
Choosing Replica Placement Heuristics for Wide-Area Systems

Magnus Karlsson and Christos Karamanolis
Storage Systems Department, HP Laboratories

Palo Alto, CA

Abstract

Data replication is used extensively in wide-area dis-
tributed systems to achieve low data-access latency. A large
number of heuristics have been proposed to perform replica
placement. Practical experience indicates that the choice
of heuristic makes a big difference in terms of the cost of
required infrastructure (e.g., storage capacity and network
bandwidth), depending on system topology, workload and
performance goals.

This paper describes a method to assist system designers
choose placement heuristics that meet their performance
goals for the lowest possible infrastructure cost. Existing
heuristics are classified according to a number of prop-
erties. The inherent cost (lower bound) for each class of
heuristics is obtained for given system, workload and per-
formance goals. The system designer compares different
classes of heuristics on the basis of these lower bounds. Ex-
perimental results show that choosing a heuristic with the
proposed methodology results in up to 7 times lower cost
compared to using an “obvious” heuristic, such as caching.

1. Introduction

Data replication is used extensively to improve data ac-
cess performance in wide-area distributed systems. In sys-
tems such as content delivery networks [4], web hosting ser-
vices [11, 12], and distributed data repositories [8, 13], data
are replicated close to the point of access to achieve low ac-
cess latency.

Several techniques are used to perform replica place-
ment, including variations of caching [7] and centralized al-
gorithms [11]. All approaches aim at meeting some latency-
related performance goal; some take such a goal as an in-
put parameter, while others provide an implicit performance
level that cannot be specified. Similarly, the metric used to
capture the performance goal differs among different ap-
proaches. For example, some systems aim at improving the
average access latency, while others guarantee that at least

a certain percentage of accesses are served within a speci-
fied latency threshold.

Consider a storage system (e.g., a video on-demand ser-
vice) storing 10k unique files, 1TB in total size, over 300
distributed nodes. Assume that the designer wants 90% of
read requests to be served within at most 100ms. Achiev-
ing this goal by using LRU caching [14] would require at
least $30,000 just for disk capacity for the caches. On the
other hand, if instead a centralized greedy placement heuris-
tic [11] is used for the same system and workload, the per-
formance goal could be met with just $7,500 for disk ca-
pacity, with both approaches having a comparable cost for
consumed network bandwidth [6].

The example above illustrates that choosing the right
replica placement approach is a non-trivial and non-intuitive
exercise. Deciding how many replicas to create and where
to place them to meet a performance goal with minimal in-
frastructure cost is an NP-hard problem (see Appendix) . All
replica placement approaches proposed in the literature are
heuristics that are designed for certain systems and work-
loads. A heuristic that works well in one case may be com-
pletely inappropriate under different circumstances—it may
be too costly or even unable to meet the performance goal.

One way to choose a heuristic is, of course, by imple-
menting a number of them in a live system and evaluat-
ing them under real workloads. In the general case, this is
not feasible due to the performance and cost implications
of poor choices. Moreover, implementing and integrating a
heuristic in a live system is a challenging and time consum-
ing task. Even worse, this process may need to be repeated
every time the system or workload change.

This paper proposes a method for deciding on the ap-
plicability of replica placement heuristics, without affect-
ing the live system. The key idea is to derive the inherent
cost of different classes of heuristics. To achieve this, we
use an integer programming (IP) formulation of the replica
placement problem, together with constraints that capture
the possible placement solutions of different heuristics. This
formulation is used to calculate lower bounds for the re-
sulting cost of a range of possible heuristics, given spe-
cific system topologies, workloads and performance goals.
The paper presents experimental results demonstrating that

the cost of actual heuristics is close to that of the obtained
lower bounds. Thus, the key idea is that lower bounds can
be used to argue about the applicability of heuristics for a
given workload, system and performance goal.

The focus of the paper is on the practical aspects of the
method, not on its theoretical foundations. The latter are de-
scribed in the appendix . The proposed method is an off-
line approach that assists system designers in the follow-
ing ways: 1) eliminate types of replica placement heuris-
tics that can not meet the required performance goal for a
certain system topology and workload; 2) among heuristics
that can meet the goal, pick one that results in low infras-
tructure cost; 3) decide on the necessary system configura-
tion (number of nodes, storage capacities, etc).

We demonstrate the applicability of the method with ex-
perimental results from a realistic case study—a service that
provides file access to the regional and remote offices of a
corporation with multiple sites. The evaluation shows that
the method identifies the appropriate heuristic and results in
considerable savings in infrastructure costs.

In summary, the paper makes the following contribu-
tions:

� Proposes an off-line method for choosing a replica
placement heuristic, given a system, workload and per-
formance goal.

� Evaluates the applicability of heuristics on the basis of
lower bounds on cost, without requiring to deploy the
heuristics in a live system.

� Demonstrates the practicality of the proposed method
in a real-world case study.

2. Related Work

Data replication and placement for improving perfor-
mance was first studied in the context of the file assign-
ment problem [3] and was shown to be a complex combi-
natorial optimization problem. Replica placement has been
a key technology in content delivery networks [4] as well as
web caching and web proxy services [7, 12, 18]. All these
systems aim at improving the average access latency, while
they minimize the cost of the system resources used for
replication. Qiu et al. [11] defined the problem of replica
placement that minimizes the average access latency for
given system resources. They formalized it as a static k-
median problem for which they obtained general lower
bounds; the cost of some known heuristics was compared
against those lower bounds. Our goal is to guarantee certain
latency goals while minimizing the replication cost. We ob-
tain lower bounds for specific classes of heuristics. These
bounds provide stronger comparison points for the cost of
practical heuristics.

