
. Rubi-
dition of
pes of
hemera

ty and
le and
e-off”

appli-
he stor-
al system
ity and
mselves

vary
ecision

mount of

g their
ily help
rately
roduce

ithout
s etc.,

sary to
ged. If

torage
lfill each
veral
he analy-
ort the

lations
user to
orkload

We
e
i-
The Rubicon workload characterization tool

Alistair Veitch and Kim Keeton
Storage Systems Deparment, Hewlett Packard Laboratories,

1501 Page Mill Road, Palo Alto, CA 94304, U.S.A.

Abstract

We describe the design, implementation and usage of Rubicon, a tool for the characterization of I/O workloads
con provides a rich set of operations on I/O traces, and was designed to be easily extended through the ad
new analysis functions and reporting methods. The design of Rubicon makes it simple to adapt to multiple ty
workload characterization, and allows the user to focus solely on the analysis task at hand, rather than the ep
of the analysis framework. We describe several applications of the Rubicon tool that demonstrate its flexibili
ease of use. We believe that the structure and functionality provided by a tool like Rubicon should be applicab
useful to the analysis of any kind of traces, and that building such a tool is more useful than the series of “on
standalone analysis programs generally constructed for this task.

1 Introduction

Workload characterization is important for a variety of reasons. The I/O behavior and requirements of modern
cations are poorly understood. The buyers of large, enterprise-scale applications often have very little idea of t
age requirements of these applications, even though storage is a major, and increasing, percentage of the tot
cost. Buying decisions are often made using “rules of thumb”, based on simplistic metrics such as capac
expected number of I/O’s per second. Compounding this problem, the vendors of storage systems may the
have very little knowledge of the behavior of their systems under a variety of workloads. Applications may also
extensively in their behavior, depending on the final use to which they are put (e.g. transaction processing vs. d
support in the case of a database system) or the configuration of other system components, such as the a
available memory.

Because workloads are poorly modeled, the designers of disk array hardware have few means of validatin
design decisions with realistic workloads. As an example, architecting for large cache sizes will not necessar
all workloads, and it may be more worthwhile to invest in a faster backplane or disks. If it were possible to accu
characterize workloads from a variety of applications, then synthetic workload generators could be used to rep
these workloads, in order to better test hardware designs [Ganger95].

Given a storage system such as a large disk array, it is very difficult to determine how to configure that system w
accurate knowledge of the workload. For example, without information as to the sequentiality, mix of read/write
present in a workload, it is hard to determine which RAID levels or stripe sizes [Patterson88] to use.

A final reason for workload characterization is that of monitoring. Once a system has been installed it is neces
monitor it to ensure that it is meeting its performance requirements, or if the workload requirements have chan
they have, then this information can be used in future tuning or reconfiguration of the system.

Figure 1 illustrates these uses of Rubicon, our workload characterization tool, and it’s relationship to other s
system management tools. One of the goals of our research was to build a tool that was general enough to fu
of these roles, while providing good performance and maintaining flexibility for new applications. While se
researchers have instrumented systems to measure and analyze I/O and file workloads, the programs to do t
sis have generally been custom-built, each performing it’s own independant processing, or they do not supp
extensibility of Rubicon. Rubicon contains a rich set of features that can be combined to perform many manipu
on I/O traces1 as they are analyzed. The reporting of results is decoupled from the analysis itself, enabling the
easily use the most convenient reporting format(s), whether it be a spreadsheet, graph, table or custom w

1. Rubicon relies on the system being measured to be able to generate traces of all the I/O activity on that system.
have specified a trace format that we believe captures all the important information about any given I/O. While th
exact details of the trace format and the methedology of how it is gathered are not important for understanding Rub
con, those interested can find further details in Appendix A.
1

ed into
arac-

ization,
sign of

e made is
ises the
he appli-
m analy-
d in the
e work.

formed
global

r many
ing out
corpo-
naly-
description language. Rubicon is extensible, in that new analysis and reporting functionality can be easily add
the characterization framework. It is this definition of the framework for a configurable, extensible workload ch
terization tool which is the major contribution of this paper.

The remainder of this paper is organized as follows. Section 2 describes the issues in I/O workload character
and specifies the requirements for a system for accomplishing this task. Section 3 goes into detail on the de
Rubicon, the system we have developed to satisfy these requirements. Section 4 discusses how the system w
configurable for a number of different analyses. Section 5 describes Rubicons extensibility. Section 6 summar
design of Rubicon, and shows how the design goals and requirements are met. Section 7 describes some of t
cations we have made of Rubicon. Section 8 describes the systems performance, and compares this to custo
sis tools. Section 9 discusses related work. Section 10 concludes with our thoughts on what we have learne
development of the system, the lessons we believe are applicable to related systems, and directions for futur

2 Issues in workload characterization

On the surface, the problem of workload characterization itself is simple – read a trace describing the I/O’s per
by an application, analyze it in some way, and output results. Although this approach is sufficient for simple
characterizations based on all I/O’s, it has many drawbacks when more complex analysis is desired.

The first problem is that of partitioning the trace into separate parts for processing. This can be necessary fo
reasons, including studying the workload on each device, examining various time slices of the trace, or singl
the I/O caused by a single process. In practice, this is often done by filtering the trace prior to analysis, or by in
rating a set ofif... then... statements into the analysis program. These methods tend to complicate the a

Figure 1: Some roles and uses of the Rubicon workload characterization tool

System

Real
Workload

Artificial
Workload

I/O traces Rubicon

saved
traces

Design
Tools

Workload synthesis

Trace Replay

Offered Load
Analysis/Monitoring

Effect on system
(QoS measures)

Device
Characterization
2

ized, or

corpo-
nalysis
rograms,
m, it’s
rbated.

ction of
is typi-

, it also

for the
of results,
ts from

ine on
the cor-
can be
r a large

f
e archi-
r may
system
system
which

rization

arget

nal-

para-

of these

ere the
ay vary
a set of
equire-
sis environment and code, leading to a longer analysis process and multiple trace files that need to be organ
poorly structured code that is often difficult to modify for a related, but different, application.

Another issue is how to incorporate new types of analysis. In this case, the new functionality must either be in
rated into the original program, or a new program developed. If at some later point in time yet another type of a
is desired, the same decision must be made. Over time, this can result in unnecessarily large and complex p
or in a multitude of smaller programs, each of which contains some functionality identical to, but separated fro
parent. In either case, the maintenance and development problems associated with the code base are exace

Thirdly, one stage of analysis or processing might depend on a second. A simple example might be the produ
a set of summary results from a larger set of results produced by the main analysis program. Once again, this
cally accomplished through the use of several different programs. Although this can be an effective technique
tends to complicate the analysis environment.

