
1

Impeding Attrition Attacks in P2P Systems
Petros Maniatis

Intel Research, Berkeley, CA

TJ Giuli
Stanford University, CA

Mema Roussopoulos
Harvard University, Cambridge, MA

David S. H. Rosenthal
Stanford University Libraries, CA

Mary Baker
HP Labs, Palo Alto, CA

Abstract—P2P systems are exposed to an unusually broad range
of attacks. These include a spectrum of denial-of-service or attri-
tion attacks from low-level packet flooding to high-level abuse of
the peer communication protocol. We identify a set of defenses
that systems can deploy against such attacks and potential syner-
gies among them. We illustrate the application of these defenses in
the context of the LOCKSS digital preservation system.

1. INTRODUCTION

Peer-to-peer (P2P) systems are exposed to an unusually
broad range of attacks because of their lack of central control or
administration. In earlier work [12], we classify these attacks
according to their intent and describe techniques for thwarting
some of them. Here we focus on attacks aimed at Denial of Ser-
vice (DoS), in the broad sense of the term introduced by Need-
ham [14]. More recently, Denial of Service has come to mean
high-bit-rate network-level attacks such as SYN-flooding [20]
that rapidly degrade the usefulness of the victim system. We use
the term attrition to indicate our equal concern with moderate-
or low-bit-rate application-level attacks that gradually impair
the victim system over a long period.

The contribution of this paper is to bring together a broad
range of techniques, none wholly original, that can help to re-
sist attrition attacks on P2P systems, identify synergies among
them, and describe how they can be implemented in the context
of a real P2P application with promising preliminary results.

2. THE ADVERSARY

We classify adversaries according to the intent of their attack
on the victim system into the following classes:

• Stealth adversaries attempt to modify, subvert or otherwise
compromise the integrity of the content or service of the
system undetected. In a file system, this adversary would
seek to modify files unobtrusively without authorization.

• Theft adversaries attempt to access restricted system ser-
vices. In a file system, this adversary would seek to read
restricted files without authorization.

• Nuisance adversaries attempt to cause many apparently
false alarms to discredit intrusion detection and monitor-
ing systems.

• Free-loader adversaries attempt to benefit from the sys-
tem’s services while contributing nothing in return. In a
file system, a free-loader would use up the disk space of
others while refusing to make his own space available.

• Attrition adversaries attempt to prevent clients of the sys-
tem from obtaining timely service.

Here we focus only on the attrition adversary, whose goal
may be to consume resources at peers in general so as to re-
duce the usefulness of the system as a whole, or to consume
resources at individual but critical peers, either to prevent them
from contributing to the system or to facilitate another at-
tack. To these ends, the adversary can consume or cause waste
of network-level resources (bandwidth, buffer space, connec-
tion descriptors), and application-level resources (computation,
memory).

The attrition adversary has three potential “modes” of opera-
tion representing increasing levels of sophistication in exploit-
ing the victim system’s protocol:

• Pipe stoppage. Through massive traffic abuse, the ad-
versary saturates the victim peers’ network connections,
preventing them from sending or receiving valid protocol
messages. We assume this mode of operation to be sus-
tainable for short time periods, on the order of hours.

• Anomalously high rates of requests. With more under-
standing of the target protocol, an attrition attacker can
send well-formed requests to victims at a rate that, while
not saturating any network connections, causes resource
exhaustion as the victims try to respond. Such obviously
anomalous traffic rates can lead to the identification of the
attack sources and eventually stem the tide within days
(e.g., with packet marking and subsequent filtering).

• Seemingly innocuous rates of requests. The adversary
sends requests at rates no greater than the highest expected
from other loyal peers in the absence of an attack. Through
even more understanding of the target protocol, these re-
quests are crafted and timed to exhaust the victims’ re-
sources or to prevent them from contributing to the sys-
tem. We must assume that such a mode of adversary op-
eration is sustainable almost indefinitely, absent other tell-
tale signs of anomalous behavior.

The next section demonstrates our strategy: persevere during
short-term pipe stoppage, “discourage” the adversary from us-
ing high-rate attacks by making them less effective than low-
rate ones, and rely on more sophisticated defenses for raising
the cost of low-rate attacks.

3. ATTRITION DEFENSES

We describe general defenses against attrition that we have
found useful. In Section 4, we instantiate these defenses for
LOCKSS, a real system for preserving access to web-published
documents.