More recently, Yu and Vahdat proposed and formalized
the problem of minimal replication cost for a given avail-
ability target [20]. They derive general lower bounds, given
a workload, network partition patterns and consistency re-
quirements, in a system with one data object. In their work,
availability is defined as the fraction of accesses that com-
plete successfully. We are also concerned with minimiz-
ing the cost of resources used to do replication. However,
our objective is to meet a specified latency goal. We obtain
lower bounds for certain classes of heuristics and for realis-
tic number of data objects. One of our definitions of perfor-
mance goals is a generalization of theirs (they require that
100% of the requests satisfy the latency threshold). To avoid
an explosion to the computational complexity of the prob-
lem and to handle large number of objects, we do not cap-
ture failures and consistency.

We have shown that the replica placement problem is
a dynamic variation of the classic SET-COVER problem [5,
16]. It is dynamic because access patterns and, as a result,
placement of replicas may change over time. There are dy-
namic extensions of the original static SET-COVER that have
been proposed in the literature [9], but none of them cap-
tures latency goals. Daskin and Owen have proposed an ex-
tension that captures latency goals, but only in a static con-
text [10]. There are no known approximation algorithms for
either extension of SET-COVER. Thus, our method uses a
linear programming relaxation of the IP problem formula-
tion to obtain lower bounds that, in practice, are close-to-
tight.

3. Problem Formulation

The proposed method compares classes of heuristics on
the basis of lower cost bounds, given a system, workload
and performance goal. To that purpose, we formalize the
minimal replication cost for performance (MC-PERF) prob-
lem as an Integer Programming (IP) optimization problem.
We solve this problem to derive the required lower bounds.

3.1. Basic Problem

In the problem formulation, the system is represented as
a set of interconnected nodes (N). The nodes store replicas
of a set of data objects (K). Each node has some demand for
different objects in the system, captured as requests origi-
nating from the users on that node.

Replicas of objects can be dynamically created or re-
moved on any of the nodes. Such changes may only occur
at the beginning of evaluation intervals. The intervals rep-
resent the highest frequency at which the placement heuris-
tic is executed on any node in the system. For example, a
caching heuristic is run on a node upon every single object
access initiated at that node; a complex centralized place-

Variable Meaning
storenik Binary: node n stores object k during interval i.
createnik Binary: object k is created on node n during interval i.

coverednik Binary: node n can access object k within the latency threshold during interval i.
routenmik Binary: node n can access object k in interval i from node m.

openn Binary: node n is enabled, i.e., it can store replicas.
readnik The number of read requests from node n to object k in interval i.
writenik The number of write requests from node n to object k in interval i.

latencynm The latency for accessing an object at node m from node n.
distnm Binary: node n can reach node m within the latency threshold Tlat .

knownm Binary: node n uses information from node m to make its placement decision.
f etchnm Binary: node n can fetch objects from node m.
histnik Binary: node n has a record in its activity history of object k being accessed on node n in interval i.

Tlat The target latency threshold.
Tqos The fraction of accesses served in at most Tlat , in the case of the first metric.
Tavg The average latency goal for the second metric.
α The unit cost for storage.
β The unit cost for replica creation.
γ The unit cost of the penalty for an access taking more than Tlat .
δ The unit cost for an update message.
ζ The unit cost for enabling and managing a node.

Table 1. The variables used in the IP model of MC-PERF. Variables in bold are the unknown decision
variables. n and m are nodes, i is an interval and k is an object.

ment heuristic may be run once a day. An execution in the
system consists of a finite sequence of evaluation intervals
(I).

We extend the definition of replication cost by Yu and
Vahdat [20] to cover multiple objects, as captured by cost
function (1). The replication cost is defined to be the sum
of the storage cost and the replica creation cost (the cost of
networking resources used to create a replica), over all ob-
jects, nodes and intervals. We do not consider replica re-
moval cost, as it is negligible in most real systems.

In the cost function, storenik is a binary variable cap-
turing whether node n stores object k during interval i;
createnik denotes whether object k is created on node n at
the beginning of interval i. Constants α and β represent the
unit cost for storage and replica creation cost, respectively.
They also provide a way to change the weight of each of the
two elements in the cost function. The definition could be
easily extended to let α and β vary for different objects and
nodes. The variables used in the problem definition are sum-
marized in Table 3. For notational convenience, we write�

n � m instead of
�

n � m � N,
�

i instead of
�

i � I, and
�

k in-
stead of

�
k � K.

∑
i � I

∑
n � N

∑
k � K

�
α � storenik � β � createnik � (1)

The objective of MC-PERF is to minimize (1), subject to
a number of constraints, that capture the performance goal
metric that is of interest. Other metrics can be expressed,
but they have to be monotonically increasing or monotoni-
cally decreasing with the addition of a replica. In this paper,
we focus on two representative metrics that we consider of
practical importance.

The first metric is a utility function that specifies the per-
centage of requests that have to be satisfied within a latency
threshold (referred to as QoS goal in the rest of the paper).
It is captured in (2) as the minimum required request ra-
tio (Tqos) served within the latency threshold; e.g., 99% of
the requests are served within 250 ms. This performance
goal can be defined for a single user or for an entire group
of users (e.g., department), as well as for a single data ob-
ject or for a set of objects (e.g. all the files of a user). Con-
straint (2) defines this on a per user basis and over all ob-
jects; it can be easily modified to account for any of the
other three possible definitions.

Constraints (3) – (6) define the problem variables and
system invariants. Constraint (4) states that there are no
replicas in the system to start with; however, this could
be trivially modified to account for any initial placement.
distnm is a binary variable capturing whether node n can
reach node m within the latency threshold, given the sys-
tem’s topology.

