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Abstract

Pangaea is a wide-area file system that enables ad-hoc collabo-
ration in multi-national corporations or in distributed groups of
users. This paper describes Pangaea’s approach for keeping the
file-system’s name space consistent and proves its correctness.
Maintaining the name space is a simple matter in traditional
file systems that store the entire volume in a single node. It
is not so in Pangaea, because of the two key techniques it em-
ploys to improve performance and availability in a wide area—
pervasive replicationthat lets each file be replicated on its own
set of nodes on demand from users, andoptimistic replication
that lets updates be issued on any replicas at any time. A naive
implementation may leave some files unreachable in the name
space or some directory entries pointing to non-existent files.

To detect conflicting updates and inform all affected repli-
cas about the resolution outcome reliably, Pangaea embeds,
in each file, a data structure calledbackpointerthat authorita-
tively defines the file’s location in the file-system’s name space.
Conflicting directory operations are detected by a replica of the
(child) file as a discrepancy in the value of the backpointer. The
replica can then unilaterally resolve conflicts and disseminate
the conflict resolution outcome to the the parent directories.

1 Introduction

Pangaea is a wide-area file system that serves storage needs
of multi-national corporations or distributed groups of users.
This paper describes Pangaea’s protocols for maintaining the
hierarchical filesystem name space. A more comprehensive
description of Pangaea appears in a separate paper [11].

/group/bar

/group

Figure 1: An example of the Pangaea file system. Replicas
are added dynamically for each file or directory as users access
it from various sites. Thus, different files or directories are
replicated on different sets of sites.

1.1 Overview of Pangaea

Pangaea federates computers provided by the users to build a
single filesystem.1 To achieve high performance and availabil-
ity in a wide area, Pangaea deploys two strategies not found
in traditional replicated file systems:pervasive replicationand
optimistic replication.

Pangaea aggressively creates a replica of a file or directory2

whenever and wherever it is accessed. Thispervasive replica-

1We currently assume that servers trust each other; relaxing the trust rela-
tionship is future work.

2Pangaea treats a directory as a file with special contents. We sometimes
use the term “file” for both a regular file and a directory.
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tion policy improves performance by serving data from a node
close to the point of access, improves availability by naturally
keeping many copies of popular data and letting each server
contain its working set. Figure 1 shows a sample file system.
This policy brings challenges as well: the set of nodes that
replicate a file (called thereplica set) can become different
from that of its parent directory or siblings. Such situations
complicate detecting and resolving conflicting directory oper-
ations, as we discuss further in Section 1.2.

A distributed service faces two conflicting challenges: high
availability and strong data consistency [4, 16]. Pangaea aims
at maximizing availability and sacrifices strong consistency
when unavoidable. It lets any user update any replica at
any time, propagates the updates among replicas in the back-
ground, and detects and resolves conflicts after they happen.
Pangaea thus supports “eventual” consistency, guaranteeing
that changes made by a user are seen by another user only in
some unspecified future. More specifically, assuming that all
nodes can exchange updates with one another, and users cease
to issue updates for a long enough period, Pangaea ensures the
following properties:

1. For every file, the state of all its replicas will become iden-
tical.

2. Every file has valid pathname(s).

3. No directory entry refers to a non-existent file.

Section 7 defines these properties more formally and shows
that our protocol actually satisfies them.

1.2 Challenges of replica management in Pan-
gaea

Optimistic replication itself is not a new idea. The first op-
timistically replicated file system, Locus, was developed in
early ’80s [9, 15]. The combination of pervasive replication
and optimistic replication, however, adds a unique complexity
to name-space management, because the system must maintain
the integrity of the namespace across multiple files or directo-
ries replicated on different sets of nodes.

Consider Example 1. When the dust settles, we want file
foo to appear either at/alice/foo1 or at /bob/foo2 ,
but not both. However, suppose that node A, on behalf of Al-
ice, adds an entry forfoo1 to /alice and sends the change
to the replica on node C. If the final result is to move/foo
to /bob/foo2 , node C must undo the change, even though
node C never receives Bob’s update and cannot detect the con-
flict in the first place. We thus need a mechanism for forward-

1. File /foo and directories/alice and/bob are
initially replicated on replica sets{A, B}, {A, C}, and
{B, D}, respectively.

2. Alice on node A doesmv /foo /alice/foo1 .

3. Simultaneously, Bob on node B does
mv /foo /bob/foo2 .

Example 1: Example of rename-rename conflict.

ing conflict-resolution results to replicas that fail to detect con-
flicts.

Removing a directory (rmdir ) poses another challenge: a
file under a removed directory may be updated by another node
concurrently. Consider Example 2. A naive implementation
would remove/foo but leave file/foo/bar without a name.
Another implementation would just delete/foo/bar when
/foo is deleted, which at least keeps the file system consis-
tent, but loses Alice’s data. In this situation, the system must
“revive” directory/foo if a live file is found underneath.

1. An empty directory/foo is replicated on nodes{A, B}.
2. Alice on node A creates file/foo/bar .

3. Bob on node B doesrmdir /foo .

Example 2: Example of rmdir-update conflict.

1.3 Overview of Pangaea’s replica management
protocol

This section overviews Pangaea’s four key strategies for ad-
dressing the aforementioned challenges. Essentially, a dis-
tributed file system like Pangaea can ensure eventual consis-
tency when (1) there is always at least one node that detects any
conflicting pair of operations, (2) a conflict-resolution decision
is reliably propagated to all files affected by the conflict, and
(3) replicas of each file make the same decision regarding con-
flict resolution. The first property is ensured using a data struc-
ture calledbackpointer, described in Section 1.3.1. The sec-
ond property is ensured by two techniques, called name-space
containment and directory resurrection, described in Sections
1.3.2 and 1.3.3. The final property is ensured by the use of
a uniform timestamp-based conflict detection and resolution
rule, described in Section 1.3.4.
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1.3.1 Localizing conflict-resolution decisions using back-
pointers

Pangaea lets the “child” file have the final say on the resolution
of a conflict involving directory operations.3 For instance, in
Example 1, if Bob’s operation is to win over Alice’s, a replica
of file foo tells the replicas of/alice to undo their change.

For this policy to work, each file must be able to deter-
mine its location in the filesystem name space, unlike other
file systems that let a directory dictate the location of chil-
dren files. Pangaea achieves this by storing a special attribute,
calledbackpointers, in each replica (a file usually has only one
backpointer, unless it is hard-linked). A backpointer contains
the ID of the parent directory and the file’s name within the
directory. We implement directory operations, such asre-
name andunlink , as a change to the file’s backpointer(s).
In Example 1, operationmv /foo /alice/foo changes
file /foo ’s backpointer from〈fid/, "foo" 〉 to 〈fidalice ,
"foo1" 〉 (fidx is the ID of the filex). When a replica re-
ceives a change to its backpointer, it also reflects the change to
its parents by creating, deleting, or modifying the correspond-
ing entries.

1.3.2 Name-space containment

Conflict resolution using backpointers requires that each file
can perform a (local or remote) update to a replica of the di-
rectory that the backpointer refers to. One approach, adopted
in our earlier implementation, is to embed pointers to (some
of) the replicas of the parent directory in the backpointer4 and
modify the parent directory using remote procedure calls. This
design turned out to be unwieldy: the backpointer is used to
initiate a change in the directory, but its directory links must be
changed when the directory’s replica set changes. Because of
this circular control structure, we could not easily keep the in-
formation of the backpointer and the parent directory properly
synchronized.