2

Effort Balancing. If the effort needed by a requester to pro-
cure a service from a supplier is less than the effort needed by
the supplier to furnish the requested service, then the system
can be vulnerable to an attrition attack that consists simply of
large numbers of ostensibly valid service requests. Provable ef-
fort mechanisms (e.g., Memory-Bound Functions [7] or client
puzzles [6]) can ensure that the requester exerts more effort than
the supplier. They inflate the cost of protocol operations by an
adjustable amount of provably performed but otherwise useless
effort. By requiring that at each stage of a multi-step protocol
exchange the requester has invested more effort in the exchange
than the supplier, we raise the cost of an attrition strategy that
defects part-way through the exchange.

This effort balancing is applicable not only to consumed re-
sources such as computations performed, memory bandwidth
used or storage occupied, but also to resource commitments.
For example, if an adversary peer issues a cheap request for
service and then defects, he can cause the supplier to commit
resources that are not actually used and are only released after
a timeout (e.g., SYN floods [20]). The size of the provable ef-
fort required in a resource reservation request should reflect the
amount of effort that could be performed by the supplier with
the resources reserved for the request.

Rate Limitation. A peer can use its resources judiciously and
slow down attacks if its decisions about participation are au-
tonomous and free from external coercion. Peers should satisfy
requests no faster than necessary rather than as fast as possi-
ble; for example, this policy can effectively slow the spread of
viruses [22]. A peer can follow this policy by maintaining a
fixed rate at which it requests services from others or supplies
services to others, linking the two through reciprocation when
the application domain allows. This policy is easier to apply
when requests carry expiration times; peers can make informed
choices of whether or when to supply the requested service.
Note also that the effort balancing defense described above also
provides inherent rate limitation.

Admission Control. Rate limitation implies that a peer must
reject or even drop some incoming requests. Ideally, a strategy
for doing so discriminates against the attrition adversary by se-
lectively dropping his requests. Strategies that have been used
in similar circumstances include random drops (which, unfor-
tunately, tend to penalize legitimate requesters during a DoS at-
tack), session-based classification (e.g., in web services, prefer-
entially drop requests signifying a new service session, instead
of requests that continue longer-running sessions with greater
potential for a purchase [4]), and reputation-based classification
(prefer requesters with a good subjective or global history [8]).

Redundancy. If an individual peer is essential to the function
of the overall system, then the attrition adversary can focus at-
tacks on that peer, for example by flooding its network connec-
tion. Otherwise, when an outage at an individual peer affects
only that peer but not the system as a whole, the adversary must
attack a large proportion of the peers simultaneously. This can
be arranged using self-healing overlays (e.g., in SOS [11]) and
voting mechanisms (e.g., BFT [3] and LOCKSS [12]).

Compliance Enforcement. There is usually some cost for a
legitimate requester to process the result of its request, which
an adversary would like to avoid. Using techniques similar

to Golle and Mironov’s [10] “uncheatable computations,” it is
possible to implement an unforgeable evaluation receipt that
proves to the supplier that the requester performed the opera-
tion for which it made the request, demonstrating its compli-
ance with the expected behavior of loyal peers.

Desynchronization. Sometimes a peer requesting a service
must find more than one peer simultaneously available to sup-
ply that service (e.g., in a read-one-write-many fault-tolerant
system [3], [17]). Sometimes multiple peers inadvertently
synchronize (e.g., TCP sender windows at bottleneck routers,
clients waiting for a busy server, and periodic routing mes-
sages [9]). When this happens, even absent an attack, moderate
levels of peer busyness can prevent the system from delivering
services. An attacker in this situation may benefit by increas-
ing peer busyness only slightly (see Section 4.1). P2P system
designers should only opt for synchrony if it is necessary; acci-
dental synchrony should be prevented by randomization, back-
off, turn-taking, etc.

4. A CONCRETE EXAMPLE: LOCKSS
To illustrate these defenses, we describe them in the con-

text of the LOCKSS1 digital preservation system, originally de-
scribed in [16]. Briefly, LOCKSS peers cooperate to audit their
copy of an online document replicated at many peers by voting
in “opinion polls.” A poller invites a sample of the peer pop-
ulation into a poll, in which each invitee individually hashes
a nonce and its copy of the document to produce a vote. The
poller tallies these votes and if it is outvoted in a landslide, it
assumes its copy is corrupt and repairs it from a disagreeing
voter.