∑i � I ∑k � K readnik � coverednik

∑i � I ∑k � K readnik

	
Tqos
 n (2)

createnik
	

storenik � storen � i 1 � k
 n � i � k (3)
storen � 1 � k � 0
 n � k (4)

coverednik � ∑
m � N

distnm � storemik
 n � i � k (5)

storenik � coverednik � createnik ��� 0 � 1 �
 n � i � k (6)

The second metric refers to the average latency perceived
by the users. It states, for example, that the average latency
must not be above 250 ms. To express this type of perfor-
mance goal, constraint (2) is replaced by equations (7) –

(10) below. In particular, constraint (7) states that the aver-
age perceived latency in the system must be less or equal to
a specified threshold. The other constraints capture the fact
that a request is routed only to one node that stores the ref-
erenced object.

∑m � N ∑i � I ∑k � K readnik � latencynm � routenmik

∑i � I ∑k � K readnik

�
Tavg � n (7)

∑
m � N

routenmik � 1 � n � i � k (8)

routenmik � storenik
�

0 � n � m � i � k (9)
routenmik ��� 0 � 1 � � n � m � i � k (10)

We have shown that problem MC-PERF, as defined here,
is NP-hard. The proof is based on a reduction of the well-
known SET-COVER problem [17] to MC-PERF. The details
of the proof are outside the scope of this paper; they can be
found in the appendix .

3.2. Model Extensions

The problem definition as stated above does not make
any provisions for those requests that do not meet the per-
formance goal, for any of the two metrics. For example, if
99% of the requests are served within 250 ms, the remain-
ing 1% may take arbitrarily long to be served (or can even
be completely discarded). Often, it makes sense to serve the
requests that miss the performance goal in a best effort man-
ner. To capture this, term (11) can be added to the cost func-
tion (1). This term introduces a penalty (additional cost pro-
portional to γ) for any access that takes longer than the la-
tency threshold Tlat .

γ � ∑
i � I

∑
n � N

∑
k � K

�
readnik � � 1 � coverednik �

∑
m � N

�
latencynm � Tlat � routenmik (11)

Similarly, term (12) can be added to the cost function to
capture the cost of writes (updates) in the system. The ba-
sic definition, implies that data replicas can be stored on
any node in the system. However, enabling a node to run
the placement heuristic and store replicas may involve some
cost. This cost is captured by including term (13) in the cost
function. In that case, constraint (14) states that placement
can be performed only on “open” nodes.

δ � ∑
i � I

∑
n � N

∑
k � K

�
writenik � ∑

m � N
storemik (12)

ζ � ∑
n � N

openn (13)

openn ! storenik � n � i � k (14)
openn ��� 0 � 1 � � n (15)

4. Classes of Heuristics

Solving the above IP problem, we can get the theoret-
ically lowest possible infrastructure cost. This is the gen-
eral lower bound for MC-PERF. However, for the purposes
of this paper, we need to obtain the lowest possible cost
achievable with different types of heuristics. To accomplish
this, we identify a set of properties that capture the tech-
niques and assumptions found in different heuristics. These
properties are expressed as additional constraints in the IP
formulation. Solving MC-PERF with some additional con-
straints that represent a certain class of heuristics, we get
the lowest possible cost of those heuristics, for a given sys-
tem, workload and performance goal.

4.1. Heuristic Properties

The heuristic properties we consider are listed in Table 2.
As will be discussed in Section 4.2, they are representative
of an extensive range of placement heuristics. The proper-
ties are discussed in more detail in the following paragraphs.

Storage constraint. Placement heuristics that use a fixed
amount of storage throughout the execution satisfy the stor-
age constraint property. Examples include caching heuris-
tics and many file allocation algorithms [3]. There are two
variations of this property that are captured by the two ver-
sions of constraint (16). The first states that the amount of
storage used is the same for every single node and interval.
This corresponds, e.g., to a system where the administrator
configures every node with the same cache size. The sec-
ond variation reflects the case where the amount of storage
used varies between nodes (but not with time). This cap-
tures systems where e.g., larger caches are placed on strate-
gic nodes with high traffic. The constraint captures just the
fact that the storage size is the same across all intervals (and
across all nodes for the first variation); it does not spec-
ify what that capacity is. It is the solution to the problem
that provides the minimal capacity that satisfies this con-
straint.

∑
k � K

storenik � ∑
k � K

store0 " 0 " k � n � i (16)

∑
k � K

storenik � ∑
k � K

storen " 0 " k � n � i (16a)

Replica constraint. This constraint reflects heuristics (typ-
ically centralized [3, 11]) that use a fixed number of repli-
cas for each object throughout the execution. There are two
variations of this constraint. The first states that all objects
have the same number of replicas in the system, for all in-
tervals in the execution. It refers to heuristics that create a
fixed number of replicas for all objects irrespective of de-
mand. The second variation states that each object has its
own replication factor for the duration of the execution. This

Heuristic properties Abbrev Lower bound for any heuristic...
storage constraint SC that is using a fixed amount of storage in every interval.
replica constraint RC that is using a fixed number of object replicas in every interval.
routing knowledge Route where each node knows the contents of some (zero or more) other nodes.
global/local knowledge Know where the placement decision was made using information from many / one (local) node.
activity history Hist for which only objects accessed during this many past intervals can be placed.
reactive placement React that is reactive; proactive placement implied otherwise.

Table 2. The six heuristic properties considered in this paper.

is the case for heuristics that create more replicas for popu-
lar objects. Again, the solution to the problem provides the
optimal replication factor that satisfies this constraint.