Another disadvantage is that most analysis tools provide only one type of output. Many users have a need
same analysis presented and used in different ways. Most systems use separate programs for the conversion
when what is really required is a tool that can, when necessary, simultaneously generate different output forma
the same set of internal results. Once again, this raises the issue of one program vs. many.

Another problem is that of incorporating information about the details of the storage configuration for the mach
which the trace is gathered. Details about the logical and physical storage devices on the system are vital for
rect interpretation of trace records. For modern enterprise-scale applications, this system configuration
extremely complex. Consider that large database systems may have many hundreds of tables, spread ove
number of logical volumes, which can in turn be composed from a number of LUNs1. In this case, several types o
characterization are possible, depending on what level and type of workload is being examined. The databas
tect may be concerned with the amount of I/O to each of the individual tables, while the system administrato
wish to ensure that the database traffic is evenly spread over the logical volumes or LUNs. Because of this
complexity and range of demands, any characterization tool must be easily configurable for many different
layouts. Without this capability, the user is faced with the development of customized code for every system on
the workload analysis must be performed.

Based on these problems, we can specify the following requirements for a more generic workload characte
system:

• Single image – there must be a single program and source base.

• Trace manipulation – must have built-in primitives for manipulating I/O traces, particularly for filtering.

• Configurability – the system components can be easily and dynamically (re)configured for different t
systems or analyses.

• Multiple report formats – the ability to report results in several different formats, independent of the a
ysis performed.

• Extensibility – new analysis algorithms and reporting formats can easily be incorporated.

• Staged analysis – the results of one analysis stage must be able to be fed into another.

• Efficiency – the final system must not be significantly more expensive in execution time than the com
ble special-purpose program for the same analysis task.

The next section describes the architecture of Rubicon, a workload characterization system that satisfies all
requirements.

3 Rubicon design

Logically, there are two separate stages to workload characterization. The first is the analysis phase itself, wh
workload is examined, and various results computed. The second is the presentation of the results, which m
depending on their ultimate use, e.g. visual display, further analysis or archival purposes. Rubicon provides
C++ objects that can be combined into different configurations for these tasks, and which together satisfy the r
ments specified in the previous section. The following subsections describe each of these objects.

1. Disk arrays are typically split into a number oflogical units, or LUNs; each LUN is a set of disks that is accessed
independently of other LUNs in the array. High end disk arrays can potentially have several thousand LUNs.
3

nnected
h each

store
alyz-
cond)
erties
is as
func-

exers
record

hich is
al-
cord

in the
al vol-
tion
device

on, we

riety of
r mul-
can be
s the

tore and

ts are

gura-
ple of
over-
arts
ese to
quires
alyzer
hav-

y

3.1 Analysis objects

Each of the analysis objects in Rubicon performs a separate function on trace records. These objects are co
together in a directed acyclic graph (DAG), with the trace records entering at a designated root, flowing throug
of the nodes, and terminating in analysis objects. There are four of these base object types:

• Analyzers do all the “work” in Rubicon – given a stream of records, they analyze those records and
their results for future use. The current version of Rubicon has approximately fifty different types of an
ers, that perform many different types of analysis ranging from simple rate measurement (I/O’s per se
to correlations between I/O streams, spatial and temporal locality measures and self-similarity prop
[Willinger95, Gomez98]. Rubicon is specifically designed so that the addition of new analysis modules
easy as possible. In particular, the user is freed from worrying about how to incorporate new analysis
tionality, and can concentrate solely on the analysis algorithms themselves.

• Multiplexers read trace records and multiplex these to several outputs (i.e. nodes in the DAG). Multipl
are used to create multiple flows of records, so that different types of analysis can be done on each
stream. As such, they essentially serve as connectors between the other component types.

• Filters read a stream of trace records, and output selected records, based on a filter specification, w
written in a small, domain-specific language1. Filters are used to select out subsets of the full trace for an
ysis. A typical use is to combine Multiplexers and Filters to generate a number of logical trace re
streams, say one for each disk on a machine.

• Transformers perform simple transformations on trace records. The most frequently used transformer
current Rubicon system transforms the physical storage device offset specified in the trace to a logic
ume offset2. Other examples of Transformers include their use for simulating the effect of applica
changes, such as coalescing several sequential physical I/O’s into a single I/O or changing logical
identifiers.

Figure 2 illustrates a very simple Rubicon configuration using the above objects. For the sake of discussi
assume a system with two disks, for which the following analysis is desired:

• IO rate (IOs per second) for both disks

• Bandwidth utilization (MB/s) for disk 1 and the I/O system as a whole

As should be clear from the figure, each of the various Rubicon objects can be configured together in a va
ways. In particular, we wish to emphasize that Rubicon makes it possible to analyze for multiple properties, ove
tiple logical analysis domains (two disks and the I/O system in the example) simultaneously. This approach
contrasted with the approach of building multiple tools for filtering and/or analyzing. Rubicon’s design reduce
amount of both human and machine time required over such a system.

3.2 Result manipulation objects

While the objects described above handle the flow and analysis of records, another set of objects are used to s
manipulate the results:

• Attributes store the results calculated by Analyzers. Typically, though not necessarily, such resul
named sets or tables of numeric results.

• Flows store the Attributes calculated by a set of related Analyzers. In the most common Rubicon confi
tions that we use, each flow typically represents the analysis for a different storage device. An exam
this type of configuration is depicted in Figure 2, with three flows, one for each device, and one for the
all I/O traffic. Flows provide the interface through which Attributes can be communicated to different p
of the system. In particular, an Analyzer can read Attributes computed by other Analyzers and use th
compute new results. For example, a tool developed for storage system configuration [Alvarez01] re
information on the time overlaps between different flows. This can be accomplished by having an an
that computes when a flow is active or inactive, storing a vector of these times within an Attribute, and
ing other Analyzers read these Attributes after they have been computed.

1. See Appendix B for the full filter specification language.
2. Logical volumes are used in a number of operating systems to build up logical “disks” from real disks or LUNs. The

provide the system administrator with a layer of indirection through which to manage the raw devices.
4

data
e cur-
tion),
le, so is
sible

of mod-
r at any
ure 2.

tes and
while
ibutes
ion 5.3.

at is the
he DAG
s are
bjects
ets the

com-
file for

. This is
f lines.
irst are
e kind)

to have
he dif-
special
eals to
• Reporters transform the results stored in Attributes into the desired output format(s). Given the raw
and structuring information stored in an Attribute, Reporters generate output in the desired format. W
rently have reporters that generate flat data files, gnuplot [Williams98] input files (for graph genera
spreadsheets and a specialized workload description language. Just as adding new Analyzers is simp
the addition of a new reporter format. As arbitrary Reporters can be linked with each Attribute, it is pos
to have the same analysis configuration generate multiple output formats from each set of results.