Unfortunately, the original protocol implementing this sim-
ple concept is vulnerable to many attacks [13]. In subsequent
work [12], we defend against the stealth and nuisance adver-
saries with a more complex series of exchanges between a
poller and each participating voter. Using Rate Limitation, Ef-
fort Balancing and Redundancy, we render attacks by these ad-
versaries ineffective. Here we outline further protocol refine-
ments that address attrition attacks while retaining resistance to
the stealth and nuisance adversaries.

4.1 Vulnerabilities

We identify a number of ways in which the LOCKSS proto-
col is vulnerable to the attrition adversary.

Defection. Creating a vote requires expensive hashing sub-
ject to a deadline, making it necessary to schedule the time for
this effort. Repairs also consume bandwidth. An adversary in-
tending to waste a victim peer’s resources can start a protocol
exchange with the victim then abort it at the point of maximum
waste. An attacker can waste a voter’s computation by inviting
it to create a vote and then ignoring that vote; he can waste a
poller’s time by falsely committing to compute a vote but never
delivering it; and he can waste a peer’s bandwidth by requesting
unneeded repairs.

Synchrony. A LOCKSS poller requires a quorum of Q > 1
voters (10 or so) before it can accept the outcome of a poll.

1Lots Of Copies Keep Stuff Safe. LOCKSS is a trademark of Stanford Uni-
versity.

3

Finding them can be difficult. They must be chosen at ran-
dom to make directed subversion hard for the adversary; they
must have free resources at the specified time, in the face of
resource contention from other peers who are also competing
for voters on the same or other documents at the same time.
The adversary is under no such requirement, but can find and
invite an individual victim into a futile poll. If the probability
that a loyal peer is busy is b, then the probability that i peers
are available for a poll is p(i) = (1 − b)i. The probability that
the adversary can make progress is that of finding one available
peer pa = p(1), whereas the probability that the loyal peer can
make progress is that of finding Q concurrently available peers
pl = p(Q) = pQ

a . Even assuming that contacting Q voters
in parallel is no more time-consuming than contacting 1, the
expected number of peers the adversary can engage per try is
Pa = Qpa whereas the expected number of peers a loyal peer
can engage per try is Pl = Qpl = QpQ

a = PapQ−1

a ≤ Pa. In
conjunction with a defection attack that increases the busyness
b of available peers during high contention, this vulnerability
gives the adversary a formidable advantage.

Garbage Flooding. The first two messages between a poller
and a voter perform a Diffie-Hellman key exchange that is used
to prevent spoofing of and eavesdropping on the remaining mes-
sages. If a message appears to be part of a poll, the recipient
must pay the cost of decrypting it which, though small in com-
parison to the hashing costs, is not negligible. The attrition ad-
versary can spoof the IP address of other poll participants and
flood a victim with garbage messages costing little to generate,
but much more for the victim to decrypt and identify as garbage.

4.2 Defenses
We continue by describing LOCKSS defenses of each type

proposed in Section 3. Some of these defenses are also applica-
ble to our earlier considered adversaries, stealth and nuisance,
while others are uniquely targeted at the attrition adversary.

4.2.1 Effort Balancing: Every protocol message that may
cause the recipient to consume effort E is padded with prov-
able, useless effort greater than E, forcing the attrition adver-
sary to expend at least as much effort as his victim. More specif-
ically, a poller must supply to a voter participating in its poll a
proof of at least as much effort as that required by that voter to
produce the vote. Furthermore, votes are computed in rounds
that interleave provable effort and data hashing; the poller who
evaluates a vote can detect a bogus vote with no more effort
than was required to generate it.

Vote requests supply a deadline by which the vote must be
returned to prevent time-shifting. A voter must reserve time in
its schedule to compute the vote in time to meet the deadline.
We therefore include in the poll request at least as much prov-
able effort as required by the voter to establish a session key
via a Diffie-Hellman exchange and reserve time for voting; we
also size this effort to be proportional to the size of the reserved
time. This forces the attrition adversary to expend effort com-
mensurate with that inflicted on his victim directly (through re-
source consumption) and indirectly (through unavailability due
to a time reservation).

This introductory effort must come before a voter has com-
mitted to participate. If the voter declines, perhaps because it

is busy, the introductory effort is wasted. Thus, the larger the
introductory effort required, the greater the potential for waste
when the system is busy, but also the greater the discourage-
ment to the adversary who invites a victim into a poll and then
defects, leaving the victim’s resources reserved but idle.