Our current implementation trivializes this problem by re-
quiring that, for every replica of a file, its parent directories be
also replicated on the same node. We call this propertyname-
space containment, because all intermediate path-name com-
ponents of every replica are all replicated on the same node.

This policy improves Pangaea’s availability and eases ad-
ministration by allowing accesses to every replica on a node
using ordinary file-access system calls, even when the node is

3Resolution is “localized” to a specific file, but not to a specific node; con-
flicts are still resolved by any replica of the file.

4In practice, we embedded the gold-replica set of the parent directory; see
Section 2.

disconnected from the rest of the system—i.e., it naturally of-
fers the benefits of island-based replication [5]. On the other
hand, it increases the storage overhead of the system and adds
a different sort of complexity to the protocol: every update to
a replica potentially involves replicating its parent directories.
We describe our solution for maintaining the name-space con-
tainment property in Section 4.3 and study the storage over-
head in Section 9.

A node must discover and replicate the root directory when
starting the Pangaea service for the first time. The locations
of the root replicas are maintained using a gossip-based dis-
tributed membership service [11].

1.3.3 Avoiding file losses by resurrecting directories

Pangaea addresses the problem of rmdir-update conflicts,
shown in Example 2, by “resurrecting” deleted directories
when necessary. When a node receives a request to create a
replica for fileF for which its parent directory, sayD , does
not exist (because it is “rmdir”ed by another concurrent up-
date), the node schedules a special procedure to be called later.5

Similarly, the node schedules the procedure to be called when
it deletes directoryD with an entry to a live fileF . This pro-
cedure, when executed, checks ifF is still live andD is still
dead; if so, it recreatesD and addsF ’s entry toD .

To resurrect a dead directory, when a node is requested to
delete a replica, it removes the replica’s contents but retains the
last backpointer the replica has had. This “dead backpointer”
determines the location in the namespace the directory is to be
resurrected.

This procedure potentially works recursively all the way up
to the root, resurrecting directories along the way. For instance,
if Bob on node B doesrm -rf /a/b/c and Alice on node A
doestouch /a/b/c/foo simultaneously, then directories
c , b, anda are resurrected in order to create a place for file
foo .

1.3.4 Uniform conflict resolution using last-writer-wins
policy and full-state transfer

Achieving eventual consistency requires that all replicas of a
particular file make the same decision when confronted with
a conflict. For the contents of a regular file, we use a version
vector [9] to detect conflicts and let the user fix the conflict
manually [11].

5The wait is needed, because it is quite likely that the node will receive
a request to removeF in the near future. We discuss this issue further in
Section 8.2.
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Conflicts regarding the structure or attribute of the file sys-
tem, such as backpointers or access permissions, are amenable
to automatic resolution because of their well-defined seman-
tics. We use the combination of the “last writer wins”
rule [6, 14] and full state transfer to resolve such conflicts. A
high-level file system operation—e.g.,write or unlink —
is assigned a unique timestamp by the issuing node. When
a replica discovers two conflicting updates, it picks the one
with the newer timestamp and overwrites the older one (if the
old update was already applied). With full state transfer, each
update completely overwrites the contents and attributes of a
replica.6 By applying the update with the newest timestamp,
replicas will eventually converge to common state.

A timestamp is generated using the node’s real-time clock.
Thus, using the last-writer-wins policy, the clocks of nodes
must at least be loosely synchronized to respect the users’ in-
tuitive sense of update ordering. This is usually not a problem,
as modern protocols (e.g., NTP [8]) can synchronize clocks
within about 100 milliseconds even over a wide-area network.

1.4 Related work

Many file systems replicate at a volume granularity and build
a unified name space by mounting a volume underneath an-
other (e.g., LOCUS [15], Coda [7], and Roam [10]). Because
these systems need not support cross-volume directory opera-
tions, a single replica can locally detect and resolve conflicting
updates. Pangaea, in contrast, replicates at a file or directory
granularity to support wide-area ad-hoc collaboration. Pangaea
must run a distributed protocol for name-space maintenance
because every directory operation in Pangaea crosses a repli-
cation boundary.

Several file systems replicate data at a finer granularity.
FARSITE [1] replicates at the unit of a “directory group”,
which resembles a volume, but with a dynamically defined
boundary. It supports file renaming across directory groups
using a Byzantine-fault-tolerant consensus protocol that coor-
dinates nodes in a lock-step manner. Slice [2] replicates files
and directories independently over a cluster of servers and uses
two-phase commits to coordinate nodes. Pangaea, in contrast,
coordinates nodes optimistically to improve availability and
performance in a wide area, but it must detect and resolve con-
flicting updates.

Data structures similar to backpointers are used in several
file systems. DiFFS [17] places files and directories indepen-
dently on a cluster of servers. It uses backpointers to imple-

6In practice, full-state transfer happens only during conflict resolution.
Pangaea uses “deltas” to reduce update propagation overhead in the absence
of conflicts [11].

proc UpdateReplica
r2: Replica // New replica contents.

preconditions:
∀ 〈pfid,fname〉: r2.bptrs • pfid ∈ dom(DISK)

and IsLive(r2)⇒ IsLive(DISK(pfid))
postconditions:

r2.bptr 6= {} 〈3〉

. . .

Listing 1: Example of algorithm description

ment at-least-once remote procedure calls (RPCs) for direc-
tory operation. DiFFS does not support replication. S4 [13]
is a file system with a security auditing capability. It keeps a
backpointer-like data structure to reconstruct a file’s full path
name from its inode number and chooses a security policy
based on the path name. S4’s backpointers are used only for
auditing and not for replication.

1.5 Notational conventions

Listing 1 shows an example of algorithm description.Up-
dateReplica is the name of the procedure with one parameter,
r2. Label “preconditions: ” shows the condition that must be
ensured by the caller, and label “postconditions: ” shows the
condition that this procedure ensures on return. A code block
is demarcated by indentation, as in Occam or Python. Label
“〈3〉” is a marker used to refer to the algorithm in the paper.

We use several primitive functions without showing their im-
plementations. FunctionNewtimestamp generates a globally
unique timestamp. A timestamp is a tuple〈clock, nodeid〉,
whereclock is the value of the real-time clock, andnodeid is
the node that generated the timestamp. The latter value is used
only to break ties. FunctionNewfileid generates a globally
unique File ID.7 FunctionDeepcopy creates an object that is
structurally identical to the old object but does not share mem-
ory with the old object. In addition, we use several mathemat-
ical symbols borrowed from the Z notation [12]:

• “〈val1, . . . , valn〉” represents a tuple of values.

• “P type ” represents a (possibly empty) set oftype .
“P1 type ” represents a nonempty set oftype .
“Key � Val” represents a one-to-many mapping from
typeKey to Val.

• “dom(F )” returns the domain of function (or mapping)F ,
and “ran(F )” returns the range ofF . For instance,

dom({1 7→ 3,2 7→ 8,4 7→ 3}) = {1,2,4},
7In practice, Pangaea currently uses a timestamp as a file ID. Thus,New-

fileid is an alias forNewtimestamp .
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ran({1 7→ 3,2 7→ 8,4 7→ 3}) = {3,8}.

• “X ⊕Y” substitutes a part of mapping X by Y. E.g.,

{1 7→ 3,2 7→ 1}⊕{1 7→ 5,3 7→ 4}
= {1 7→ 5,2 7→ 1,3 7→ 4}.