∑
n # N

storenik $ ∑
n # N

storen % 0 % 0 & i ' k (17)

∑
n # N

storenik $ ∑
n # N

storen % 0 % k & i ' k (17a)

Routing knowledge. With some heuristics, such as
caching, a node has no knowledge of what replicas
other nodes cache. Upon a miss, the node has to fetch
the object from a predetermined, usually remote loca-
tion that stores all objects (origin server). On the other
hand, with cooperative caching, a node knows what ob-
jects are stored at some other, nearby nodes and can fetch
them from there [19]. Similarly, many centralized heuris-
tics fetch the closest replica in the system [11]. We call
this property routing knowledge. It is represented by ma-
trix f etch. f etchnm (1, when node n knows of the ob-
jects stored on m. Constraints (18) and (19) state that n can
only fetch objects from a node m for which f etchnm (1.

coverednik) ∑
m # N

distnm * storemik * f etchnm & n ' i ' k (18)

routenmik + f etchnm) 0 & n ' m ' i ' k (19)

Global/Local knowledge. When a heuristic makes a place-
ment decision for a specific node, it takes into account ac-
tivity at that node and potentially other nodes in the sys-
tem. In one extreme, some heuristics (e.g., caching) make
placement decisions for a node based on the accesses that
originated on that node alone (local). On the other extreme,
heuristics that use knowledge from the entire system (typi-
cally, centralized heuristics) may place an object on a node
as a result of activity somewhere else in the system (global).
To represent these two cases and anything in between, we
use matrix know. knownm indicates that knowledge of ac-
cesses originating at node m, even if not directed to node
n, is used to decide the placement of objects on n. We call
all nodes m such that knownm (1 to be in the the sphere
of knowledge of node n. In the next paragraph, we discuss
how matrix know is incorporated into our model.
Activity history. A heuristic decides to place a replica on
the basis of the system’s activity during one or more inter-
vals. The activity history property captures the number of

intervals considered. This is specified in the model by ma-
trix hist. histnik (1, if node n accessed object k during or
before interval i within the history considered by the heuris-
tic.

We exemplify this with the two extreme cases. First,
when the history is a single interval, a heuristic that de-
cides about placement in interval i on node n can consider
only objects referenced within the node’s sphere of knowl-
edge during i. Caching is an example of such heuristics.
Second, when the history is all intervals, a heuristic can
consider any object referenced within the node’s sphere of
knowledge, throughout the execution, up to and including
i. We introduce constraint (20) to capture the activity his-
tory. Note, that it does not make sense to place an object
more than one interval before it is accessed for first time,
because this would increase storage cost unnecessarily, with
the same networking cost. Thus, this constraint provides a
lower bound for heuristics that perform prefetching.

createnik) ∑
m # N

histnik * knownm & n ' i ' k (20)

Reactive placement. Until now, the IP formulation implic-
itly captures solutions of proactive heuristics; the activity
history covers not only previous intervals but also the cur-
rent interval, at the beginning of which the placement de-
cision is made. This corresponds to heuristics that perform
placement knowing the accesses to take place in the current
interval or prefetch objects that have not been accessed be-
fore. However, there are many heuristics that are reactive,
i.e., they can only place objects that have been accessed
in the past (before the current interval). Examples include
caching (without prefetching) and other on-line heuristics
that have no prior knowledge of the workload.

We capture the solutions of reactive heuristics by further
constraining the activity history property. The new version
states that if histn , i - 1 , k (0 for a given object k during the
previous interval in the sphere of knowledge of node n, ob-
ject k cannot be created in n during the current interval. For
example, if the activity history is just a single interval and
the heuristic is using only local information, an object can-
not be created on a node unless it was accessed by that node
during the previous interval. This is true, for example, with
local caching.

createnik . ∑
m / N

histn 0 i 1 1 0 k 2 knownm 3 n 4 i 4 k (20a)

histn 0 1 1 0 k 5 storen 0 1 1 0 k 3 n 4 k (21)

4.2. Classes of Heuristics

Solving the basic MC-PERF problem of Section 3.1, we
obtain a general lower bound that applies to any possible
replica placement algorithm. By including one or more of
the above constraints to the MC-PERF formulation, we con-
strain the possible solutions to only those that are possible
with a class of heuristics. Thus, solving the IP problem with
additional constraints provides lower bounds for the cost
of the corresponding heuristic classes. We use these lower
bounds, in Section 6, to argue about the merits of differ-
ent classes of heuristics. Table 3 includes an extensive list
of heuristics from the literature and shows how they are cap-
tured by various combinations of heuristic properties.

A number of centralized heuristics that use global knowl-
edge of the system to make placement decisions are con-
strained only by a storage constraint or a replica constraint.
Other heuristics are run in a completely decentralized fash-
ion, only having knowledge of activity on the local node
where they run. The common caching protocols are sub-
cases of those heuristics; they react only to the last ac-
cess initiated on the local node; all misses go to a desig-
nated “origin” node. Cooperative caching is captured by
constraints that reflect the extended knowledge of 1) activ-
ity on other nodes in the system, and 2) what objects other
nodes store. Last, performing proactive placement based on
knowledge or speculation of accesses to happen in the cur-
rent time interval (as opposed to just past intervals), cap-
tures variations of caching and cooperative caching, with
prefetching.

4.3. Evaluation Interval Values

An important parameter of the MC-PERF problem formu-
lation is the evaluation interval (∆) used to calculate lower
cost bounds. Intuitively, the evaluation interval must be as
small as possible for the solutions considered—the more of-
ten you make placement decisions, the better your chances
to meet the performance requirements and reduce cost. In
theory, as ∆ approaches 0, the lower bound converges to a
value that is the lowest possible for any ∆; the storage part of
the cost function is minimized. However, that lower bound
would be lower than the cost of any realistic heuristic. In
practice, ∆ should be set according to the smallest possi-
ble evaluation period of the targeted heuristics.