Another form of effort balancing is nonce chaining, a tech-
nique related to SYN-cookies [1] for encryption. A sender of a
protocol message includes a nonce in the encrypted portion of
the message that both the sender and the recipient must store.
The response to that message must contain the nonce in its un-
encrypted portion. Before a peer decrypts a protocol message,
it checks that the unencrypted nonce in that message matches
what it expects from the message sender. This means that a
peer can drop spoofed garbage messages with a simple hash
lookup instead of a decryption. Without being a participant in
the exchange, the adversary must guess a nonce, must decrypt
an observed message in transit, or must intercept and substitute
a message in flight, before he can convince a peer to decrypt a
message.

4.2.2 Rate Limitation: Peers interact with each other by re-
questing and supplying votes. A peer decides autonomously
when to call a poll and from which peers to request votes, based
on a fixed target rate. An adversary posing as a voter cannot at-
tack at will; it must wait to be invited by the potential victim.
A peer decides autonomously whether to supply a vote, based
on its own resource schedule (see Section 4.2.3). An adversary
posing as a poller can attack at will but cannot force the victim
to respond. Peers also decide autonomously whether to supply
a requested repair based on a maximum rate for each requester.
In all cases, the peer limits its rate of participation without re-
gard to external factors.

4.2.3 Admission Control: The process of considering a poll
invitation is relatively cheap but not free; it involves checking
local resource commitments to determine availability, establish-
ing a Diffie-Hellman public key for subsequent exchanges, and
verifying an introductory effort proof. An adversary can flood
a victim peer with garbage poll invitations containing bogus in-
troductory effort proofs, which cost little to generate but more
for the victim to detect as bogus. We prevent this by using
rate limitation as the basis of an admission control mechanism.
Each peer limits the rate at which it considers poll invitations
from unknown peers according to a blanket policy and from
known peers according to their history.

The rate limit for invitations from unknown pollers is imple-
mented by dropping all such invitations during a fixed period
(the refractory period) after the last such invitation is consid-
ered, and rejecting invitations randomly with a fixed probability
at other times. A peer implements the limit for known pollers
by maintaining for each a history of mutual voting on shared
documents to determine whether the poller is in debt (i.e., it has
supplied the invitee fewer votes than it has received from the
invitee) or credit (in the opposite case). An invitation from a
poller in debt is subject to both random rejection with a fixed
probability, and to the rate limit for invitations from unknown
peers. Otherwise, invitations from the known poller are always
inspected. This behavior approximates a reciprocative strat-
egy [8] in which the cost of producing the introductory effort
is wasted (“lost”) when the invitation is rejected or dropped.

4

To assist discovery and to facilitate the initial operation of
new but loyal peers, we allow voters to introduce other peers to
the poller. A peer treats an invitation from an introduced peer as
if it were from a known peer in credit if the last vote it received
from the introducer was valid. Only one introduction is honored
for each such valid vote.

The parameters of this mechanism can vary; we are cur-
rently exploring the parameter space. However, we have some
heuristics to help determine approximate combinations of val-
ues. First, to discourage whitewashing of identities, the fixed
rejection probability for unknown peers is higher than that for
known peers. Second, the maximum rate limit applied to un-
known peers is a small multiple of the expected rate for the
system (obtained out of band). Third, the fixed drop probability
for unknown peers is set so that the cumulative introductory ef-
fort expended by the adversary on dropped invitations is more
than the poller’s effort to consider the adversary’s eventually
admitted invitation. Fourth, the maximum rate of admitting in-
vitations from unknown peers and the cost of verifying an in-
troductory effort are set so that, even if invitations with bogus
introductory efforts arrive at a peer at that maximum admission
rate, the effort of proving them bogus is not a significant drain
on the peer’s resources.

4.2.4 Redundancy: Massive redundancy and “opinion poll”
fault tolerance make efforts to focus attacks on individual peers
ineffective in reducing the usefulness of the system as a whole:
when a poller fails to obtain a vote from a chosen voter, it just
asks someone else and tries again later. To succeed, a pipe stop-
page attack must target a large proportion of peers and Rate
Limitation ensures that the attack can succeed only if it persists
for weeks or longer.

4.2.5 Compliance Enforcement: Voters generate votes and
pollers evaluate them using very similar processes: hashing
blocks of the local copy of the document and either generating
or validating effort proofs. At the end of the evaluation process,
the poller decides whether the vote was valid or invalid by the
effort proofs and it decides whether it was agreeing or disagree-
ing by the hashes. A valid vote shows the poller that the voter
performed the necessary effort. Conveniently, the process of
generating a proof of effort produces about 160 bits of byprod-
uct in addition to the proof itself. This byproduct is regenerated
by the process of validating the proof. We use it as a receipt
that the poller sends to the voter after evaluating the vote. If the
receipt matches the byproduct of generating the vote, the voter
knows the poller performed the necessary effort.