• “X −CY” means function-domain restriction. E.g.,

{2}−C{1 7→ 3,2 7→ 8,4 7→ 6}= {1 7→ 3,4 7→ 6}.

• “∀var: set •expr ” means thatexpr holds forvar in set .
E.g.,

∀n : {11,13,17} • IsPrime(n).

• “3 expr ” means thatexpr holds eventually.

• “{var: set •expr}” means set comprehension. E.g.,

{x : {1,2,3} • x2}= {1,4,9}.

2 Structure of the Pangaea file system

Pangaea creates replicas of a file whenever and wherever re-
quested. It distinguishes two types of replicas:gold and
bronze. They can both be read and written by users at any
time, and they both run an identical update-propagation proto-
col. Gold replicas, however, play an additional role in main-
taining the hierarchical name space. First, gold replicas act as
starting points during path-name traversal (i.e., in UNIX ker-
nel procedurenamei ). Their locations are thus registered in
file’s parent directory. Second, gold replicas perform several
tasks that are hard to do in a completely distributed way, such
as maintaining a minimum replication factor for a file. Cur-
rently, Pangaea designates replicas created during initial file
creation as gold and fixes their locations unless some of them
fail permanently.

Bronze replicas are created in response to user demands. To
manage them cheaply and without a single point of failure,
Pangaea builds a distributed graph of replicas independently
for each file; a newly created replica joins the system by span-
ning edges to a few existing (gold or bronze) replicas. These
edges are used both to discover the replica and propagate up-
dates to the file. Pangaea provides reliable protocols for keep-
ing the graph strongly connected and broadcasting updates ef-
ficiently over graph edges. These protocols are described in
more detail in [11]. This paper focuses on the maintenance
of the gold-replica set and links between directories and their
children.

Listing 2 shows the structure of a replica. The descriptions
of the attributes follow.

〈1〉 The globally unique ID of the file that the replica repre-
sents. The file ID is fixed once a replica is created.

〈2〉 Graph edges to some bronze replicas of the file [11].

〈3〉 The set of gold replicas of the file. The replica is gold if
the node that stores the replica is ingpeers; otherwise,
the replica is bronze.

〈5〉 This field is either null, or it records the last backpointer
the replica has had just before the file was deleted (Sec-
tion 1.3.3). Section 4.2.

〈6〉 Shows the freshness of the replica (Section 1.3.4). The
attributes in the replica, includinggpeers andbptrs, are
serialized by this timestamp.

〈7〉 The contents of a regular file.

〈8〉 Directory entries. An entry is identified by pair〈fileid,
filename〉. That is, Pangaea allows duplicate filenames as
far as they refer to different files. This design simplifies
handling of the situation in which two users create two
files with the same name. Section 8.1 discusses a strategy
for presenting a more natural user interface on top of this
design.

〈9〉 Shows whether this entry is live. In Pangaea, deleted
entries are not removed from the directory immediately.
They are just marked invalid using this field and kept in
the directory to disambiguate update/delete conflicts (i.e.,
invalid entries are used as death certificates [3].)

〈10〉 Shows the last time eitherbptrs or gpeers of the child
file has changed. This timestamp is used to serialize other
fields inDentry .

〈11〉 Points to the gold replicas of the child file.

The values of attributesfid , gpeers, ts, bptrs, and
deadBptr will be the same on all replicas of a file in the ab-
sence of outstanding updates, but the value ofpeers differs
between replicas, as it is used to construct the file’s graph.

Two key attributes connect a file and its parent directories.
Attributegpeers 〈11〉 in the parent directory entry point to the
file’s gold-replica set〈3〉. The backpointers of the file〈4〉 point
back to the parent directories. These attributes reciprocally link
each other in the absence outstanding updates. Figure 2 illus-
trates the relationships between the replica’s attributes.

Listing 3 shows persistent variables kept on each node.
DISK stores the set of replicas.CLOG records the set of repli-
cas whose state may be inconsistent with other replicas of the
same file. A replica stays inCLOG until all the neighboring
replicas in the graph acknowledge its update.ULOG stores the
set of files whose backpointers have changed but whose parent
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fid=50
ts=22:M
gpeers={M,N,O}
ents=
  ...
  <55,”foo”>→

valid=True,
 ts=20:B,
 replicas={A,B,C}

  ...

fid=55
gpeers={A,B,C}
ts=27:A
bptrs=
  <50, “foo”>
  <53, “bar”>
contents=...

fid=53
ts=32:E
gpeers={D,E,F}
ents=
  ...
  <55,”bar”> →

valid=True,
ts=25:B
replicas={A,B,C}

...

BA

C

NM

O

ED

F

������� �������

�������	����
��
��������������

Figure 2: Example of a file system. Directories/joe and/bob have the FileIDs of 50 and 53, respectively. A file with the
ID of 55 is hard-linked to the two directories, one as/joe/bar and the other as/bob/foo . Attribute “ts=22:M” of /joe
shows that this directory’s timestamp is 22:M, i.e., it is issued by node M at time 22 (timestamps are in fact generated using the
node’s real-time clock, but we clock values as small integers for brevity.). A circle around a letter indicates a gold replica. For
instance, directory/joe has three gold replicas, on nodes M, O, and N. Arrows denote edges created through attributesgpeers
andpeers. Bronze replicas are not shown in this picture, but the thin arrows emanating from the gold replicas indicate links to
them.
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type Replica = record
fid〈1〉 : FileID
peers〈2〉 : P NodeID
gpeers〈3〉 : P1 NodeID
bptrs〈4〉 : P Backptr
deadBptr〈5〉 : Backptr
ts〈6〉 : Timestamp

type RegularReplica inherits Replica =
contents〈7〉 : Data
Invariants:
¬IsLive(r)⇒ contents = {}

type DirReplica inherits Replica =
ents〈8〉 : 〈FileID,String 〉� DEntry
Invariants:
¬IsLive(r)⇒ ents = {}

type Backptr = 〈FileID, String 〉
type Dentry = record

valid〈9〉 : bool
ts〈10〉 : Timestamp
gpeers〈11〉 : P1 NodeID

proc IsLive(r)
return r is the rootor r.bptrs 6= {}

Listing 2: Structure of a replica

directories have not received the change. It maps a file ID to
the set of backpointers deleted from the replica.8

DISK: FileID � Replica
CLOG: FileID � P1 NodeID
ULOG: FileID � P Backptr
Invariants: :

// Updates are only for existing replicas.
dom(CLOG) ∪ dom(ULOG) ⊆ dom(DISK) 〈12〉

Listing 3: Persistent data structures kept at each node.

3 High-level name-space operations

This section describes the implementation of high-level name-
space operations. Listing 4 shows how a file is created. To
create a file, a node must already store a replica of the parent
directory (d). Otherwise, the node must create a new bronze
replica of the directory by calling the procedures described in
Section 4.3. This requirement applies to every directory oper-
ation described in this section. ProcedureCreate itself only
creates a local replica of the file. A generic procedureUp-
dateReplica, described in Section 4, actually adds an entry to
the parent directory and propagates the changes to other nodes.

Other name-space operations are implemented in a similar
fashion. Listings 5, 6 and 7 implement removing (unlink ),
hard-linking (link ), and renaming (rename ), respectively.

8Backpointers added to the replica are not recorded inULOG, as they can
are stored from the replica’sbptr .