Separation of the concepts of result storage, calculation and reporting allows the independent development
ules for these purposes, and enables “mix and match” combinations, to suit the particular needs of the use
time. Figure 3 shows this for the reporting of the results calculated by the analysis configuration depicted in Fig
Note that multiple reporters can independently report on the same Attributes. The interaction between Attribu
Reporters is two way, in that Reporters are configured to know which Attributes, in which Flows, to report,
Attributes call back to Reporters with their results. Their interfaces must be constructed in this way, as only Attr
know the type and structuring of the results. Examples of objects that use these interfaces are shown in Sect

4 Configuration

The various objects described in the previous section must have individual instances of each instantiated, th
specific Analyzers, Reporters etc. must be specified. These objects must then be connected together into t
describing the record flow and the Reporters must be told which Attributes to report. All Rubicon configuration
built through a Tcl [Ousterhout94] script, which is evaluated at program startup. The script instantiates all the o
making up the analysis DAG, together with each of the Flows and Reporters. In this fashion, the Rubicon user g
flexibility of a scripting language in how the overall system is configured, while retaining the performance of
piled code. Each of the various object types has a Tcl command associated with it. An example configuration
the layouts depicted in Figures 2 and 3 is shown in Figure 4.

For any reasonably sized system, it is impractical to expect humans to be able to generate configuration files
because of the system complexity – configuration files for large systems can easily run to many thousands o
We have found that, in practice, two common styles of generating Rubicon configurations have developed. F
those configurations that are generated by other tools. In this case, the secondary tool (usually a script of som
examines the system and writes a configuration file, which can later be read by Rubicon. The second style is
the configuration file itself be a true script, which can directly execute the Rubicon configuration commands. T
ference between these two styles is subtle, but significant. The first essentially views the Rubicon input as a
purpose, domain-specific language for describing workload characterization configurations, and typically app

Figure 2: A simple analysis object layout. Arrowed lines represent the flow of trace records, left pointing tri-
angles represent Multiplexers, right pointing triangles represent filters and ovals represent Analyzers.

IO rate

Bandwidth

Bandwidth

IO rateMux

Mux

Filter

Filter

disk1 flow

disk2 flow

I/O flow
5

s the
file. In
ving the

, and

ncerns
entially,
the con-
d by a
g94,
de for
. Once

nd ease
ussion.

tore for

ute can

quest

g
-
ers
isk
users who prefer not to work in Tcl or wish to record the actual configuration file used, while the second allow
maximum efficiency in generating configurations, as it removes the extra step of generating an intermediate
general, users tend to use both styles, dependant on their skills and current requirements. In either case, ha
full power of a general scripting language available for configuration purposes allows for maximum flexibility
has shown itself to be a valuable part of the overall system design.

5 Adding new functionality

One of the key requirements for Rubicon is the ability to add new functionality. Because of the separation of co
in the design, Rubicon makes the addition of new analyzers, attributes and reporters extremely simple. Ess
new objects of these types register callback interfaces, which are then linked to other objects as specified by
figuration script. The code to make new objects visible as configuration commands is automatically generate
system we have developed for linking C++ objects into Tcl code, similar to those described in [Goldin
Heidrich95], although considerably more automated [Veitch01]. Note that although Rubicon contains the co
many different analyzers and reporters, only those specified in the configuration are instantiated by the system
instantiated, they exist independently of one another. The means for doing this are detailed below. For clarity a
of exposition, some of the minor details of the class designs and Tcl interfaces have been left out of this disc

5.1 Attributes

Attributes must be calculated by Analyzers, and report themselves to Reporters. They are essentially only a s
data, with one method,report , which is used to accomplish the reporting. Thereport method will be called by a
Reporter object (which passes a reference to itself as the first argument). When it receives this call, the Attrib
make a sequence of call-backs to the Reporter object with the desired values.

As an example, we will show the code for a very simple Attribute that contains information on the average re

Figure 3: Flow of results and output in the Rubicon system. The diagram can be thought of as extendin
Figure 2. Each analyzer (oval) is bound within a logical Flow (dashed box) together with the results it com
putes (Attributes, shaded boxes). Through a generic reporting interface (dashed arrowed lines), Report
(boxes) obtain these results, and report them. In the case shown, the Log Reporter logs its results to a d
file, while the Graph reporter will display a graph on the user’s screen or generate a data file for plotting.

IO rate

Bandwidth

Bandwidth

IO rate

Log Reporter

Graph Reporter
disk1 flow

disk2 flow

IO flow

x

y

6

ething
ntained
er of

sidered
true for
is sim-

, to the
of
t com-
tem.

d
by
size of the records in a flow. Essentially, the Attribute only contains a single value. The class would look som
like the code shown in Figure 5. Because the class is so simple, containing only one inline method, it can be co
entirely in a header (.H) file. This is the case with the majority of Attributes. Also, note that the only data memb
the Attribute is public. In general, since Attributes have such a simple purpose, this is acceptable when con
against the cost of requiring some number of methods to set and/or get simple data values. This may not be
Attributes that store more complicated data. Since the Attribute only has a simple structure, the report method
ilarly simple. In general, all that has to be done is to communicate the values computed, and their structure
Reporter. This is accomplished through the use of a number ofout methods, which are overloaded to be capable
processing multiple types, including lists, arrays etc. We have found that this interface is rich enough to repor
plex data types in a number of different formats, while retaining the flexibility and ease of use of a generic sys

Figure 4: Sample Rubicon configuration file. The brackets [] force evaluation of the procedure containe
within them, theset command sets the named variable to the specified value. Variables are dereferenced
prepending their name with a $.