4.2.6 Desynchronization: An adversary can use limited re-
sources more effectively by “time-shifting,” voting multiple
times in a single poll. To reduce the extent to which stealth or
nuisance adversaries could do this, we originally [12] made all
voters in a poll start voting together and finish by some dead-
line. Even without an attrition attack, this synchrony reduces
throughput under moderate load. It is easy for the adversary to
exploit this, especially with a short-term estimate of how loyal
peers have allocated their resources obtained through subver-
sion [23] or observation.

Fortunately, our simulations show the system performing
well even when the stealth adversary has unlimited resources
and thus no need to time-shift. As we include the attrition ad-

versary in our threat model, we allow the poller to invite vot-
ers independently, perhaps even serially, rather than simultane-
ously. A poll now consists of a sequence of two-party interac-
tions rather than a single multi-party interaction. The attrition
adversary suffers a lot while the stealth adversary gains little.

5. RELATED WORK: DISTRIBUTED HASH TABLES

Some of the attrition defenses we identify have already been
proposed for Distributed Hash Tables (DHTs), which provide
an efficient hash table abstraction for P2P applications. Others
may well be useful also. Peers in a DHT maintain a portion of
the hash table and local routing tables. They satisfy application
queries that match their portion of the hash, and otherwise route
those queries to peers with the appropriate portion. DHTs are
subject to a number of attacks, but here we focus on attrition
attacks intended to disrupt the system rather than those intended
to control or influence it.

As churn (the rate at which the peer population changes) in-
creases, both the latency and the probability of failure of queries
to a DHT increases [15]. An attrition attack might consist of ad-
versary peers joining and leaving fast enough to destabilize the
routing infrastructure.

The attrition adversary might cause pipe stoppage at selected
peers, preventing them from forwarding messages. If all pos-
sible routes for a message pass through one of the victims, the
query fails.

Alternatively, the adversary might attempt to flood the DHT’s
storage resources with garbage and thereby prevent useful con-
tent from being added. If peers’ identities are strong, for exam-
ple supported by smartcards [18], or a central authority [2] quo-
tas may be enforceable to prevent this; for loosely connected
communities, however, where strong identities may be unrealis-
tic, Sybil attackers can defeat quotas by creating new identities
as needed.

Rate Limitation. Rate limits on peers joining a DHT have
been suggested [2], [21] as a defense against attempts to control
parts of the hash space, for example to control the placement of
certain data objects or for misrouting. Limiting both joins and
stores to empirically determined safe rates will also be needed
to thwart the attrition adversary. At least for file sharing, studies
[19] have suggested that users’ behavior may not be sensitive to
latency. The increased storage latency that rate limits create is
probably unimportant.

Effort Balancing. In the absence of strong peer identity, rate
limits alone do not prevent the churn and useless storage at-
tacks. The adversary can generate join and store requests at a
rate sufficient to swamp the loyal peers, creating new identities
as needed. If requests to join or store content must include a
proof of enough effort to compensate for the cost of the op-
eration, there can be a limit on the rate at which a resource-
constrained adversary can generate such requests, and thus on
the effectiveness of the attack.

Redundancy. Routing along multiple redundant paths in the
DHT overlay has been suggested as a way of increasing the
probability that a message arrives at its intended recipient de-
spite nodes dropping messages due to malice [2] or pipe stop-
page [11].

5

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

S
uc

ce
ss

fu
l p

ol
ls

 in
 5

 d
ay

s

Number of attritionist’s nodes

w/ defenses
w/o defenses

ideal

Fig. 1. Preliminary data. A LOCKSS system of 100 peers is attacked by at-
trition adversaries of increasing strength. The graph shows the average number
of polls a loyal peer successfully completes in 5 days.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10N
or

m
al

iz
ed

 ti
m

e
sp

en
t i

n
bu

sy
 s

ta
te

Maximum synchronous votes within a poll

Fig. 2. Preliminary data. Absent an attack, the busyness (average time spent in
a busy state) of the system of 100 peers decreases as the maximum synchronous
votes within a poll decreases from 10 to 1. We normalize by the maximum
synchrony experiment.