There are two types of heuristics to be considered when
setting ∆ in MC-PERF. First, there are heuristics that per-
form placement evaluations every P units of time. For such

heuristics, we have shown that an evaluation interval ∆ 6
Pmin 7 2, where Pmin is the smallest P on any node and at
any time in the system, is sufficient to provide a lower
bound (see the appendix) . Second, there are heuristics (e.g.,
caching) that perform placement evaluations after every ac-
cess on a node. In that case, ∆ is the minimum time be-
tween any two accesses within the sphere of knowledge of
any node.

5. Deriving Lower Bounds

In general, an IP problem can be solved exactly with an
IP solver, resulting in a tight lower bound. However, such
an approach is feasible only at a very small scale. To ef-
ficiently calculate lower bounds, one has to sacrifice tight-
ness. On the other hand, those lower bounds must be close
to the tight lower bound, otherwise they would be of no
use. Thus, the requirement is to obtain lower bounds that
are close to tight but still can be computed in reasonable
time.

There are two common ways to obtain lower bounds: ei-
ther devise an approximation algorithm for the problem, or
use a linear programming relaxation (LP) of the problem
combined with a rounding algorithm. It has been shown
that SET-COVER cannot be approximated with a constant
approximation factor [17], and there are no known approx-
imation methods for either dynamic SET-COVER or static
SET-COVER with performance constraints (both can be re-
duced to instances of MC-PERF). These are worst-case esti-
mates for approximation algorithms, for any input data. In-
stead, we obtain lower bounds for MC-PERF using linear
relaxation and a rounding algorithm (a heuristic itself), as
this is applicable to instances of the problem (specific in-
put data) and, in general, provides lower bounds that are
tighter than the theoretical worst-case.

The linear relaxation is obtained by letting the binary
decision variables in MC-PERF have fractional values (be-
tween 0 and 1). Solving the LP problem is orders of mag-
nitude faster. The cost of the LP solution is always less
than or equal to the cost of the IP solution. We developed
a domain-specific rounding algorithm that rounds the frac-
tional values of the LP solution to produce a feasible solu-
tion to the IP problem, with a low additional cost due to the
rounding. The details of the rounding algorithm are an op-
erations research topic and are described in the appendix .
In that paper, we show that the algorithm results in close-to-
tight lower bounds for instances of MC-PERF (always within
10% as opposed to up to 80% obtained with generic round-
ing algorithms).

The number of constraints and variables in MC-PERF

is O 8:9N 9;9 I 9<9K 9 = , where 9N 9 is the number of nodes, 9 I 9 the
number of intervals and 9K 9 the number of objects. We use
CPLEX [2] to solve the LP problem. On a workstation

Heuristic properties Class of heuristics represented Examples
SC RC Route Know Hist React> global global multi storage constrained heuristics [3, 4]> global global multi replica constrained heuristics [3, 11]> local local multi decentralized storage constrained heuristics w/ local routing [4, 12]> local local single > local caching [14]> global global single > cooperative caching [7]> local local single local caching with prefetching [14]> global global single cooperative caching with prefetching [19]

Table 3. Examples of heuristic classes captured by combinations of heuristic properties.

with a 2.4GHz Pentium IV processor, the running time of
CPLEX on the instances of the LP problem studied in this
paper (realistically sized systems) ranges from less than 1
minute to about 12 hours with all constraints enabled. The
rounding algorithm execution takes just seconds even for
large systems. These times are adequate for the proposed
off-line method.

6. Experimental Results

This section presents experimental results from applying
the proposed method to a real-world system, a remote office
file access service. We show that:

1. lower bounds provide a good guideline for the inherent
cost of heuristics;

2. different workloads, systems and/or performance
goals result in choosing completely different place-
ment heuristics;

3. the choice of a good heuristic can result in up to 7.5x
savings in infrastructure cost (storage capacity and net-
work bandwidth), compared to a commonly used de-
fault heuristic;

4. the method scales sufficiently well for realistic systems
and workloads.

We demonstrate the versatility of the method by show-
ing the above points for two different deployment scenar-
ios. First, in systems where the infrastructure already exists
and we need to come up with a good heuristic to deploy in
the system. Second, in systems where there is no infrastruc-
ture in place and we need to decide on the locations where
replicas can be placed as well as a heuristic that delivers the
desired performance at a low cost.

The case study we consider reflects the network of a
corporation with twenty different sites that are distributed
across multiple geographic locations and are interconnected
by network links of different latencies and capacities. In
fact, for our experiments, we use a network topology based
on an actual Internet AS-level topology [15], with 20 nodes.
A single AS-level hop in the topology takes between 100 ms

and 200 ms. Each node represents a site and has a set of lo-
cal users. The population of users is unevenly distributed
emulating the fact that some sites are bigger or more ac-
tive than others. All users, irrespective of location, access a
common set of data objects (files). Each node in the topol-
ogy is a candidate location for placing object replicas. One
of the nodes represents the data center located at the head-
quarters of the corporation. This node stores all the objects
in the data set.

We use two workloads representing two completely dif-
ferent object popularity distributions. Workload WEB has
a heavy-tailed Zipf distribution with many unpopular ob-
jects. It is derived from the WorldCup98 web-server logs
[1] and is representative of accesses to web pages. Work-
load GROUP includes only popular objects with a uniform
popularity distribution. It represents a working group ac-
cessing the files of an active collaborative project. All nodes
are highly active and they all generate requests to the 1,000
data objects we consider. In total, we have 300K requests in
WEB and 16M requests in GROUP. The most popular object
has 36K accesses in both workloads. The least popular ob-
ject has just 1 access in WEB and 8.5K accesses in GROUP.
The duration of both workloads is 1 full day. To keep the
discussion simple, all objects are of the same size.

