Ë¿+
�~� � �). In the following, we omit the subscriptfrom
) val, andsimply use“) ”. With this convention,the
symbol) is overloadedto orderbothtimestampsand
values.

As weshow subsequently, ouralgorithmlinearizes
operationsin accordancewith this totalorder.

A.3 Proof of safety

Wefirst definethenotionof aconformingtotal or-
der for a history. Intuitively, aconformingtotal order
for a history I is a totally-orderedset Fz���)�G such
that(a) � containsall theobervablevaluesin I , and
(b) theorderingof valuesin � correspondsto theor-
deringof operationsin I .

Definition 8 Givena history I . A totally orderedset
Fz���)�G is a conformingtotal order for I if thefollow-
ing conditionsare satisfied:

ÍÓÎ @=��âË�åâ È Dz3 6060"|!|�;ÌÀß,HÑá (7)

$�Dz3 6C"5F~X/G��K�2$�Dz3 6C"5F~X � G���X�AX � �À� � X�)2X � (8)

DL"o8,�1F~X/G�� � DL"o8,��F~X � G � X��2X � (9)

$�D�3 6C"5F~X/G��K��DE"o8#�ªF~X � G���X��À� � X��2X �(10)

DL"o8,�ªF~X�G�� � $�D�3 6C"5F~X � G��æX � �À� � X�)2X �(11)

�
Using the conceptof conformingtotal order, our

safetyproof proceedsin two steps.In SectionA.3.1,
we prove that, for any run Õ that resultsin a history
I , the setof storedvalues (/º Ä with the total order
definedin (5) and(6) is a conformingtotal orderfor
I . Then, in SectionA.3.2, we show that the exis-
tenceof a conformingtotal orderfor a history I is a
sufficient conditionfor I beinglinearizable.

A.3.1 Proving the existenceof a conforming total
order

This sectionprovesthat the total orderwe definedin
(6) is, in fact,aconformingtotalorderfor any history
I .

Lemma 9 For any processor� , the value of val-ts
andord-tsincreasesmonotonicallyin anyhistory.

PROOF: Variableval-ts is modifiedonly at Line 35,
which checksbeforehandif the new timestampis
larger than the currentone. Variableord-ts is mod-
ified only in Line 29,whichalsochecksbeforehandif
thenew timestampis largerthanthecurrentone. �

Lemma 10 GiventwodistinctvaluesX�AX?���À(º Ä . If
thereexistsa timestamp�~�Ò*��~� � � such thata majority
of processesexecute@A6dF~X�o�~�|G , theneverystore event
for X:� hasa timestampsmallerthan �~� : ç�@A6dF~X:��o�~�o�ÚG-�
(�Ô � �Ä©è �~� �)é�~� .

PROOF: Assumethecontrary. Let �~�o� êìë¼í bethesmall-
esttimestampfor storeeventsinvolving X:� :
�~� � êìë¼í Ð�î�ïñð�FUß?�~� � è �~� � *é�~�-��@A6%F~X � o�~� � G��À(�Ô � �Ä á,G7�

12

We first arguethat theevent @A6%F~X � o�~� � êìë¼í:G mustbe
triggeredby a recover method.This is because,from
Lemma5, only theoriginal write methodfor X � uses
�~� �f� whenstoring X?� . Thus,any storeevent @A6%F~X?��A.A§o�ñG
with �~�o�ª*��~� �f� , mustbeexecutedasapartof arecover
method.

Considernow the recover method that triggers
@A6dF~X � o�~� � êìë¼í G . Let �~� � � be the highesttimestampre-
turnedin a“Order&Read-R”messagethatis received
aspart of this recover methodinvocation(Line 16).
Noticethat �~�o� �1���~� for thefollowing reasons.

� Considera process�®�òÂ�8CÃCÆÇF~@A6dF~X � o�~� � êìë¼í GAG ¥
ÂÏ8CÃ Å F~@A6dF~X�o�~�|GAG Process � cannot send
“Order&Read-R”for X � before @A6%F~X�o�~��G for the
following reason:when sending“Order&Read-
R”, � ’s ord-ts = �~�o�ó �}� *.C§ . Executing @A6dF~X�A.C§|G
afterwardsviolatesLemma9,

� Thus, � must execute @A6�F~X�o�~�|G before
“Order&Read-R”. This means that, upon
“Order&Read-R”,� mustreturna timestamp,say
�~��ô , suchthat �~�oôõ*ö�~� . On the otherhand,by
definition, �~� � � �2.A§�ô .

� Thus, �~� � � �é�~� .