Listing 8 shows how a file’s contents can be updated (say, by
write ). Unlink does not delete the replica object even after
its backpointers become empty. Attributes such asts, peers,
andgpeers are kept on disk so that it can reject stale updates
that arrive in the future (e.g., because of message reordering)
and resurrect the directory, if needed, to maintain the name
space’s consistency (Section 1.3.3). We call a replica without
a backpointer a “death certificate” [3]. Death certificates are
removed by a background garbage-collection process that runs
nightly, as described in Section 6.

proc Create
d: DirReplica // The local replica of the parent directory.
fname: string // The name of the new file ind
gpeers: P1 NodeID // The placement of the replicas of the file.

preconditions:
IsLive(d) 〈13〉

r← Newreplica()
r.fid← Newfileid()
r.gpeers← gpeers
r.ts← Newtimestamp()
r.peers← {}
r.bptrs← {〈d.fid, fname〉}
r.contents← None
UpdateReplica(r)

Listing 4: File creation procedure.

proc Unlink
f: Replica // The file to be unlinked.
d: DirReplica // The directory the file belongs to.
fname: string // f’s name ind.

preconditions:
IsLive(d)
f is a directory⇒ f.ents = {}
〈d.fid,fname〉 ∈ f.bptrs

f’← Deepcopy(f)
f’.bptrs← f.bptrs \ {〈d.fid,fname〉}
if f’.bptrs = {} then

f’.deadBptr← 〈d.fid,fname〉
f’.ts← Newtimestamp()
UpdateReplica(f’)

Listing 5: Unlink and rmdir.

4 Name-Space management and con-
flict resolution

Listing 9 defines the central procedure,UpdateReplica, for
fixing name-space inconsistencies. It is called by both local
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proc Hardlink
f: RegularReplica // The replica of the file.
d: DirReplica // The directory to whichf will be linked to.
fname: string // The filename withind .

preconditions:
IsLive(d)

f’← Deepcopy(f)
f’.bptrs← f.bptrs ∪ {〈d.fid, fname〉}
f’.ts← Newtimestamp()
UpdateReplica(f’)

Listing 6: Hard linking.

proc Rename
f: Replica // The file to be moved.
dF : DirReplica // The origin dir.
dT : DirReplica // The destination dir.
fnameF : string // The filename indF

fnameT : string // The filename indT

preconditions:
IsLive(dF ) and IsLive(dT )
〈dF .fid, fnameF 〉 ∈ f.bptrs

f’← Deepcopy(f)
f’.bptrs← f.bptrs \ {〈dF .fid,fnameF 〉} ∪ {〈dT .fid,fnameT 〉}
f’.ts← Newtimestamp()
UpdateReplica(f’)

Listing 7: Renaming.

proc Write
f: RegularReplica
newcontents: Data

f’← Deepcopy(f)
f’.contents← newcontents
f’.ts← Newtimestamp()
UpdateReplica(f’)

Listing 8: Updating contents of a regular file.

high-level directory operations (Section 3) and remote update
requests (Listing 10). It takes new replica contents (r2), copies
them to the local replica, changes the parent directory entry
if necessary, and schedules the update to be pushed to other
replicas.

4.1 Propagating updates

ProcedureIssueCupdate, shown in Listing 10, propagates a
change to other replicas of the same file (“C” stands for “con-
tents”). This paper describes only the most basic propagation
mechanism that transfers the entire replica state, even when
just a byte is modified. A separate paper [11] introduces two
techniques,delta propagationandharbingers, that drastically
reduce the update propagation overhead.

Updates are propagated to other replicas periodically in the
background byPropagateCupdate. Processing a remote up-
date is similar to applying a local update: the local replica is
updated, if needed, and the change is forwarded to the neigh-
boring replicas in the file’s graph. The only difference is that
the receiving site must ensure the name-space containment
property (Section 1.3.2) before applying the update. The node
thus replicates all intermediate directories in the file’s path by
callingCreateReplica recursively, as described in Section 4.3.

4.2 Repairing name-space inconsistencies

ProcedureIssueUupdate is called byUpdateReplica when a
file’s backpointer is possibly inconsistent with the correspond-
ing directory (“U” stands for “uplink”). This procedure only
logs the request for later execution. ProcedureProcessUup-
date actually updates the parent directory to match the file’s
backpointer. On exit, this procedure guarantees that there is a
directory entry for every backpointer, and that there is no entry
in directories to which the file lacks backpointers.

We usually must wait before files added toULOG are treated
by ProcessUupdate, because executing it immediately will
waste both the disk and network bandwidth and sometimes
undo the update against the user’s expectation. Section 8.2 dis-
cusses this problem in more detail and introduces a strategy for
choosing the waiting period.

4.3 Creating a bronze replica

Pangaea dynamically creates a bronze replica on two occa-
sions. First is when the user accesses a file on a node for the
first time (this operation is not described in the paper). Second
is when the node is asked to create a gold replica of a file, but it

8



proc UpdateReplica
r2: Replica // New replica contents.

preconditions:
// All parent directories are stored locally.
// Moreover, ifr2 is live, then parent must also be live.
∀ 〈pfid,fname〉: r2.bptrs • pfid ∈ dom(DISK)

and IsLive(r2)⇒ IsLive(DISK(pfid)) 〈14〉

if r2.fid 6∈ dom(DISK) then
// The replica isn’t locally stored yet.
DISK← DISK ∪ { r2.fid 7→ r2 }
IssueCupdate(r2)
return

r1← DISK(r2.fid)

if File is regular then
Do some application-specific stuff.
We can potentially use version vectors here.

else
// Union dir entries, taking ones with newer timestamps on conflict.
for (key 7→ e) ∈ r2.ents

if key 6∈ dom(r1.ents) or r1.ents(key).ts < e.ts
r1.ents← r1.ents ⊕ {key 7→ e}

for each added or deleted entry〈fid,fname〉 in r1.ents
// Entry 〈fid,fname〉 is potentially inconsistent. Fix up later.
if fid ∈ dom(DISK) then

IssueUupdate(DISK(fid), {})〈15〉

if r2.ts > r1.ts then 〈16〉

// The file’s attributes are to be updated.
r1.ts← r2.ts
if r1.gpeers 6= r2.gpeers then

r1.gpeers← r2.gpeers
// When the replica’s gold-peer set changes, I must reflect the
// change to the parent dir entry.
IssueUupdate(r, {})

// Resolve potential conflicts on back pointers
if r1.bptrs 6= r2.bptrs or r1.deadBptr 6= r2.deadBptr then

IssueUupdate(r1, r1.bptrs \ r2.bptrs)〈17〉

r1.bptrs← r2.bptrs
r1.deadBptr← r2.deadBptr

// If the last link to the replica is gone, erase the contents.
if ¬ IsLive(r1) then

if r1 is a regular filethen
r1.contents← None

else
for e ∈ r1.ents • e.valid

IssueUupdate(DISK(e.fid), {})〈18〉

r1.ents← {}

if Any of r1’s attributes has changedthen
IssueCupdate(r1)〈19〉

Listing 9: Applying updates to a replica.

proc IssueCupdate
r: Replica // The replica of the file being updated.