First create the three Flows. The argument to the Flow command is
the name to give the flow.
set flow1 [Flow disk1]
set flow2 [Flow disk2]
set flowIO [Flow IOsystem]

Now create the Analyzers. The second argument to each Analyzer is
the Flow to which the Analyzer should be attached.
set disk1_bw [BandwidthAnalyzer $flow1]
set disk1_rate [RateAnalyzer $flow1]
set disk2_rate [RateAnalyzer $flow2]
set IO_bw [BandwidthAnalyzer $flowIO]

A Mux object, for sending records to each of the disk1 Analyzers.
The Mux command has one argument, a list of the destination
objects.
set disk1_mux [Mux "$disk1_bw $disk1_rate"]

two Filters, one for each disk. The first argument is the filter
expression, the second is the output object.
set disk1_filter [Filter "deviceNo = 1" $disk1_mux]
set disk2_filter [Filter "deviceNo = 2" $disk2_rate]

The head of the DAG is a Mux, which replicates the record stream
three times (once per disk, once for all IO’s)
head [Mux "$disk1_mux $disk2_filter $IO_bw"]

Finally, specify the reporters and the attributes to report.
Reporters have two arguments, the list of flows, and the list of
Attribute names.
ReporterGraph "$flow1 $flow2" "Bandwidth IORate"
set rl [ReporterLog "$flow1 $flowIO" "Bandwidth"]
Set the output file to be used for the Log reporter.
$rl.setOutput "bw.log"
7

ee to

that the
te.

ibute.
has to
object
n sys-
users of
en pro-
, from

of the
ith the

ly on the

ve the
parts,
control
eporter

wrapping
w Rubi-
to exper-

these

I/O
5.2 Analyzers

Each analyzer object must implement three methods:

• void processRecord(const SRTio *) : process a single IO record

• void startTrace(SRTtime_t) : called when the trace starts, with the start time

• void endTrace(SRTtime_t) : called when the trace is finished, with the end time

TheprocessRecord method will be called for each record that the analyzer is to process. The analyzer is fr
maintain any statistics or information it needs from the record. ThestartTrace andendTrace methods allow
analyzers which keep information on time-dependent variables to record these values. It is also expected
endTrace method will trigger the Analyzer to calculate final information, and store this information in an Attribu

Continuing the previous example, we will consider a simple Analyzer that will compute the AvRequestSize Attr
This Analyzer might be implemented as shown in Figure 6. Note that the designer of the analysis system only
worry about how to perform the analysis itself, as this code is isolated from other parts of the system by various
interfaces. Once this code has been developed, it is simply a matter of compiling and linking it into the Rubico
tem to make it available to all users. We have found that the ease of developing new Analyzers enables new
the system to quickly generate their favorite analysis routines, and proceed to experiment with new ones, oft
viding new insights into some aspects of workload characterization. In general, Analyzers form a kit of parts
which the user can pick and choose as needed.

5.3 Reporters

Like Analyzers, Reporters can also be easily and efficiently added. A skeleton that shows the major details
Reporter class is shown in Figure 7. Essentially, the interface is designed to be as generic as possible, w
Reporter being free to output the various result types in whatever way is appropriate.

The separation of concerns (between Analyzers/Attributes and Reporters) allows the user to concentrate sole
important features of their desired functionality, rather than how it will interact with the rest of the system.

5.4 Summary

Our viewpoint is that Rubicon should handle the low-level details of how to connect objects together and lea
user free to develop their own analysis and reporting functionality. Essentially, users are supplied with a “kit” of
and are free to use these in any way they please, including adding new parts to the kit. Because the majority of
operations and the need to provide external configuration commands are hidden from the user, Analyzer and R
objects can be more easily developed, as only the core algorithms need be specified, and not the extraneous
code to interface those algorithms to the external infrastructure. We have found that the ease of developing ne
con objects enables new users of the system to quickly generate their favorite analysis routines, and proceed
iment with new ones.

6 Design summary

We previously described a list of requirements for a generic workload characterization system. Revisiting
requirements, we can see that Rubicon satisfies them as follows:

• Single image– Rubicon consists of a single program, containing a full set of functionality to manipulate
records, perform analyses and report results.

class AvRequestSizeAttribute : virtual public Attribute {
public:

double average;
public:

void report(Reporter &rep) const {
rep.out(average);

};
};

Figure 5: A simple Attribute class
8

this

-
nd
class AnalyzerAvRequestSize : public Analyzer {
private:

AvRequestSizeAttribute attr;
unsigned count;
double sum;

public:
//TIFmethod
AnalyzerAvRequestSize(Flow &f) :

Analyzer(f), count(0), sum(0) {
};

virtual void startTrace(SRTtime_t t) {
count = 0;
sum = 0;

};

virtual void processRecord(const SRTio *record) {
count++;
sum += record->length();

};

virtual void endTrace(SRTtime_t t) {
attr.average = sum / count;
setAttribute("AvRequestSize", &attr);

};
};

Figure 6: Source code for the AvRequestSize Analyzer. The “TIFmethod” line marks the following line (the
constructor) as being a method that should be exported as a Tcl procedure. The code that accomplishes
is automatically generated by other tools [Veitch01]. ThesetAttribute call registers the computed
attribute with the Analyzers flow. The SRT trace record format is described in more detail in Appendix A.

class ReporterSimple {
public:

// Initialization
ReporterSimple(list<Flow *> flows, // list of flows we report for

 list<string> attrs) // list of attribute names
: Reporter(flows, attrs) {}; // base class does initialization

// bracket the entire report. These methods will be called once as
// each flow reports it’s attributes
virtual void startFlowReport(const string &flowName);
virtual void endFlowReport();

// bracket the calls for one attribute
virtual void startAttributeReport(const string &attrName);
virtual void endAttributeReport();

// Output data items. One report method for each type
virtual void report(int);
virtual void report(double);

};

Figure 7: A skeleton Reporter layout. Many of the “report” methods have been elided as they are not nec
cessary for showing the structure (they exist for all primitive types, and many others such as lists, arrays a
some often used statistical objects).
9

rily

an be
ons for

tiple

iting
y are
gram-

e next

eporting
exible
how to

tion we
12 que-
queues,
xecution
pes are
, on an
array
UNs.
s on

required

able 1.
y exam-
Analysis

he aver-
ted logi-

ccessed,
les and
ould be
• Trace manipulation – Using Filter, Multiplexer and Transformer objects, trace records can be arbitra
manipulated.

• Configurability – By using a Tcl-based front-end as a configuration language, Rubicon components c
connected in arbitrary ways. Configuration file generators can be used to produce custom configurati
many different system layouts, or the full power of having a general scripting language can be used.

• Multiple report formats – By separating analysis, result storage and reporting, Rubicon allows mul
reporting formats for the same set of data.

• Extensibility – New analysis algorithms and reporting formats can be easily incorporated, simply by wr
the code implementing the desired algorithms. Tcl procedures for configuring the new functionalit
automatically generated. The object interfaces are sufficiently simple that they do not require great pro
ming skills to master.

• Staged analysis – Analyzers can read previously computed results from attributes.

In summary, Rubicon provides a flexible, configurable and extensible tool for workload characterization. Th
section describes some of our experiences with the use of Rubicon that validate this.

7 Experience using Rubicon

We have successfully used Rubicon for several purposes that required many different types of analysis and r
formats. We will briefly describe some of the uses to which we have put the system, concentrating on how a fl
workload characterization tool simplifies the user’s work, enabling them to concentrate on results, rather than
obtain them.