Moreover, becausetherecover methodtriggersthe
writing of X:� , X:� must have timestamp �~�o� � at some
process. Since X×¿+÷X?� , we can now concludethat
this processexecuteda storeevent @A6�F~X � o�~� � � � G with
�~�Ë�<�~�o� ��)<�~�o� � � . This contradictsthe assumption
that �~� � êìë¼í is thesmallesttimestampbiggerthan �~� for
which X?� is stored. �

Lemma 11 If a run Õ gives rise to a history I ,
and if DL"o8,��F~X�G��øI with Xö¿+ H , then there ex-
ists a timestamp�~� such that (a) a majority executes
@A6dF~X�o�~�|G and (b) a majority has �~� as their persis-
tent val-ts timestampsometimeduring the execution
of DL"o8,�1F~X/G .

PROOF: Assumethat I containsDE"o8#�ªF~X/G . Thereare
two waysin which DL"o8,��F~X/G canbeexecuted:

� DE"o8#�1F~X/G only involves the invocation of a read
method.In this case,processesin ÂÏ8CÃ Ä F0DL"o8,��F~X�GAG
musthave returnedthe sametimestamp�~� with
no pendingwrite or recover invocations(Line 3).

Thus,a majority executed@A6dF~X�o�~�,G , anda major-
ity has �~� astheirval-ts during DE"o8#�ªF~X/G .

� DL"o8,�ªF~X�G involves the read and recover opera-
tions. Let �~��+ò6U@oF0DL"o8,�1F~X/GAG . For the recovery
to succeed,ÂÏ8CÃ Å F0DL"o8,��F~X/GAG must have executed
@A6dF~X�o�~�|G andreplied “Write-R” to the coordina-
tor, in which casea majorityhas �~� astheir val-ts
timestamp. �

Lemma 12 Givena run Õ thatgivesrise to a history
I . If $�D�3 60"5F~X�G is in I and XÀ� ÍÓÎ @=� , then(a) some
processexecutes@A6dF~X�o�~���,G , (b) thereis a timestamp�~�
such thata majorityexecutes@A6�F~X�o�~�|G .
PROOF: If XË� É B/Â�ÂÒ3 60"��/� , thenall the properties
holdvacuously. Supposeotherwise.

(a) BecauseDL"o8,��F~X/G is in I , someprocessmusthave
stored X to its val via a storeevent @A6%F~X�o�~�|G for
sometimestamp �~� (�~�o� is merely the smallest
amongsuchtimestamps).

(b) FromLemma11,amajorityexecutes@A6�F~X�o�~�|G for
some�~� . �

Lemma 13 Givena run Õ thatgivesrise to a history
I . If B/�5"|D � �2�ùB/�5"|D _ and both operation trigger
somestoreevents,thenthestoreeventsfor B/�5"|D � have
smallertimestampsthanthosefor B/�5"|D _ .
PROOF: Assumethe contrary: B/�5"|D � � � B/�5"|D _ ,
B/�5"|D � executes@A6�F~X�o�~���%G , B/�5"|D _ executes@A6�F~X � o�~��_�G ,
yet �~���Ç*��~��_ .

Since B/�5"|D � executes @A6�F~X�o�~�|G , processesin
Â�8CÃ Æ F�B/�5"|D � G store �~��� for ord-tsat somepoint in the
history (happensin Line 29 or Line 39). Similarly,
processesin ÂÏ80ÃCÆÇF�B/�5"|D _ G store �~��_ astheir ord-ts at
somepoint in the history. Considera process�ú�
Â�8CÃ Æ F�B/�5"|D � G ¥ Â�8CÃ Æ F�B/�5"|D _ G . SinceB/�5"|D � �K��B/�5"|D _ ,
this processstores �~� to ord-ts beforeit stores �~�o� to
ord-ts. Sinceprocessesonly assignmonotonicallyin-
creasingvaluesto ord-ts (Lemma9), we have a con-
tradiction. �

Lemma 14 For anyrun Õ thatgivesrise to a history
I , theconditionholds:

$�D�3 6C"5F~X/G��2�K$�D�3 6C"5F~X � G���X�AX � � ÍÏÎ @=� � X�)2X �

13

PROOF: Assumeotherwise:$�D�3 6C"5F~X/G-�K�©$�D�3 60"5F~X � G ,
X�AX?�M� ÍÓÎ @ , yet X®*ÝX:� . From Lemma 12, we
know that @A6�F~X�o�~���|G happensduring $�Dz3 6C"5F~X/G and
that @A6dF~X:�~o�~� �=� G happensduring $�D�3 6C"5F~X?�LG . From
Lemma13,weconcludethat �~� �)��~� �f� . �

Lemma 15 For anyrun Õ thatgivesrise to a history
I , thefollowingconditionholds:

DL"o8,��F~X/G��K��DE"o8#�ªF~X � G � X[�2X �

PROOF: Assumefor acontradictionthat DE"o8#�ªF~X/G��K�
DL"o8,��F~X � G , yet X * X � . This means that X ¿+
H . From Lemma 11, for sometimestamp �~� , ei-
ther Â�8CÃ Ä F0DL"o8,�1F~X/GAG or Â�8CÃ Å F0DL"o8,�1F~X/GAG has �~� astheir
value for val-ts sometime during the executionof
DL"o8,��F~X/G . Let ¢¡A£ � bethismajorityset.