CLOG(r.fid)← r.gpeers ∪ r.peers

proc PropagateCupdate // Runs periodically in the background

for (fid 7→ targets) ∈ CLOG
r← DISK(fid) // See〈12〉.
// Send the location of the parent dirs so that the target can
// replicate them to ensure name-space containment.
pDirs← {p: r.bptrs • 〈p.fid, DISK(p.fid).gpeers〉} // See〈14〉.
for n ∈ targets

send 〈CUPDATE, r, pDirs〉 to n.
when receive 〈CUPDATE-REPLY, ts〉 from noden

if CLOG(fid).ts = ts
CLOG(fid)← CLOG(fid) \ {n}
Removefid from CLOG whenCLOG(fid) becomes empty

when receive 〈CUPDATE, r, pDirs〉
r: Replica // New replica contents.
pDirs: P 〈FileID, P NodeID〉 // Name and location of parent dirs.

for 〈pfid, ppeers〉 ∈ pDirs
CreateReplica(pfid, ppeers)
ResurrectDirectory(pfid)

UpdateReplica(r)
send 〈CUPDATE-REPLY, r.ts〉

Listing 10: Issuing, propagating, and receiving an update.

proc IssueUupdate
r: Replica // The replica of the file
del: P 〈FileID,String 〉 // Backpointers deleted from the replica.

if r.fid ∈ dom(ULOG) then
del← del ∪ ULOG(r.fid)

ULOG← ULOG ⊕ {r.fid 7→ del}

proc ProcessUupdate // Called periodically in the background.

for (fid 7→ del) ∈ ULOG
r← DISK(fid) // See〈12〉.
for pfid, fname ∈ del ∪ r.bptrs

ResurrectDirectory(pfid)
d← DISK(pfid)
valid = pfid ∈ r.bptrs // Is this entry to be added?
new = (〈fid,fname〉 7→ Dentry(valid, r.ts, r.gpeers)}
d.ents← (〈fid,fname〉 −C d.ents) ∪ new
if d.ents has changed

d.ts← Newtimestamp()
IssueCupdate(d)

ULOG← {}

Listing 11: Fixing name space inconsistencies.
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lacks the replica of file’s parent directories (Listing 10). List-
ing 12 describes the algorithm for creating a bronze replica.
ProcedureCreateReplica works recursively from the given
directory and ensures that all intermediate directories, up to
the root directory, are replicated locally. It does not, however,
guarantee that these files are live (i.e., has a non-empty back-
pointer) or that each directory has an entry that correctly points
to the child.ResurrectDirectory, described in Section 4.4, en-
sures these properties.

proc CreateReplica
fid: FileID // The ID of the file
peers: P1 NodeID // The known set of gold peers of the file

postconditions:
fid ∈ dom(DISK)

if fid ∈ dom(DISK) then
return

send 〈SEND-CONTENTS, fid〉 to random noden ∈ peers
Wait until receive〈CONTENTS, r, pDirs〉 from n
for 〈pfid, ppeers〉 ∈ pDirs

CreateReplica(pfid, ppeers)
UpdateReplica(r)
Add edges betweenr and random existing replicas.

when receive 〈SEND-CONTENTS, fid〉 from noden

r← DISK(fid)
pDirs← {p: r.bptrs • 〈p.fid, DISK(p.fid).gpeers〉} // See〈14〉.
send 〈CONTENTS, r, pDirs〉 to n.

Listing 12: Creating a bronze replica. A more detailed descrip-
tion about the construction of the graph appears in [11].

4.4 Resurrecting directories

Both c- and u-update processing (Listings 10 and 11) requires
that a file’s parent directories are live and with valid pathnames.
ProcedureResurrectDirectory, shown in Listing 13, is used
in conjunction withCreateReplica to resurrect a dead direc-
tory and re-create an entry in its parent. This procedure is also
recursive—it ensures that all the intermediate directories also
are live and with valid pathnames.

5 Examples of conflict resolutions

This section describes how Pangaea resolves several common
types of conflicts. We use a tabular form, shown in Figure 3, to
display the state of the system.

This example shows the state of two replicas stored on node
A. Labelfid/ represents the file ID of the replica of the direc-
tory initially located at “/”. Replicafid/ has the timestamp〈6〉

proc ResurrectDirectory
fid: FileID

preconditions:
fid ∈ dom(DISK)
fid is a directory

postconditions:
IsLive(DISK(fid))

r← DISK(fid)
if IsLive(r) then

return

ResurrectDirectory(r.deadBptr.pfid)
r.bptrs← { r.deadBptr }
r.ts← Newtimestamp()
IssueCupdate(r)
let 〈pfid, fname〉 = r.deadBptr •

d← DISK(pfid)
d.ents(〈fid,fname〉)← Dentry (true, r.ts, r.gpeers) 〈20〉

d.ts← Newtimestamp()
IssueCupdate(d)

Listing 13: Filling missing name space components.

fid/ 5:A ents={〈fidalice , “alice”, 12:A〉}
A fidalice 12:A ents={*〈fidbar , “bar”, 13:B〉}

Figure 3: Example of state descriptions.

of 5:A9, and its entries contain directory “alice” atfidalice , with
timestamp 12:A. A directory entry marked “*” is invalid (i.e.,
ent.valid = false in Listing 2).

5.1 Scenario: rename-rename conflict

Let us first revisit Example 1. We just show state transitions
on nodes A and B, as nodes C and D only passively receive
updates from nodes A and B.

1. Initially, the replicas are consistent.

fid/ 5:A ents={〈fid foo , “foo”,...〉}
A fidalice 6:A ents={}

fid foo 8:A bptrs=〈fid/, ”foo” 〉
fid/ 5:A ents={〈fid foo , “foo”,...〉}

B fidbob 7:B ents={}
fid foo 8:A bptrs=〈fid/, ”foo” 〉

2. Alice doesmv /foo /alice/foo1 .

fid/ 10:A ents={*〈fid foo ,“foo”,...〉}
A fidalice 11:A ents={〈fid foo , “foo1”, 12:A〉}

fid foo 12:A bptrs=〈fidalice , ”foo1”〉
fid/ 5:A ents={〈fid foo , “foo”,...〉}

B fidbob 7:B ents={}
fid foo 8:A bptrs=〈fid/, ”foo” 〉

9
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3. Bob doesmv /foo /bob/foo2 .

fid/ 10:A ents={*〈fid foo ,“foo”,...〉}
A fidalice 11:A ents={〈fid foo , “foo1”, 12:A〉}

fid foo 12:A bptrs=〈fidalice , ”foo1”〉
fid/ 9:B ents={*〈fid foo , “foo”,...〉}

B fidbob 11:B ents={〈fid foo , “foo2”, 12:B〉}
fid foo 12:B bptrs=〈fidbob , ”foo2”〉

4. Let us assume node B’s node ID is larger than A’s; that is,
timestamps are ordered in the following manner:

12:B> 12:A > 11:B> 11:A.

Node B sends the update to filefid foo to node A. Node A
first replicates directory/bob (by copying the state from
node B) to ensure the name-space containment property
(Listing 10). Node A then changes replicafid foo ’s back-
pointer and removes thefid foo ’s entry in/alice .

fid/ 10:A ents={*〈fid foo ,“foo”,...〉}
fidalice 14:A ents={*〈fid foo , “foo1”, 12:B〉}

A fidbob 11:B ents={〈fid foo , “foo2”, 12:B〉}
fid foo 12:B bptrs=〈fidbob , ”foo2”〉
fid/ 9:B ents={*〈fid foo , “foo”,...〉}

B fidbob 11:B ents={〈fid foo , “foo2”, 12:B〉}
fid foo 12:B bptrs=〈fidbob , ”foo2”〉

5. Node A sends update to filefid/ to B. Node B applies
the change, but it actually leave the directory’s contents
intact. Node A also sends update to filefid foo to B, but
B discards the update, because B already has applied this
update.