7.1 DSS system characterization

One of the things we have used Rubicon for is the characterization of a decision support system. The applica
used was a variant of the TPC-D benchmark [TPPC96]. Instead of running each query in series, we selected
ries (2-4, 6, 8 and 11-17), selecting those that ran in less than an hour, and ran these in three parallel execution
with four queries in each queue. The assignment of queries to queues was done to roughly balance expected e
times. We believe that this is far more representative of real decision support systems, where multiple query ty
executed simultaneously, than the baseline TPC-D benchmark. This system was run using Oracle 8.0.5
HP9000 K410 server with 4 200 Mhz PA-RISC CPUs and 1 GB of memory, connected to an HP FC/30 disk
[HP98] via a single FibreChannel controller. The system had 158 logical volumes, spread over 8 RAID-1/0 L
Using a front-end utility for generating configuration files, we were able to quickly perform a variety of analyse
these systems without having to spend time customizing programs to match the system layouts, as might be
with other programs.

The first set of results – a sampling of some high-level attributes across the entire I/O system – are shown in T
We can further characterize the workloads by examining the degree of sequentiality present. We can do this b
ining the number of sequential “runs”, i.e. accesses to consecutive addresses, to each of the logical volumes.
of this type is easily done in Rubicon by filtering on the logical volume identifier in each trace record.

Performing the sequentiality analysis reveals that the DSS workload contains large sequential components (t
age number of sequential accesses is 145). Table 2 shows the breakdown of this and other attributes for selec
cal stores. From this table, it can be seen that the DSS application varies according to the type of table being a
with indices (such as “idx2_2”) being read in smaller sizes and in a far more random fashion, while general tab
transaction logs use larger I/0’s and are far more sequential (the transaction log is entirely sequential, as w

Attribute Value

Request Size (KB) 43.8

Request Rate (IO/s) 281

Bandwidth (MB/s) 11.9

Read Proportion 0.970

Table 1: Average high level attribute values
10

pable
EMC
system

ne of
would

rify this
ion file
bytes to
n the
alance
o only
’ file

ifying the
report-
m than
expected).

7.2 OpenMail system characterization

A second application that we have characterized is OpenMail [XXX]. OpenMail is an enterprise mail system, ca
of handling extremely large volumes of email. The system we will discuss ran on an HP K-class server, using
3430 disk arrays, and supported about 12,000 users, of whom approximately 3,000 were active at the time the
was traced.

The first level analysis we performed was on the logical volume utilization, shown in Table 3. This shows that o
the OpenMail logical volumes has a far larger request rate than the others. Based on this information, we

expect the system administrator to spread this store over many different physical storage devices. We can ve
hypothesis by examining the workload characteristics on a per-LUN basis. Again, the appropriate configurat
for this analysis can be automatically generated. Full results showing the total percentage of requests and
each logical volume and LUN can be seen in Figure 8. While the logical volume load is skewed, the load o
LUNs is far more balanced, indicating that the system administrator has correctly configured the system to b
the I/O across the available devices (the first 8 LUNs in this case, with every other logical volume assigned t
one LUN). The logical volume and LUN with a very low number of I/O requests correspond to the ‘/’ and ‘/stand
systems, which are primarily used for system booting only.

These graphs were generated by running the same analysis on each of the two system viewpoints, and spec
use of a graphical, rather than tabular, reporter object for these attributes. This illustrates the need for different
ing formats depending on the user requirements – it is easier to “see” that the I/O is balanced in the graph for
from a table.

Store

sequential
run size

(IO’s)
request rate

(IO/s)
request size

(bytes)

customer 12.0 99.0 50480

lineitem 252 77.5 52880

orders 7.39 82.8 28310

parts 89.6 38.6 52300

idx2 1.17 73.6 8192

redolog 167.0 2.64 15400

Table 2: Average workload attributes for selected DSS stores

volume

sequential
run size

(IO’s)

request
rate

(IO/s)

request
size

(bytes)

Table 3: OpenMail logical volume utilization
11

conve-
out the
le and
build
t results

erhead
s on two
m on a

pact the
diately
S trace,
d by a
tside of
ider the

nto 158
a pro-

is case
of the
7.3 Conclusions

In each of the characterization procedures described above (and in many that were not) Rubicon provided a
nient means of both doing initial analysis and making further measurements to verify various hypothesis ab
system behavior. In conjunction with knowledge of the system itself, Rubicon has proved its worth as a flexib
versatile tool. Due to a large number of pre-existing analysis and reporting modules, and the ability to quickly
Rubicon configurations based on that of the systems being measured, we were able to rapidly produce relevan
in a variety of different formats.

8 Performance

One issue with incorporating extra features (such as filtering) into the analysis program is the performance ov
associated with these mechanisms. We have measured the overhead of both the filter and multiplexer object
systems, one an HP-UX 10.20 system, with 200 Mhz PA-RISC processors, the other a Linux 2.0.36 syste
300 Mhz Pentium II. The results are shown in Table 4.

As can be seen, these numbers are small enough that their overhead should not be expected to significantly im
performance of the overall analysis, particularly compared to the alternatives. This conclusion is not as imme
obvious as the scale of the numbers in the table would suggest. To see this, consider the analysis of our DS
which consists of 6.6 million records. If we wish to analyze this trace on a per-table basis, then 158 filters, fe
multiplexer with 158 outputs, are needed. The analysis of this trace spends almost 90% of its time in code ou
the analysis routines itself, which seems to imply an unacceptable performance overhead. However, cons
alternatives to doing this analysis with a system that did not have these features built in:

• Create a custom program to read the trace file, do the analysis for each record, and split the analysis i
parts, based on the store identifier. Even assuming a library of convenient routines for this task, such
gram would take some time to construct, and violates our single image requirement.

• Write a program to do the analysis, and a separate program that can split the original trace file. In th
the (94 MB compressed) trace file would have to be read multiple times, much reducing the efficiency

Figure 8: OpenMail logical volume and LUN usage by total requests and total data requested

System Filter Mux

HP-UX 1900 20 + 260n

Linux 1200 330 + 50n

Table 4: Filter and multiplexer overheads
(nanoseconds). Filter times are for a single equality
check on a trace field. Multiplexer times are given as a
base plus multiplier of the number of outgoing items
multiplexed to. All times were measured using
processor cycle counters.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

P
er

ce
nt

 o
f T

ot
al

 (
%

)

Logical Volume (LV)

Requests
Bytes

0

1

2

3

4

5

6

7

8

0 5 10 15 20

P
er

ce
nt

 o
f T

ot
al

 (
%

)

Logical Unit (LUN)

Requests
Bytes
12

at Rubi-

nalysis
– on the

of the
orth
on and

he anal-
plex

propor-

traces
on94,
ve used
ltering
ubicon’s
, Rubi-

several
and then

Rubi-
r data
imula-

visualiza-
nd this
rk for
rization
s.

a sub-
stem
vokes a

standal-
analy-

pports
or a

lso con-
eport-

ubi-
rather
e com-
ystems
Rubi-
eous
system when compared to Rubicon. As many trace analysis systems take this course, it is arguable th
con can potentially give the user an effective performance increase of several orders of magnitude.