For the experiments, we consider the cost of replicating
an object to be 1 and the cost of storing one object for one
hour to be also 1.1 All other costs (enabling nodes, writes,
penalties for late responses) are set to zero. Performance
goals are specified on a per-user basis over-all objects. The
discussion in this section is concerned only with the QoS
goal metric; the methodology for average latency perfor-
mance goals is the same. For the calculations of the lower
bounds, we use an evaluation interval of 1 hour (to keep the
computational complexity reasonable). Deployed heuristics
are evaluated using simulation. We use their actual evalua-
tion interval, which might be smaller than that, e.g., every
single access in the case of caching. Despite the coarse in-
terval used for the IP problem solution, we have observed
in practice that the obtained lower bounds are still indica-

1 What matters for our evaluations is the relative cost of different ap-
proaches, not an actual monetary value.

tive of the evaluated heuristics.

6.1. Heuristic Selection Methodology

In this section, we go through the first type of scenario,
where a system designer has to choose (and then imple-
ment and apply) a heuristic for a remote office file service.
We assume that an infrastructure already exists, with 20 file
servers, one on each site, participating in offering the file
service to the users. The storage and bandwidth of these
servers are shared with other users and applications. Thus it
is important to consume as few resources as possible. The
designer has examples of possible workloads and a specifi-
cation of the desired QoS goal. For the experiments, we as-
sume that the desired latency threshold is 150 ms.

The designer starts by calculating the general lower
bound and the lower bounds for all classes of heuristics
that could be implemented in the system. The key idea of
the method is to choose a heuristic from the class with the
lowest bound. If this lower bound is close to the general
lower bound, there exists no heuristic that could be signif-
icantly better than the chosen one. Otherwise, the designer
should probably look for other classes of heuristics, with
bounds closer to the general one, and choose a heuristic
among them. If there is a number of classes with compa-
rable lower bounds and no better class can be found, then a
heuristic from any of them is a good choice. Of course, the
designer must also take into account the properties of the
heuristics under consideration. For example, in certain de-
ployments, a heuristic that requires global knowledge of the
system may not be applicable.

Figure 1 shows the lower bounds of the classes of heuris-
tics that can be implemented in the remote office system.
From the figure, we see that a storage constrained heuris-
tic should be a good choice for WEB, while a replica con-
strained heuristic should be preferred for GROUP. In either
case, caching does not seem appropriate, since the corre-
sponding lower bounds are much higher. For WEB, local
caching cannot even achieve a QoS goal above 99%.

In the case of workload WEB, the replica constrained
bound is up to 2 times the storage constrained bound and
7 times the general bound. The reason is that, due to the
replica constraint, unpopular objects in the heavy-tailed
WEB have as many replicas as popular ones. For GROUP,
the replica constraint has minimal impact to cost—the lower
bound nearly overlaps with the general lower bound. This is
because GROUP includes only objects that are accessed of-
ten. Thus, creating the same number of replicas for every
object works well.

In the case of WEB, storage constrained heuristics have
the lowest cost. All nodes generate many requests and there
are few popular objects. The same small storage capacity on
all nodes is sufficient to store enough objects to satisfy the

QoS goal. For GROUP, the storage constraint results in costs
that are always more than 5 times the replica constrained
lower bound. The reason is that assuming the same capac-
ity across all nodes results in higher overall storage use.

Both classes of caching heuristics (local and coopera-
tive) have by far the highest cost for high QoS levels, in the
case of WEB. Their lower bounds are 1.2 to 5 times the stor-
age constrained bound. The reason is that the combination
of all the properties (constraints) of caching result in less
optimal use of resources for WEB. In the case of GROUP,
the lower bounds for caching and cooperative caching over-
lap with the bound for storage constrained heuristics, at 5
times the cost of the replica constrained bound. The limit-
ing factor for this workload is the storage constraint prop-
erty of caching.

Given the analysis above, it is clear that caching heuris-
tics are not appropriate for this system. Either they can-
not meet the performance goals or they have a high in-
herent cost. A storage constrained heuristic would be most
appropriate for WEB, and a replica constrained heuristic
for GROUP. Based on the expected workload, the designer
would now look in Table 3 or in the literature and pick the
greedy global heuristic [4] for WEB or Lili Qiu’s greedy
placement heuristic [11] for GROUP. The chosen heuristic
is then applied in the system. In practice, the designer is
done at this stage.

Here, we evaluate the robustness of the method by ob-
taining the actual cost of heuristics when applied in the sys-
tem. The results are shown in Figure 2. In summary: 1) The
proposed method identifies the right type of heuristic; the
cost of the actual heuristic is below the second lowest bound
(with the exception of the 99.99% point for WEB), indicat-
ing that it is impossible for any other examined class of
heuristics to achieve the QoS goal at a lower cost. 2) Us-
ing caching, a popular heuristic, would result in up to 7.5
times cost increase in our case study.

6.2. Infrastructure Deployment Methodology

Here, we discuss the scenario where there are no nodes
(file servers) deployed in the system. The designer has to
decide not only what heuristic to use but also which sites to
deploy nodes in. The users of one site are all assigned to a
specific node. If there is no node deployed in their local site,
then they are assigned to the node of another, neighboring
site. All user accesses are directed to their assigned node.
If a file is not found there, then the request is forwarded to
the headquarters node that stores all files. In these experi-
ments, we do not consider prefetching; all heuristics con-
sidered are reactive.