Considerfirst the casewhere X � +ûH . Observe
first that DL"o8,�ªFzHÒG canexecuteonly read().For a read
methodto return H , Â�8CÃCÄ-F0DL"o8,�ªF~X � GAG has 3`!?3 673 8:9 &-(as
their value for val-ts and ord-ts. Let �ú�ù ¤¡C£ � ¥
Â�8CÃ Ä F0DL"o8,�ªF~X?�LGAG . Because� hasincreasingvaluesfor
its ord-ts timestamp,and becauseDE"o8#�ªF~X/G precedes
DL"o8,��FzHÒG , we have �~�ü)\34!53 673 8:9 &�(, which is a contra-
diction.

Considernext the casewhere X?�ã¿+ H . From
Lemma 11, for some timestamp �~�o� , a majority
executes @A6dF~X � o�~� � G and either Â�8CÃ Ä F0DL"o8,�1F~X � GAG or
Â�8CÃ Å F0DL"o8,��F~X:�ñGAG has �~�o� astheirvaluefor val-tssome-
time during the executionof DL"o8,��F~X � G . Let ¤¡C£ �� be
this majority set. Let ���\ ¤¡C£ � ¥ ¤¡C£5�� . Because
DL"o8,��F~X/G precedesDL"o8,��F~X � G , and from Lemma9, we
concludethat �~�Ò)��~�o� .

Moreover, �~� �f�)ý�~� �)ò�~�K)ý�~�o� . (�~� �=�)ý�~� �
becauseX �)�X ; �~�o��)��~� from thedefinitionof �~�o�).
Since ¤¡C£ � executes@A6dF~X�o�~�|G , Lemma10impliesthat
all storeeventsfor X � haveatimestampthatis smaller
than �~� . But this contradictsthe fact that ¤¡C£ �� exe-
cutes@A6%F~X?��o�~�o�LG with �~�Ò)é�~�o� . �

Lemma 16 For anyrun Õ thatgivesrise to a history
I , thefollowingconditionholds:

$�D�3 6C"5F~X/G��K�þDE"o8#�ªF~X � G���X[� ÍÏÎ @=� � X��2X �

PROOF: Assume for a contradiction that
$�D�3 60"5F~X�G��K��DL"o8,��F~X?�LG , X[� ÍÏÎ @=� , yet X�*2X?� .

We first show that thereexists a timestamp�~� � *
�~�o� suchthata majority executes@A6�F~X?��o�~�o�ÚG . We con-
sidertwo situations:

(a) DL"o8,�ªF~X � G executestherecover method.
Let �~� � + 60@�F0DL"o8,��F~X � GAG . We know that a ma-
jority executes @A6�F~X?��o�~�o�ÚG . Furthermore,from
Lemma 12, we know that at least one store
event @A6dF~X�o�~���|G happensduring $�Dz3 6C"5F~X/G . From
Lemma13, �~�o�Ò)é�~�o� .

(b) DL"o8,�ªF~X:�LG executesonly thereadmethod.
Then Â�8CÃCÄ�F0DL"o8,�1F~X � GAG hassometimestamp�~� as
their valuefor bothord-ts andval-ts. According
to Lemmas6 and12, Â�8CÃ Æ FE$�D�3 60"5F~X�GAG has �~� � as
their value for ord-ts somtimeduring $�D�3 60"5F~X�G .
Consider a process � � Â�8CÃ Ä F0DL"o8,�1F~X?�LGAG ¥
Â�8CÃAÆ'FE$�D�3 60":F~X/GAG . FromLemma9 andthefactthat
X½¿+®X?� , �~���M)ø�~� . In particular, we thenknow
that �~�Ë¿+ÿ3`!?3 673 8:9 &-(, andthereforethat X:��¿+øH .
Since X � ¿+úH , we concludethat ÂÏ80Ã Ä F0DL"o8,��F~X � GAG
executed@A6%F~X?��o�~�,G .
Let �~� be a timestampsuchthat a majority exe-
cutes @A6�F~X�o�~�|G —Lemma12 guaranteesthe exis-
tenceof �~� . Perdefinition, we know that �~���õ)
�~� . From the above reasoning,we also have
a timestamp �~�o� such that a majority executes
@A6dF~X � o�~� � G andsuchthat �~�o��)��~� � .