In either of these cases, the trace file still has to be split into multiple parts, both for the store filtering and the a
routines. Each of these is going to consume a significant amount of CPU time, regardless of the system used
HP-UX system, a single trace field access method and “if” statement checking this field, takes 1250 ns, or 66%
total filter time. We believe that the small amount of additional CPU time for a fully general filter object is well w
it, as it results in a more flexible system, which reduces the amount of human time required for experimentati
analysis.

A second consideration when considering performance is the nature of the analysis. For the example above, t
ysis being performed was simple, involving only a small number of calculations per record. Many more com
analyses, such as those for spatial and temporal locality, are far more time-intensive, and involve a far larger
tion of the total time than that of filtering.

9 Related work

There are many examples in the literature of workload analysis and characterization based on file system
[Ousterhout85, Miller91, Ramakrishnan92, Shirriff91, Roselli98] and network tracing [Caceres91, Paxs
Paxson97], and I/O tracing [Bates91, Ruemmler93, Gomez98]. To the best of our knowledge, these efforts ha
custom programs, built for the task at hand. Many projects have developed individual tools for such tasks as fi
traces, but none have integrated the filtering into the analysis system itself. In contrast, users can compose R
simple building blocks to construct a single system to do complex characterizations. Perhaps more importantly
con allows users to easily add new analysis functionality.

Despite the fact that a majority of workload characterization studies use ad hoc solutions for trace analysis,
trace analysis tools have been described in the literature. We first describe complete trace analysis systems,
discuss work related to individual Rubicon components.

Several commercially available products provide offline trace analysis functionality similar to that provided by
con [Grimsrud95, IBM99]. These tools gather traces, filter and analyze the trace data, and provide a facility fo
visualization. Analyses range from simple metrics, such as average request size, to more complex "what-if" s
tions, such as studying the effects of changing the cache size. In both cases, the types of analyses and data
tions that can be performed are defined by the existing tool, and the user has no opportunity to exte
functionality to include other metrics or presentations. In contrast, Rubicon provides an extensible framewo
analyzing and reporting trace data. Because we believe Rubicon’s primary focus is as a workload characte
tool and not a simulation engine, Rubicon does not currently include the ability to perform “what-if” simulation

Touati and Smith describe TRAMP, an extensible system for trace reduction and manipulation, which includes
set of the functionality of the Rubicon system [Touati91]. Like Rubicon, TRAMP is structured as a runtime sy
that uses scripts to specify the desired analyses on the trace. In contrast to Rubicon, the TRAMP runtime in
separate standalone program to perform each analysis. New analysis functions can be added by creating new
one analysis programs. This approach has the benefit of not requiring the tool to be recompiled each time new
sis functionality is added. Like the commercial offerings described in the previous paragraph, TRAMP su
simulation of simple policy decisions. Unlike Rubicon, TRAMP does not provide general filtering functionality,
modular result reporting infrastructure.

The previously described products and projects provide comprehensive systems for trace analysis. There is a
siderable related work for each of the building blocks of the Rubicon system, including filters, analyzers, and r
ers.

Previous work on network packet filters [Mogul87, McCanne93] is analogous to the functionality provided by R
con’s Filter objects. However, Rubicon contains this functionality as only part of a complete, generic, system,
than as one component of a specialized program, which is the typical usage pattern for packet filters. Also, th
mon usage pattern of packet filters differs somewhat from the common usage of Rubicon filters. Generally, s
employ a single packet filter per application, which filters only those packets of interest to that application. In
con, it is not unusual for us to build configurations with hundreds of filters, which allows us to carry out simultan
analysis on many different flows of I/O requests.
13

rovide
m their
this
them-
ults.

xploring
action,
ability
estricted

ages to
omain-
as one or

5] and
nerated

rk for
system
sibility

or this
bicon

ys

single
g sup-
ams that
d then

les can

xperi-
build up
ents of
ferent
usiness-
lts for the

at

viron-
Several network monitoring systems, such as HP OpenView, provide support for plug-in modules that can p
custom analysis, somewhat analogous to Rubicons Analyzer objects. These modules must typically perfor
own filtering and output functionality – it is not possible to configure this externally to the module itself. In
respect, Rubicon offers much more control to the builders of an Analyzer, in that they only have to concern
selves with the analysis task at hand, rather than the requirements of obtaining the data or presenting the res

Several papers have explored trace visualization, an area related to Rubicon’s Reporters, as a means of e
large data sets [Heath91, Malony91, Hibbard94, Eick96, Aiken96, Livny97]. These tools use hierarchical abstr
color, shading, aggregation, and novel 3-D graphing techniques to illustrate data trends. A drill-down cap
allows users to interactively examine data at successively more detailed levels. These tools are not generally r
to displaying trace data, and have been used to visualize datasets as widely varying as weather data to cell im
financial histories. Most of the tools focus on data presentation alone, rather than including a combination of d
specific analyses and results reporting. The techniques described in these studies could easily be employed
more Rubicon reporters to support more interactive exploration of the trace data.

A final area of related work is systems that perform online performance monitoring, such as Paradyn [Miller9
Pablo [Reed93]. These tools measure the performance of large-scale parallel programs using dynamically ge
instrumentation code. They also provide data analysis and visualization functionality.

In summary, we believe Rubicon differs from previous work in the respect that it offers a generic framewo
workload characterization. Rubicon’s modularized structure enables users to work on exactly the part of the
they need for their work, rather than having to build custom programs for each case. Moreover, its exten
implies that users can easily add domain-specific analysis and reporting functionality to suit their needs.

10 Conclusions and future work

We have described Rubicon, a tool for workload characterization. Rubicon is different from other systems f
task, as it easily extensible and configurable, offering a large amount of flexibility to the user. In particular, Ru
offers the following features:

• Set of objects for trace manipulation, including filtering, analysis and reporting methods

• Flexible configuration language, enabling the above objects to be connected together in arbitrary wa

• Easy addition of new analysis functionality

• Easy addition of new reporting (output) functionality

Using these features, it is possible to support many different analysis methodologies and techniques within a
system. We have found that it is better to have a single program that performs all analysis, while also providin
port for separating and maintaining the dependencies between analysis phases, than a set of individual progr
are harder to maintain and develop. Similarly, we have found that rather than specify a fixed output format, an
develop tools for converting between these formats, providing support for the easy insertion of reporting modu
better meet the needs of a variety of users.