The methodology used in this scenario consists of two
phases. In phase one, the designer solves the MC-PERF

problem, with one difference—a node opening cost is in-

0

50k

100k

150k

200k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

WEB: Lower bound for classes of heuristics

General lower bound
Storage constrained
Replica constrained

Decentral local routing
Caching

Cooperative caching

0

10k

20k

30k

40k

50k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

GROUP: Lower bound for classes of heuristics

General lower bound
Storage con. & Caching & Coop. caching

Replica constrained
Decentral local routing

Figure 1. The lower bound for various heuristic classes as a function of QoS for WEB and GROUP.

100k

200k

300k

400k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

WEB: Heuristic’s cost

Storage constrained bound
Greedy global heuristic

LRU caching

0

10k

20k

30k

40k

50k

60k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

GROUP: Heuristic’s cost

Replica constrained bound
Replica constrained heuristic

LRU caching

Figure 2. The cost of the chosen heuristic (deployed in the system) compared to the lower bound.
The cost of LRU caching is also shown for comparison.

cluded in the cost function (ζ ? 10 @ 000 for our experi-
ments). The solution provides the smallest number of nodes
needed and their location in the system, to achieve the re-
quired performance goal. This information is returned in de-
cision variable open, a matrix capturing the locations where
nodes should be deployed. In our case study, the solution in-
dicates that 6 nodes, at certain locations in the topology, are
sufficient to offer the required QoS goal.

In phase two, the designer calculates lower bounds for
the 6-node topology; all other nodes are removed from
the topology. The method proceeds as described in Sec-
tion 6.1 (without considering opening costs anymore).
Lower bounds have to be calculated for the 6-node topol-
ogy, since the solution is more constrained than the 20-node
case—accesses are now directed to only one of the 6 nodes.
The results are shown in Figure 3. For WEB, a replica con-
strained or a caching heuristic can only deliver up to 95%
QoS. Note that this is a different conclusion from Fig-
ure 1, when both these classes of heuristics could deliver
a higher QoS. As in the previous section, a storage con-
strained heuristic seems to be the right choice for WEB.
For GROUP, on the other hand, things are very differ-
ent in this scenario. The storage constrained, replica con-
strained and caching bounds are all low and close to each

other. The choice could be a heuristic from any of these
classes. Thus, the most appealing choice is caching, as it is
well understood.

7. Conclusions

Choosing the right heuristic for replica placement in
a large distributed system typically depends on the intu-
ition of the system designer. A simple experimental eval-
uation [6] shows that the heuristic used makes a consider-
able difference in terms of the required infrastructure cost,
including the cost for storage capacity and network band-
width. Moreover, the choice of the heuristic to be used is
often not an obvious one.

The paper proposes a methodology to assist system de-
signers choose replica placement heuristics that meet their
performance goals for the lowest possible infrastructure
cost. The method can be applied in one of two ways. First,
it can be used to decide on the heuristic to deploy in an ex-
isting infrastructure. Second, it can be also used to decide
about the combination of heuristic to deploy and locations
that should be opened for replica placement in the system.
We demonstrate the applicability of the method in a real-
world case study and for two different workloads.

10k

20k

30k

40k

50k

60k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

WEB: Lower bound for classes of heuristics

Reactive bound
Storage constrained
Replica constrained

Caching bound
Greedy global heuristic

12k

13k

14k

15k

95 99 99.9 99.99 99.999

C
os

t

QoS Goal (%)

GROUP: Lower bound for classes of heuristics

Reactive bound
Storage constrained
Replica constrained

Caching bound
LRU caching

Figure 3. The lower bound when only the six nodes deployed are entered as a topology. The replica
constrained and caching bounds are overlapping for GROUP.

The proposed method is an off-line approach, in the
sense that it has to be run explicitly by the designer as
changes in the system occur. Currently, we are investigat-
ing on-line approaches to dynamically adapt the placement
heuristic to changing systems and workloads.

References

[1] M. Arlitt and T. Jin. Workload characterization of the 1998
world cup web site. Technical Report HPL-1999-35R1, HP
Laboratories, 1999.

[2] ILOG CPLEX. www.ilog.com.

[3] L. Dowdy and D. Foster. Comparative Models of the File As-
signment Problem. ACM Computer Surveys, 14(2):287–313,
1982.

[4] J. Kangasharju, J. Roberts, and K. Ross. Object Replica-
tion Strategies in Content Distribution Networks. Computer
Communications, 25(4):367–383, March 2002.

[5] M. Karlsson and C. Karamanolis. Bounds on the Replication
Cost for QoS. Technical report, Hewlett Packard Labs, July
2003.

[6] M. Karlsson and M. Mahalingam. Do We Need Replica
Placement Algorithms in Content Delivery Networks? In
Proceedings of the International Workshop on Web Content
Caching and Distribution (WCW), pages 117–128, August
2002.

[7] M. Korupolu, G. Plaxton, and R. Rajaraman. Placement Al-
gorithms for Hierarchical Cooperative Caching. Journal of
Algorithms, 38(1):260–302, January 2001.

[8] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. In Proceedings of the Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
190–201, November 2000.

[9] S. Owen and M. Daskin. Strategic facility location: A re-
view. European Journal of Operational Research, 111:423–
447, 1998.

[10] S. Owen and M. Daskin. Two new location covering prob-
lem: The partial covering P-center problem and the partial

set covering problem. Geographical Analysis, 31:217–235,
1999.

[11] L. Qiu, V. Padmanabhan, and G. Voelker. On the Placement
of Web Server Replicas. In Proceedings of IEEE INFOCOM,
pages 1587–1596, April 2001.