6. In the end, the file/foo will move to /bob/foo2 . The
state of the nodes looks like below:

fid/ 10:A ents={*〈fid foo ,“foo”,...〉}
fidalice 14:A ents={*〈fid foo , “foo1”, 12:B〉}

A fidbob 11:B ents={〈fid foo , “foo2”, 12:B〉}
fid foo 12:B bptrs=〈fidbob , ”foo2”〉
fid/ 10:A ents={*〈fid foo , “foo”,...〉}

B fidbob 11:B ents={〈fid foo , “foo2”, 12:B〉}
fid foo 12:B bptrs=〈fidbob , ”foo2”〉

5.2 Scenario: delete-update conflict

In this example, directory/ and file /foo are both initially
replicated on two nodes,{A, B}. Alice on node A deletes
/foo , while Bob on node B edits and updates/foo .

1. Initially, the replicas are consistent:

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
A fid foo 6:A bptrs={〈fid foo , “foo” 〉}

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
B fid foo 6:A bptrs={〈fid foo , “foo” 〉}

2. Alice deletes file/foo .

fid/ 10:A ents={*〈fid foo , “foo”, 11:A〉}
A fid foo 11:A bptrs={}

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
B fid foo 6:A bptrs={〈fid foo , “foo” 〉}

3. B edits file/foo .

fid/ 10:A ents={*〈fid foo , “foo”, 11:A〉}
A fid foo 11:A bptrs={}

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
B fid foo 11:B bptrs={〈fid foo , “foo” 〉}

Consider two cases, depending on whose update times-
tamp is larger.

Case 1: 11:B> 11:A: The update for filefid foo is sent
from node B to A. Node A revives filefid foo and
schedules procedureProcessUupdate to be called.
This procedure will revivefid foo ’s entry in directory
fid/. The change tofid/ is sent to node B, which
accepts it.

fid/ 12:A ents={〈fid foo , “foo”, 11:B〉}
A fid foo 11:B bptrs={〈fid foo , “foo” 〉}

fid/ 12:A ents={〈fid foo , “foo”, 11:B〉}
B fid foo 11:B bptrs={〈fid foo , “foo” 〉}

Case 2: 11:A> 11:B. Node B’s update tofid foo is sent
to A, but is ignored. Node A’s update tofid foo is sent
to B. Node B removesfid foo and its entry infid/. B
sends its update to/ back to A. In the end, the state
of the nodes looks like below:

fid/ 12:B ents={*〈fid foo , “foo”, 11:A〉}
A fid foo 11:A bptrs={}

fid/ 12:B ents={*〈fid foo , “foo”, 11:A〉}
B fid foo 11:A bptrs={}

5.3 Scenario: rmdir-update conflict

This section shows how Pangaea resolves Example 2.

1. Initially, all the replicas are consistent:

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
A fid foo 6:A ents={}, bptrs={〈fid/,“foo” 〉}

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
B fid foo 6:A ents={}, bptrs={〈fid/,“foo” 〉}
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2. Alice creates file/foo/bar .

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
A fid foo 10:A ents={〈fidbar , “bar”, 11:A〉},

bptrs={〈fid/,“foo” 〉}
fidbar 11:A bptrs={〈fid foo ,“bar”〉}
fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}

B fid foo 6:A ents={}, bptrs={〈fid/,“foo” 〉}

3. Bob removes directoryfid foo .

fid/ 5:A ents={〈fid foo , “foo”, 6:A〉}
A fid foo 10:A ents={〈fidbar , “bar”, 11:A〉},

bptrs={〈fid/,“foo” 〉}
fidbar 11:A bptrs={〈fid foo ,“bar”〉}
fid/ 8:B ents={*〈fid foo , “foo”, 10:B〉}

B fid foo 10:B ents={}, bptrs={}

Consider two cases, depending on whose update times-
tamp is larger.

Case 1: 11:B> 11:A > 10:B > 10:A.

(a) Updates tofid/ andfiddir are sent from node B to A.
Node A deletes/dir but notices that filefid foo has
become an orphan and puts it inULOG (Listing 11).

fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}
A fiddir 10:B ents={}, bptrs={}

fid foo 11:A bptrs={〈fiddir ,“foo” 〉}
fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}

B fiddir 10:B ents={}, bptrs={}
(b) Update tofiddir is sent from node A to B, but is

ignored by B.

(c) Later, node A runsProcessUupdate. A resurrects
directoryfiddir . The update forfiddir is sent to node
B, and B applies this update. The final state on both
the nodes will become like below:

fid/ 12:A ents={〈fiddir , “dir”, 13:A〉}
A fiddir 13:A ents={〈fid foo , “foo”, 11:A〉}

fid foo 11:A bptrs={〈fiddir ,“foo” 〉}
fid/ 12:A ents={〈fiddir , “dir”, 13:A〉}

B fiddir 13:A ents={〈fid foo , “foo”, 11:A〉}

Case 2: 11:A> 11:B > 10:A > 10:B.

(a) The update tofid/ is sent to A, which accepts it. The
update tofiddir is sent to A, which rejects it. At this
moment, A will notice that directoryfiddir has an
orphan and putsfiddir in ULOG.

fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}
A fiddir 10:A ents={〈fid foo , “foo”, 11:A〉},

bptrs={〈fid/,“dir” 〉}
fid foo 11:A bptrs={〈fiddir ,“foo” 〉}
fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}

B fiddir 10:B ents={}, bptrs={}
(b) The update tofiddir is sent from node A to B, which

it accepts. Node B putsfiddir in ULOG, because
the directory entry corresponding tofiddir ’s back-
pointer is missing.

fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}
A fiddir 10:A ents={〈fid foo , “foo”, 11:A〉},

bptrs={〈fid/,“dir” 〉}
fid foo 11:A bptrs={〈fiddir ,“foo” 〉}
fid/ 8:B ents={*〈fiddir , “dir”, 10:B〉}

B fiddir 10:A ents={〈fid foo , “foo”, 11:A〉},
bptrs={〈fid/,“dir” 〉}

(c) Node A fixes the inconsistency betweenfiddir and
fid/. A sends the update tofid/ to B.

fid/ 13:A ents={〈fiddir , “dir”, 10:A〉}
A fiddir 10:A ents={〈fid foo , “foo”, 11:A〉},

bptrs={〈fid/,“dir” 〉}
fid foo 11:A bptrs={〈fiddir ,“foo” 〉}
fid/ 13:A ents={〈fiddir , “dir”, 10:A〉}

B fiddir 10:A ents={〈fid foo , “foo”, 11:A〉},
bptrs={〈fid/,“dir” 〉}

6 Periodic recovery and garbage collec-
tion

The protocol described so far never removes the replica object
even afterUnlink—it removes the replica contents but keeps
attributes, such asts, gpeers, anddeadBptr , as death certifi-
cates. Death certificates must be removed eventually, or the
disk will become filled with junk. Pangaea runs a garbage-
collection module periodically (every three nights by default)
to improve the “health” of the system by culling old tomb-
stones and mending a file’s replica graph. Listing 14 shows
the garbage collection algorithm. We assume a reliable failure
detection here. Specifically:

1. A node’s permanent death can accurately be detected. All
live nodes, within a fixed time period, agree on which
nodes have died permanently.