Wenow have oneof two situations:(c) �~�Ò*é�~�o� or
(d) �~�¤)å�~� � . For (c), we have �~�o�¤)�.A§ �)å�~� , which
contradictsLemma10. For (d), wehave �~� �=�)��~�o�Ò)
�~� � , whichalsocontradictsLemma10. �

Lemma 17 For anyrun Õ thatgivesrise to a history
I , thefollowingconditionholds:

DL"o8,��F~X/G��K�M$�D�3 6C"?F~X � G���X � � ÍÏÎ @A� � X�)KX �

PROOF: Assumefor acontradictionthat DL"o8,��F~X�G��K�
$�Dz3 6C"5F~X?�LG , X:��� ÍÏÎ @ � , yet X½�ÿX?� . We know that
X � ¿+�H , andcanthereforeconcludethat X�¿+�H . There
aretwo casesto considerregarding DL"o8,��F~X�G :

(a) DL"o8,�ªF~X�G executesonly thereadmethod.
We know that Â�8CÃ Ä F0DL"o8,�ªF~X�GAG has some
timestamp�~� their ord-ts and val-ts timestamps
during DL"o8,��F~X/G . From Lemmas 6 and 12,

14

ÂÏ8CÃAÆ-FE$�D�3 6C"?F~X � GAG has �~� �f� as their value for
ord-ts during $�D�3 60"?F~X:�ÚG . Consider a process
�ö�òÂÏ8CÃ0Ä-F0DL"o8,��F~X�GAG ¥ ÂÏ8CÃ0ÆÇFE$�D�3 6C"5F~X � GAG . From
Lemma 9, we know that �~�ú) �~� �=� . Since a
majority executes@A6dF~X�o�~�|G , �~� �)®�~� . Thus,we
concludethat �~�o�¢)��~�)��~� �f� , which contradicts
theassumptionthat X�*2X:� .

(b) DE"o8#�1F~X/G executesboththereadandrecover meth-
ods.
Let �~� be the timestampused in the recover
method. From Lemma 12, a store event
@A6�F~X?��o�~� �f� G happensduring $�D�3 6C"5F~X?�LG . From
Lemma13, we know that �~�[) �~� � � . As for case
(a), we cannow derive a contradictionbasedon
thefactthat �~�o�Ò)��~� . �

A.3.2 Proof of linearizability

Proposition18 Givena history I . If there existsa
conformingtotal order for I , then I is linearizable.

PROOF: Let Fz���)�G be a conformingtotal order for
I . Constructasequentialhistory ¨ thathasthesame
eventsas I and that satisfiesthe following condi-
tions:

1. Fz���)�G is a conformingtotal orderfor ¨ .

2. B/�5"|D � �K�©B/�5"|D _ � B/�5"|D � �K¬¢B/�5"|D _ .
It is possibleto satisfy(1) by simply orderingthe

operationsin ¨ suchthat if Xå)ýX:� , all operations
for X precedeall operationsfor X:� . Moreover, we can
satisfy(1) without violating (2). Considertwo oper-
ations B/�5"|D � and B/�5"|D _ in I . If theseoperationsare
concurrent,wecanorderthemin any waywithoutvi-
olating(2). If � �����5�Ò�K��B/�5"|D _ , their orderingin I
alreadyobeys theorderingof valuesin � . This is be-
causeFz�¾�)�G is aconformingtotalorderfor I .

Condition(2) impliesthat ¨ and I areequivalent
(accordingto thedefinitionof equivalencein [7]), and
thattheorderingof I is asubsetof theorderingin ¨ .
Thus, to prove that I is linearizable,it is now suf-
ficient to show that ¨ is legal (i.e., that ¨ is in the
sequentialspecificationof our register).To show that
¨ is legal,wehave to show thatall readoperationsin
¨ either(a) returnthelatestvaluestoredin theregis-
ter or (b) return H if no valuehasbeenstoredin the
register.

Considerfirst case(b). We have to show that if
$�Dz3 6C"5F~X/G¤�K¬þDL"o8,��FzHÒG then X�Ü� ÍÏÎ @=¬ . Assumefor
a contradictionthat $�D�3 6C"5F~X/G¢�K¬�DL"o8,�ªFzHÒG with X2�ÍÏÎ @=¬ . Wecanusethefactthat Fz�¾�)�G is aconforming
total order. From10,we know that X¯��H . But since
H is not written,we canconcludethat Xü)ãH , which
is acontradictionwith (5).