Compliance Enforcement. Some researchers have proposed
storing useless content in exchange for having content be stored
as a way to enforce symmetric storage relationships. Compli-
ance enforcement is achieved by asking the peer storing the file
of interest to hash some portion of the file as proof that it is still
storing the file [5], [21].

Desynchronization. Waves of synchronized routing updates
caused by joins or departures cause instability during periods of
high churn [15]. Breaking the synchrony through lazy updates
(e.g., in Bamboo [15]) can absorb the brunt of a churn attack.

6. FUTURE WORK

We are evaluating LOCKSS defenses against attrition at-
tacks. Preliminary results are encouraging. In contrast with the
protocol of [12], Figure 1 shows the system performing well
even with as many attackers as defenders. Figure 2 suggests
that less synchrony is better. We fake asynchronous voting by
running more but smaller polls to obtain the same number of
total votes and we observe reduced overall busyness.

We plan to run experiments perturbing protocol parameters
to measure the sensitivity of the system and to see if there is a
“sweet spot” that a deployed system should run in.

Also, new protocol revisions require us to re-validate against
past adversary strategies. We have run simulations against the
stealth adversary and found no major differences in results.

Finally, a major goal of the LOCKSS research effort is to
merge our findings into a currently running LOCKSS beta and
eventually into a full production system.

7. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
(Grant No. 0205667). Any opinions, findings, and conclusions
or recommendations expressed here are those of the authors and
do not necessarily reflect the views of these funding agencies.
We would like to thank Kevin Lai and Yanto Muliadi for their
comments and help.

REFERENCES
[1] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.

html, 1996.
[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Se-

cure Routing for Structured Peer-to-Peer Overlay Networks. In OSDI,
2002.

[3] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI,
1999.

[4] L. Cherkasova and P. Phaal. Session-Based Admission Control: A Mech-
anism for Peak Load Management of Commercial Web Sites. IEEE Trans.
on Computers, 51(6), 2002.

[5] L. P. Cox and B. D. Noble. Samsara: Honor Among Thieves in Peer-to-
Peer Storage. In SOSP, 2003.

[6] D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In
USENIX Security Symp., 2001.

[7] C. Dwork, A. Goldberg, and M. Naor. On Memory-Bound Functions for
Fighting Spam. In CRYPTO, 2003.

[8] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Tech-
niques for Peer-to-Peer Networks. In ACM Electronic Commerce, 2004.

[9] S. Floyd and V. Jacobson. The Synchronization of Periodic Routing Mes-
sages. ACM Trans. on Networking, 2(2), 1994.

[10] P. Golle and I. Mironov. Uncheatable Distributed Computations. Lecture
Notes in Computer Science, 2020, 2001.

[11] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Ser-
vices. In SIGCOMM, 2002.

[12] P. Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker,
and Y. Muliadi. Preserving Peer Replicas By Rate-Limited Sampled Vot-
ing. In SOSP, 2003.

[13] N. Michalakis, D-M. Chiu, and D. S. H. Rosenthal. Long Term Data Re-
silience Using Opinion Polls. In 22nd IEEE Intl. Performance Computing
and Communications Conference, Phoenix, AZ, USA, April 2003.

[14] R. Needham. Denial of Service. In ACM Conf. on Computer and Com-
munications Security, 1993.

[15] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in
a DHT. Technical Report UCB//CSD-03-1299, UC Berkeley, December
2003.

[16] D. S. H. Rosenthal and V. Reich. Permanent Web Publishing. In USENIX,
Freenix Track, 2000.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM Middle-
ware, 2001.

[18] A. Rowstron and P. Druschel. Storage Management and Caching in PAST,
A Large-scale, Persistent Peer-to-peer Storage Utility. In SOSP, 2001.

[19] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy. An Analysis
of Internet Content Delivery Systems. In OSDI, 2002.

[20] Computer Emergency Response Team. CERT Advisory CA-1996-
21 TCP SYN Flooding Attacks. http://www.cert.org/
advisories/CA-1996-21.html, Sept 1996.

[21] D. Wallach. A Survey of Peer-to-Peer Security Issues. In Intl. Symp. on
Software Security, 2002.

[22] M. Williamson. Throttling Viruses: Restricting Propagation to Defeat
Malicious Mobile Code. In Annual Computer Security Applications
Conf., 2002.

[23] D. Xuan, S. Chellappan, X. Wang, and S. Wang. Analyzing the Se-
cure Overlay Services Architecture under Intelligent DDoS Attacks. In
ICDCS, March 2004.