2. If, for any reason, a node declared permanently dead (by
other nodes) comes back, it must wipe the disk out, as-
sume a new node ID, and join the system from scratch.
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In practice, these conditions can easily be satisfied. One
solution is simply to have the system administrator declare a
node’s decommissioning manually. Alternatively, we can use
standard heart-beat techniques with an extremely large timeout
value, such as a month; the usual cause of inaccurate failure
detection, such as network partitioning and slow nodes, cannot
persist for a month in practice. The second condition can be
maintained by node checking its clock on reboot and reinitial-
izing itself if it has been down for longer than a month.

// Called every third night for every replica on the node.
proc GarbageCollection

LiveNodes: P1 NodeID // Set of live nodes.
r: Replica // Replica to be inspected.
EXPIRE: integer // Dead-replica expiration period, e.g., a month.

// Remove old tombstones. Removing after EXPIRE seconds is safe
// because we cannot receive any new update with timestamp older
// than EXPIRE after removingr.
if ¬ IsLive(r) and r.ts < Newtimestamp - EXPIRE then

DISK← {r.fid} −C DISK
return

r’← Deepcopy(r)

// Remove dead entries in the directory
if r’ is a directorythen

for (key 7→ val): r’.ents •
if ¬ val.valid and val.ts < Newtimestamp() - EXPIRE then

r’.ents← {key} −C r’.ents
if at least one entry has been removed from r’.entsthen

r’.ts← NewTimestamp()
UpdateReplica(r)

// If some gold peers are found dead, recreate one elsewhere
if me ∈ r.gpeers and r.gpeers 6⊆ Livenodes then

newNodes← Pick ‖r.gpeers \ Livenodes‖ random live nodes.
r’.gpeers← r.gpeers \ Livenodes ∪ newNodes
r’.ts← NewTimestamp()
UpdateReplica(r)

// If we find graph edges to dead nodes, re-span it.
for n ∈ r.peers \ Livenodes

Add edges between r and a random replica.
r.peers← r.peers ∩ Livenodes

Listing 14: Periodic recovery from permanent failures. The
failure detection service supplies the list of live nodes in vari-
ableLiveNodes.

7 Correctness

We defined Pangaea’s consistency guarantee informally in Sec-
tion 1.1: (1) the state of all replicas of a file converges, (2)
every file has a valid path name, and (3) no directory entry
points to a non-existent file. Notice that we do not guarantee

that executing high-level operations (e.g.,Unlink) actually pro-
duces the results expected by the user. Such a guarantee is ulti-
mately impossible when conflicts happen. Moreover, our pro-
tocol may undo armdir operation on rare occasions to main-
tain the consistency of name-space operations (Section 1.3.3).
Pangaea does try to minimize the possibility of lost updates by
letting nodes wait in certain situations, as we discuss in Sec-
tion 8.2.

Criterion (1) is ensured when all replicas of a file receive
every update and make identical decisions regarding conflicts.
That every replica receives every update is ensured by our
update-flooding protocol described in [11]. The use ofCLOG
guarantees that update propagation is fault tolerant. That repli-
cas make identical decisions is guaranteed by having a replica’s
state identified by a globally unique timestamp〈6〉, and by hav-
ing all replicas pick the update with the largest timestamp〈16〉.

In the following, recall that by “live” replica we mean that
it has a non-empty list of backpointers or that it is a replica of
the root directory. By “a valid entry” we mean that the entry is
valid for long enough.

Criteria (2) and (3) can be proven using the following prop-
erties.

(i) If a file replica is live, then there is a live local replica of
every directory referenced by a a valid backpointer of the
file replica (namespace containment).
∀ f: ran(DISK) and IsLive(f) •
( 〈d.fid, fname〉 ∈ f.bptrs
⇒ d ∈ dom(DISK) and IsLive(d) )

(ii) If a directory points to a file and a replica of the file does
not have a backpointer to the directory, then eventually
the corresponding directory entry is removed.
∀ d: ran(DISK) and IsLive(d) •
( f: ran(DISK) and IsLive(f) •
(〈d.fid,fname〉7→ ent) ∈ d.ents and ent.valid

and 〈d.fid,fname〉 6∈ f.bptr
⇒ 3 〈f.fid,fname〉7→ ent) 6∈ d.ents )

(iii) If a live directory replica contains a valid entry that points
to a file, then there exist live replicas of the file.
∀ d: ran(DISK) and IsLive(d) •
( 〈f.fid,fname〉7→ ent) ∈ d.ents and ent.valid
⇒ f: ran(DISK’) and IsLive(f) )

The namespace containment property (property (i)) implies
that every file with live replicas has a valid path name—it is
eventually referenced by directories with replicas on the same
nodes as the file replicas. Thus, criterion (2) holds. Properties
(ii) and (iii) state that directory antries and backpointers are
eventually mutually consistent—a directory entry exists if and
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only if there exist live replicas of a file that have back pointers
to the directory. Thus, criterion (3) also holds.
Proof of property (i) : A change to the backpointer is initiated
by high-level directory operations (Section 3) or by remote up-
date processing (Listing 10).

The precondition of the user-initiated operations (e.g., con-
dition 〈13〉 in Listing 4) demands that the target directory be
locally stored and live. Thus, when a backpointer is created in
some replica by one of these operations, a local replica of the
directory already exists.

Remote update processing specifically creates all the par-
ent directories of the new replica contents usingCre-
ateReplica and ResurrectDirectory before calling Up-
dateReplica. Thus, when the backpointer is created, a local
replica of the directory already exists.�
Proof of property (ii) : Assume that filef is pointed to by a
valid entryd .ents of directoryd , but there is no backpointer
from a replica off back tod .

This is possible when the backpointer is removed. There are
two cases where the backpointer is removed, while a directory
entry still exists.

Case 1:During anunlink operation (or the unlink part of
a rename operation), the backpointer of the file replica is re-
moved beforeUpdateReplica is called (listing 5).IssueCup-
date propagates the backpointer removal to the other replicas
of the file 〈19〉. Criterion (1) guarantees that the corespond-
ing update is disseminated to all file replicas. Any backpointer
changes are also recorded inULOG. ProcesUupdate even-
tually processes every record ofULOG and any backpointer
removals are reflected on the local directory replica, i.e., the
corresponding entry is removed. The new directory entries are
propagated to the other directory replicas throughIssueCup-
date. Criterion (1) again guarantees that the coresponding up-
date is disseminated to all directory replicas.

Case 2:When a potential conflict with the backpointers is
detected and resolved〈17〉. Similarly to case 1,IssueUupdate
records the resolved backpointer change (which may remove
a backpointer) inULOG.When theULOG is processed, any
removed backpointers are reflected on removed entries in the
replicas of the corresponding directories.

In any case where a backpointer is created (Create , Link ,
Rename, CreateReplica), the backpointer is created before
the corresponding directory entry.�
Proof of property (iii) :

If there was no live replica of the file, that means that there
would be no backpointer corresponding to this directory en-
try. Given property (ii), the directory entry would have been
evetnually removed from all directory replicas. Thus, for the
directory entry to remain valid, there must be at least one ac-

tive file replica that has a backpointer to the file and that back-
pointer prevails any potential confilct resolutions. Eventually,
the backpointer becomes valid in all replicas of the file.�

8 Implementation considerations

8.1 Implementing directories

Directory entries in Pangaea are identified by tuple〈FileID,
filename〉 to simplify conflict resolution (Section 2). This de-
sign raises two issues. First, it would be slow if implemented
naively, because most directory operations find files by names.
Second, it must let the user distinguish two different files with
the same name.