Considernext (a). Assumethat DL"o8,�ªF~X/G��©¨ with
Xþ¿+äH . Since X is in Ê "o8,�:¬ , we know that X©��� .
From (7), we canderive that $�D�3 60"5F~X�GÀ� ¨ . More-
over, from (11), we canconcludethat $�D�3 60"5F~X�G[�K¬
DL"o8,��F~X�G . Wenow have to show thatthereis noopera-
tion $�D�3 6C"5F~X � G between$�D�3 60"5F~X�G and DL"o8,��F~X�G in ¨ . As-
sumefor a contradictionthat $�Dz3 6C"5F~X/GÒ�K¬ $�D�3 60"5F~X:�ñG
andthat $�D�3 6C"5F~X � G��K¬2DE"o8#�ªF~X/G . From (8), we know
that X�) X?� . At the sametime, we know from (10)
that X?�1�2X , which is impossible.

�

Proposition19(CONSISTENCY) Any run produces
a linearizablehistory.

PROOF: Given a history I . We first prove that the
set

ÍÓÎ @ � with the total order) definedin (6) is a
conformingtotalorderfor I .

Lemma 7 proves (7). Lemma 14 proves (8),
Lemma15 proves (9), Lemma16 proves (10), and
Lemma17 proves (11). We can now concludethat
F ÍÏÎ @ � �)�G is aconformingtotalorderfor I .

The linearizabilityof I thenfollows from Propo-
sition18. �

A.4 Proof of liveness

Lemma 20 If a processinvokesthe “majority” pro-
cedure in Algorithm 1, and thendoesnot crash, the
invocationeventuallyreturns.

PROOF: Assumethata process� invokes“majority”
with a message� , andthendoesnot crash.Assume
furthermorefor a contradictionthat the invocationof
majoritydoesnotreturn,i.e.,that“majority” will send
� aninfinite numberof times. Fromthe FAIR LOSS

propertyof thechannel,all correctprocessesreceive
� aninfintenumberof times.Becausethereis a ma-
jority of correctprocesses,we know thereis a time

15

. afterwhich a majority of processesdoesnot crash.
Whenthis majority receives � after . , eachprocess
in the majority will senda reply to � . Becauseeach
processin the majority receives � an infinite num-
ber of times,they will eachsendan infinite number
of replies.Again, by the FAIR LOSS property, � will
receive aninfinite numberof repliesfrom a majority.
Thus,theawait statementin Line 22 will eventually
return,leadingto acontradiction. �

Proposition21(TERMINATION) For any process� ,
if IMJL� containsan invocationevent,then IKJL� either
containsa subsequentreturn event or a subsequent
crashevent.

PROOF: Assumefor acontradictionthataprocesshis-
tory IKJL� containsaninvocationevent,but no subse-
quentreturnnorcrashevent.

Considerfirst the casewhere � invokes the read
method.Because� doesnotcrashafterinvokingread,
we know from Lemma20 thatall invocationsof ma-
jority duringthereadoperationwill eventuallyreturn.
Moreover, we know that invocationsof !,"%$-&�(are
non-blocking.Weconcludethattheinvocationof read
will eventuallyreturn,which is a contradiction. We
canderive a similar contradictionfor invocationsof
write. �

Proposition22(PROGRESS) If onlya singleprocess
� hasa history IKJL� that containsan infinite number
of invocationevents,andif � is correct,thenIKJL� con-
tainsan infinitenumberof successfulreturnevents.

PROOF: Because� is the only processwith an infi-
nite numberof invocationevents,all otherprocesses
generateonly a finite numberof timestamps.Let �~�
be the maximumtimestampgeneratedby processes
otherthan� .

Assumethat IKJL� containsan infinite numberof
unsuccessfulreturn events. From Algorithm 1, we
canobserve that eachinvocationwith an unsuccess-
ful returneventcausesthegenerationof a timestamp.
Thus,weknow that � generatesaninfinite numberof
timestamps.The PROGRESS propertyof timestamp
ensuresthat � eventually generatesa timestamp �~�d�
that is higherthan �~� . Because� is correct,thereis
a time . suchthat (a) � doesnot crashafter . and(b)

� invokesa methodafter . andgeneratesa timestamp
�~��� that is greaterthan �~� . Considerthis invocation.
No replica will reply NO during this invocationbe-
cause�~��� is higherthanany timestampin thesystem.
This meansthat the invocation will return success-
fully, which is acontradiction. �

16