We have shown Rubicon’s utility by characterizing applications on a variety of machines. We believe that our e
ence in these areas demonstrates that Rubicon is indeed well suited to its task. We intend to use Rubicon to
an extensive library of workload characteristics, in order to enable a better understanding of the I/O requirem
modern applications. We have in place the facilities to collect and analyze workloads from a number of dif
enterprise-class applications, notably large mail servers, large data warehousing systems, and a variety of b
specific applications. Once we have gathered these workloads, we hope to use the detailed analysis that resu
design of new disk arrays and storage management software (particularly for capacity planning).

Rubicon is available for interested researchers. See the webpage
http://www.hpl.hp.com/research/itc/csl/ssp/software/ for further details.

References

[Aiken96] A. Aiken, J. Chen, M. Stonebraker and A. Woodruff. Tioga-2: a direct manipulation database visualization en
ment.Proc. Intl. Conf. on Data Engineering, February 1996.
14

eitch
ublica-

ms”

re),

n of

ise:

nd

code,

nalysis

e

-268,

viron-
om-

e anal-

i-
[Alvarez01] G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy, R. Golding, A. Merchant, M. Spasojevic, A. V
and J. Wilkes. Minerva: an automated resource provisioning tool for large-scale storage systems. submitted for p
tion.

[Bates91] K. Bates.VAX I/O subsystems: optimizing performance. Professional Press Books, 1991.
[Caceres91] R. Caceres, P. B. Danzig, S. Jamin and D. Mitzel, Characteristics of wide-area TCP/IP conversations.Proceedings

of the 1991 SIGCOMM Conference, September 1991
[Eick96] S.G. Eick and P.J. Lucas. Displaying trace files,Software Practice and Experience, 26(4), pp. 399-409, April 1996.
[Ganger95] G. R. Ganger, Generating Representative Synthetic Workloads: An Unsolved Problem.Proceedings of the Computer

Management Group (CMG) Conference, pp. 1263-1269, December 1995
[Williams98] T. Williams and C. Kelley, gnuplot: An interactive plotting program, available fromhttp://www.cs.dart-

mouth.edu/gnuplot_info.html
[Golding94] R. Golding, C. Staelin, T. Sullivan, J. Wilkes. “Tcl cures 98.3% of all known simulation configuration proble

claims astonished researcher!Tcl Workshop, New Orleans, May 1994
[Gomez98] M.E. Gomez and V. Santonja. Self-similarity in I/O workloads: analysis and modeling.Workshop on Workload

Characterization(held in conjunction with the 31st annual ACM/IEEE International Symposium on Microarchitectu
Nov. 1998

[Grimsrud95] K. Grimsrud. Rank disk performance analysis tool. Intel Corporation White Paper, available from
http://developer.intel.com/design/ipeak/stortool .

[Heath91] M.T. Heat and J.A. Ethridge. Virsualizing the performance of parallel programs.IEEE Software, pp. 29-39, Septem-
ber 1991.

[Heidrich95] W. Heidrich and P. Slusallek, Automatic Generation of Tcl bindings for C and C++ Libraries,Tcl/Tk Workshop, pp.
85-94, Usenix Association, 1995

[Hibbard94] W. Hibbard, B.E. Paul, D. Santk, C. Dyer, A. Battaiola and M.-F. Voidrot-Martinez. Interactive visualizatio
earth and space computation.IEEE Computer, pp. 65-72, 1994

[HP98] Hewlett-Packard Company, Model 30/FC High Availability Disk Array – User’s Guide, 1998
[IBM99] IBM DFSSMS/MVS Optimizer. Product information available fromhttp://www.storage.ibm.com/soft-

ware/opt/optprod.htm
[Kuenning95] G.H. Kuenning. KItrace – precise measurement of operating-systems kernels.Software Practice and Exerience,

25(1), pp. 1-21, January 1995.
[Livny97] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Myllymaki and K. Wenger. DEV

integrated querying and visual exploration of large datasets.Proc. of ACM SIGMOD Conference, May 1997.
[Malony91] A.D. Malony, D.H. Hammerslag and D.J. Jablonowski. Traceview: a trace visualization tool. IEEE Software, pp.

19-28, September 1991
[McCanne93] S. McCanne and V. Jacobson, The BSD packet filter: A new architecture for user-level packet capture,Proc. of the

Winter 1993 Usenix Conference, pp. 259-269, January 1993
[Miller91] E.L. Miller and R.H. Katz. Input/output behavior of supercomputing applications.Proc. Supercomputing 1991, pp.

567-576, November 1991
[Miller95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K. Kunchithapadam a

T. Newhall. The Paradyn parallel performance-measurement tool.IEEE Computer, 28(11), pp. 37-46, November 1995.
[Mogul87] J.C. Mogul, R.F. Rashid and M.J. Accetta, The Packet Filter: an efficient mechanism for user-level network

Proc. of the 11th Symposium on Operating System Principles, November 1987
[Ousterhout85] J.K. Ousterhout, H. Da Costa, D. Harrison, J.A. Kunze, M. Kupfer and J.G. Thompson. A trace-driven a

of the UNIX 4.2BSD file system.Proc. of the 10th Symposium on Operating Systems Principles, pp. 15-24, December
1985

[Ousterhout94] J.K. Ousterhout,Tcl and the Tk Toolkit, Addison-Wesley, 1994
[Patterson88] D. Patterson, G. Gibson and R. Katz. A case for redundant arrays of inexpensive disks (RAID). Proc. of thACM

SIGMOD International Conference on Management of Data, pp. 109-116, 1988.
[Paxson94] V. Paxson and S. Floyd, Wide-area traffic: the failure of Poisson modeling. Proc. SIGCOMM ‘94, pp. 257

August 1994
[Paxson97] V. Paxson, Automated Packet Trace Analysis of TCP Implementations.Computer Communications Review, 27 (4),

pp. 167-180
[Ramakrishnan92] K.K. Ramakrishnan, P. Biswas and R. Karedla. Analysis of file I/O traces in commercial computing en

ments.Proc. 1992 ACM SIGMETRICS and PERFORMANCE ’92 Intl. Conf. on Measurement and Modeling of C
puter Systems, pp. 78-90, June 1992.

[Reed93] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W. Schwartz and L.F. Tavera. Scalable performanc
ysis: the Pablo performance analysis environment. Proc.IEEE Scalable Parallel Libraries Conf., 1993.