The first problem is solved by implementing a directory as a
mapping from a string (filename) to a set of directory entries.
In absence of conflicting updates, a single filename is mapped
to a single entry, achieving the same level of efficiency as the
traditional file system’s.

The second problem is solved by converting filenames dur-
ing a directory-scanning request (readdir ). When Pangaea
finds a filename with multiple entries duringreaddir , it dis-
ambiguates them by appending (a textual representation of)
their file IDs. For example, when filenamefoo is shared by
two entries, one for a file with ID of 0x83267 and another with
ID of 0xa3c28, the user will see two filenames,foo@@83267
and foo@@a3c28. Future file-related system calls, such as
open andrename , will locate a unique entry from given one
of these filenames. The separator between the original file-
name and the suffix (“@@”) should be a string that usually does
not appear in a filename—otherwise, a user cannot create a file
with a name that contains the separator.

8.2 Choosing U-update timeout periods

ProcessUupdate is the central procedure that fixes inconsis-
tency between a file’s backpointer and the corresponding di-
rectory entry. For two reasons, it is a good idea to wait before
fixing the inconsistency.

Immediate execution often results in a storm of updates.
When name-space inconsistency is found,ProcessUupdate
will be scheduled on every node that replicates that file. If ex-
ecuted immediately, these nodes will broadcast the same reso-
lution result to one another, thereby wasting the disk and net-
work bandwidth. By adding a random delay, however, there
is a high chance that one replica resolves the problem and

14



tells other replicas to accept the resolution. On all other repli-
cas, whenProcessUupdate runs, it merely confirms that the
name-space is consistent and exits.

For instance, suppose that file/foo/bar is replicated on
nodes{A, B}, and Alice on node A deletes file/foo/bar .
Node A pushes the update tobar to node B, and node B puts
the file’s replica inULOG. In this situation, node B should wait
for some period and let node A executeProcessUupdate, up-
date/foo , and propagate the change to B.

Immediate execution may undo an operation against the
user’s expectation. IssueUupdate is called when a di-
rectory is removed, but some live files are found under it
(steps〈15〉 and 〈18〉). For example, suppose that directory
/foo and file/foo/bar are replicated on nodes{A,B}, and
Alice on node A doesrm -rf /foo . The update to/foo
may arrive at node B before the update tobar , in which case
node B will register/foo in ULOG (because filebar is still
live). If node B executesProcessUupdate before receiving
the update tofoo , it will end up undoing Alice’s change.
Rather, node B should wait for awhile, in the hope that update
to bar will arrive during the wait.

On the other hand, delaying executingProcessUupdate for
too long will prolong the state of inconsistency. We thus set the
following guidelines for the waiting period.

• For a change that happens as a direct result of local
filesystem operations,ProcessUupdate should be ex-
ecuted immediately, because the user expects that. In
particular, proceduresCreate, Unlink, andRename all
callsUpdateReplica, which in turn callIssueUupdate.
In these situations,ProcessUupdate should be executed
immediately.

• For IssueUupdate called as a result of remote update,
ProcessUupdate should wait for fairly long, e.g., 3 min-
utes.

9 Assessing Pangaea’s storage over-
head due to name-space containment

The name-space containment property increases the storage
demand by forcing each node to store directories that it will
not actually use. This section evaluates the overhead of this
requirement.

Due to the lack of wide-area file system trace, we take a
Redhat Linux distribution (workstation version 7.3) and ana-
lyze the storage overheads of the system statically, assuming

that a distributed group of users stores the Redhat-7.3 files in
Pangaea servers. We measure the storage overhead by the per-
centage of 512-byte disk blocks used by directories, averaged
over all nodes in the system. The storage overhead is deter-
mined by four parameters:

• Number of gold replicas per file. When a user creates a
file, a fixed number of gold replicas are placed on nodes
chosen semi-randomly. A node may therefore store a gold
replica without its local users never accessing it. For each
gold replica, all the intermediate directories in its path
must also be replicated on the same node. Having more
gold replicas will thus increase the space overhead. We
vary this parameter from two to four.

• Gold-replica placement policy.We experiment with two
policies. Therandompolicy chooses gold-replica sets for
each file or directory uniformly randomly. Thedir policy
chooses gold-replica sets uniformly randomly for a direc-
tory, but for regular files in the directory, it chooses the
set the same as the directory’s. This policy, similar to
Archipelago’s [5] and Slice’s [2], helps directories to be
concentrated on fewer nodes and lower the space over-
head.

• Average number of bronze replicas per file. Bronze repli-
cas impose the same storage overhead as gold replicas.
Bronze replicas, however, are created only when the users
wants to access it, and we can expect some access local-
ity that improves the storage overhead. We discuss the
locality issue below. We change this parameter from 0 to
100.

• Degree of file-access locality.In general, we expect some
locality in the file-access pattern of a user. In other words,
when a user accesses a file, he or she will also access other
files in the same directory. We model this behavior via the
degree of file-access locality. For example, if the value of
this parameter is 10%, then 10% of files in a directory are
stored on the same node as bronze replicas. We change
this parameter from 10% to 100%.

The storage overhead is independent of the number of nodes
or users in the system, as an additional node will only increase
the size of directories and files proportionally. As it stands,
Redhat-7.3 stored on a local file system—i.e., the one-gold-
replica, zero-bronze-replica configuration—uses 0.3% of the
disk blocks for directories; this configuration sets the lower
bound.

Figure 4 shows the result of analysis. Graph (a) shows the
storage overhead with the “dir” placement policy. When the
number of bronze replicas is small, all the configurations have
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storage overhead of about 2%. The number of gold replicas
plays little role here, because most of the directories will be
shared by files below them in the name-space. As the number
of bronze replicas grow with low access locality, the overhead
grows, since that forces nodes to create a separate directory
hierarchy for each replica.

Graph (b) shows storage overhead with the “random” place-
ment. Overall, the random placement shows higher overhead
than “dir” placement, since it forces replicating many directo-
ries used only to look up the replica of a single file. As more
bronze replicas are created, the overhead will be determined
by their number and access locality, because the storage space
will be dominated by bronze replicas.

Overall, the system uses at most 25% more space than the
optimal. Given that we already accepted using 2x to 4x more
space to replicate files, we believe that additional 25% of over-
head is reasonable. However, the system should try to consol-
idate the placement of gold replicas from the same directory,
since it dramatically lowers storage overhead with no adver-
sarial side effect.

10 Conclusion

This paper described Pangaea’s protocol for maintaining the
consistency of the filesystem’s name space. Because of Pan-
gaea adopts a pervasive and optimistic replication policy, it
must run a distributed protocol to inform the conflict-resolution
decision by one replica to its parent directories.

Our protocol embeds backpointers in each file to de-
fine its position in the name space authoritatively. Direc-
tory operations do not directly modify directory entries—they
merely change the file’s backpointer and let a generic conflict-
resolution routine to reflect the change back to the directory.
We proved that this protocol guarantees the consistency of the
file system—namely, that all replicas of a file become identi-
cal, each file has a valid path name, and every directory entry
points to a valid file.

Our protocol demands that for every file, all intermediate
directories up to the root directory are stored on the same node.
We showed overhead caused by this requirement is somewhere
between 3% and 25%. Given that we already accepted using
2x to 4x more space to replicate files, we believe that using
additional 25% of space is reasonable.
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