[Roselli98] D. Roselli,Characteristics of file system workloads. Technical Report UCB//CSD-98-1029, Computer Science Div
sion, University of California, Berkeley, 1998.
15

ys-

vember

s of
nd

ber of
infor-

e points
s inter-
Each

asyn-
[Ruemmler93] C. Ruemmler and J. Wilkes. UNIX disk access patterns.Proc. of the Winter ’93 USENIX Conference, pp. 405-
420

[Shirriff91] K. W. Shirriff and J. K. Ousterhout, A Trace-Driven Analysis of Name and Attribute Caching in a Distributed S
tem. InProc. of the Usenix Winter 1992 Technical Conference, pp. 315-332, January 1991

[Touati91] H. Touati and A.J. Smith. Reducing and manipulating complex trace data.Software Practice and Experience, 21(6),
pp. 639-655, June 1991

[TPPC96] Transaction Processing Performance Council. TPC benchmark D, standard specification, revision 1.2, No
1996

[Veitch01] The Tcl Interface Functions. HP Labs Technical Report XXX, in production
[Willinger95] W. Willinger, M. Taqqu, R. Sherman and D. Wilson. Self-similarity through high-variability: statistical analysi

ethernet LAN traffic at the source level. InACM SIGCOMM ’95 Conf. on Communications Architectures, Protocols a
Applications (Cambridge, MA, USA, 1995)

Appendix A: Trace files
Currently, Rubicon uses I/O traces gathered from systems running HP-UX. The HP-UX kernel contains a num
internal instrumentation points. Through a specialized interface [Kuenning95], it is possible to obtain complete
mation on all system calls and on a number of events in important internal kernel interfaces. One of these trac
is located at the internal block I/O interface. We have developed a tool to read the information gathered at thi
face, and use it to gather full information on all I/O that is performed, and store this information in a trace file.
record in the trace file contains the following pieces of information:

• Time the I/O is enqueued to the device driver1

• Time the I/O is sent to the device

• Time the device responded to the I/O

• Type of device

• Device driver queue length

• Type of operation (read or write)

• Size of the I/O

• Device identifier

• Device offset (address of I/O)

• Logical volume identifier (if applicable)

• Logical volume offset (if applicable)

• Process ID of the process responsible

• Thread ID of the thread responsible

• Machine ID of the machine on which the trace record was generated

• A set of flags which are used for miscellaneous information, e.g. whether the I/O is synchronous or
chronous, from a filesystem or to a raw device, etc.

Appendix B: Filter specification
Filter specifications are made in a simple predicate language. The following fields can currently be tested:

• createTime (time request was enqueued)

• offset (device address of request)

• deviceNo (disk device request is for)

• lvDeviceNo (logical volume)

• operation (read or write)

• reqSize (size of request in bytes)

• pid (process ID of process generating request)

• thread (thread ID of thread generating request)

1. All times are recorded as microseconds from the start of the trace
16

n. All
in

lso
• machine (machine ID of machine generating request)

• qlen (device driver queue length)

Note that these form only a subset of the available fields. The rest will be available in future versions of Rubico
of these fields, with the exception ofcreateTime andoperation are specified as unsigned integer values,
either decimal or hexadecimal. There are two possible values for operation,read andwrite . Times are specified as
[[[days] hours:] min:] seconds .

There is one unary operator,not (which can also be written as !). Binary operators are <, >, <=, >=, =, <> (can a
be written as !=),and (can also be written as &&),or (can also be written as ||). One tertiary operator,between
... and ... is available.

Given this, an example filter might be (don’t ask if it’s a useful filter...):
CreateTime between 02:01:45 and 1 03:34:30.454635
and offset >= 50000
and not (operation = read or startAddress = 0xc0800)
17

	The Rubicon workload characterization tool
	Alistair Veitch and Kim Keeton
	Storage Systems Deparment, Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304...
	Abstract
	1 Introduction
	Figure 1: Some roles and uses of the Rubicon workload characterization tool

	2 Issues in workload characterization
	3 Rubicon design
	3.1 Analysis objects
	Figure 2: A simple analysis object layout. Arrowed lines represent the flow of trace records, lef...

	3.2 Result manipulation objects
	Figure 3: Flow of results and output in the Rubicon system. The diagram can be thought of as exte...

	4 Configuration
	Figure 4: Sample Rubicon configuration file. The brackets [] force evaluation of the procedure co...

	5 Adding new functionality
	5.1 Attributes
	Figure 5: A simple Attribute class

	5.2 Analyzers
	Figure 6: Source code for the AvRequestSize Analyzer. The “TIFmethod” line marks the following li...

	5.3 Reporters
	Figure 7: A skeleton Reporter layout. Many of the “report” methods have been elided as they are n...

	5.4 Summary

	6 Design summary
	7 Experience using Rubicon
	7.1 DSS system characterization

	Request Size (KB)
	43.8
	Request Rate (IO/s)
	281
	Bandwidth (MB/s)
	11.9
	Read Proportion
	0.970
	Table 1: Average high level attribute values

	customer
	12.0
	99.0
	50480
	lineitem
	252
	77.5
	52880
	orders
	7.39
	82.8
	28310
	parts
	89.6
	38.6
	52300
	idx2
	1.17
	73.6
	8192
	redolog
	167.0
	2.64
	15400
	Table 2: Average workload attributes for selected DSS stores
	7.2 OpenMail system characterization
	Table 3: OpenMail logical volume utilization
	Figure 8: OpenMail logical volume and LUN usage by total requests and total data requested

	7.3 Conclusions
	8 Performance

	HP-UX
	1900
	20 + 260n
	Linux
	1200
	330 + 50n
	Table 4: Filter and multiplexer overheads (nanoseconds). Filter times are for a single equality c...
	9 Related work
	10 Conclusions and future work
	References
	[Aiken96
	[Alvarez01
	[Bates91
	[Caceres91
	[Eick96
	[Ganger95
	[Williams98
	[Golding94
	[Gomez98
	[Grimsrud95
	[Heath91
	[Heidrich95
	[Hibbard94
	[HP98
	[IBM99
	[Kuenning95
	[Livny97
	[Malony91
	[McCanne93
	[Miller91
	[Miller95
	[Mogul87
	[Ousterhout85
	[Ousterhout94
	[Patterson88
	[Paxson94
	[Paxson97
	[Ramakrishnan92
	[Reed93
	[Roselli98
	[Ruemmler93
	[Shirriff91
	[Touati91
	[TPPC96
	[Veitch01
	[Willinger95

	Appendix A: Trace files
	Appendix B: Filter specification