[12] M. Rabinovich and A. Aggarwal. RaDaR: A Scalable Archi-
tecture for a Global Web Hosting Service. In Proceedings
of the 8th International World Wide Web Conference, pages
1545–1561, May 1999.

[13] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the pangaea wide-area file
system. In 5th Symposium on Operating Systems Design and
Implementation (OSDI), pages 15–30, Boston, MA, USA,
December 2002.

[14] A. Smith. Cache Memories. Computing Surveys, 14(3):473–
530, September 1982.

[15] Telestra.net. http://www.telestra.net.
[16] C. Toregas, C. ReVelle, and L. Bergman. The location of

emergency service facilities. Operations Research, 19:1363–
1373, 1971.

[17] V. Vazirani. Approximation Algorithms. ISBN: 3-540-
65367-8. Springer-Verlag, 2001.

[18] A. Venkataramanj, P. Weidmann, and M. Dahlin. Bandwidth
Constrained Placement in a WAN. In ACM Symposium on
Principles of Distributed Computing (PODC), August 2001.

[19] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase,
A. Karlin, and H. Levy. Implementing cooperative prefetch-
ing and caching in a globally-managed memory system. In
Proceedings of the Joint International Conference on Mea-
surement and Modeling of Computer Systems, pages 33–43,
1998.

[20] H. Yu and A. Vahdat. Minimal Replication Cost for Avail-
ability. In 21st ACM Symposium on Principles of Distributed
Computing (PODC), pages 98–107, June 2002.

Appendix

In section A of the Appendix, we prove that the MC-PERF

problem is NP-hard. In section B, we prove some interesting
properties regarding the evaluation interval, a fundamental

element of the problem definition. The main part of the Ap-
pendix is Section C, where we provide the full details of the
rounding algorithm and its extensions, as well as a proof
that it always arrives to a feasible solution.

A. NP-Hardness

In this section, we show that our problem is NP-hard by
reducing SET-COVER to MC-PERF.

Theorem 1 The minimal replication cost for QoS problem
(MC-PERF) is NP-hard.

Proof for Theorem 1: We show this by a polynomial
time reduction of SET-COVER [17] to MC-PERF. Let each
candidate set in SET-COVER correspond to a unique node
in MC-PERF; this set of nodes is denoted C. Let each ele-
ment in SET-COVER correspond to a unique node in MC-
PERF; this set of nodes is denoted E. Sets C and E are
disjoint. Thus, the set of nodes considered in MC-PERF is
N A C B E. For all c C C and e C E, set distce A 1 and
distec A 1 iff element e is covered by candidate set c in
SET-COVER. All other entries in the dist matrix are set to 0.
In MC-PERF, consider an overall user QoS target of 100%,
and let there only be one evaluation interval and one ob-
ject. Set demande D 0 D 0 A 1 E e C E and set all other entries in
the demand matrix to 0. Let α A 1 and β A 0.

With 100% QoS, all the requests in the system have to
access the object within the latency threshold. As requests
originate only from nodes in E, we only have to make sure
that all nodes in E can access the object within the thresh-
old. Recall that distce is 0 expect if node c corresponds to a
candidate set that covers the element that corresponds to e.
Thus, the only way to satisfy the request from e within the
latency threshold is to store the object replica on a node that
correspond to one of the candidate sets covering e. We can
now easily see that choosing the minimal replication cost in
this instance of the MC-PERF problem is the same as choos-
ing the minimal number of covering sets in the SET-COVER

problem. F

B. The Evaluation Interval

This section proves two results regarding evaluation in-
tervals, an important parameter of our problem formulation.
First, if a lower bound is obtained for evaluation interval ∆,
we show what other intervals this lower bound applies to.
Second, we show what evaluation interval should be used
to obtain a lower bound for heuristics that are evaluated af-
ter every single access.

Theorem 2 A lower bound produced with an evaluation in-
terval of ∆, is a lower bound for any evaluation interval ∆ G
such that ∆ GIH 2∆ or ∆ GJA ∆.

Proof for Theorem 2: Assume for contradiction, that
there exists a ∆ GIH 2∆ that provides a placement with lower
cost. That means that there is at least one object, o1, for
which the following hold. There is one access at t1 K ε,
where ε L ∆, and another access at t1. The cost of storing ob-
ject o1 for duration ∆ is α∆. Assume that because of the two
accesses, o1 has to be stored on some node for two intervals,
for a cost of 2α∆. Consider another evaluation interval, ∆ G ,
such that both of these accesses occur within the same eval-
uation interval. ∆ G provides a placement with lower cost iff
the cost of storing the object during this evaluation inter-
val α∆ GML 2α∆. This can only be true if ∆ GNL 2∆, a contra-
diction. F

In the following, we show the evaluation interval that
should be used to obtain a lower bound for heuristics that
are evaluated after every single access. This might be a
small evaluation interval that forces us to solve the prob-
lem for a large number of intervals. The lemma below re-
stricts the evaluation intervals we consider, without affect-
ing the lower bound.

Lemma 1 Let Anm A decnm O distnm P E n P m. The placement
and accesses of node n can only be affected by what hap-
pens on node m iff Anm A 1.

Proof for Lemma 1: Node n can only interact with node
m if it either can fetch objects from m (distnm A 1) or use
knowledge from node m in making its decision (decnm A 1).
If either of these are true Anm A 1. F
Theorem 3 Let m1 be the minimum time between any two
accesses between all nodes n and m where Anm A 1, and m2

be the next lowest such time such that m1 QA m2. The lower
bound of a heuristic evaluated after each single interval can
be computed with MC-PERF by setting the evaluation inter-
val (∆) to ∆ A m1 R 2 if 2m1 H m2 and to ∆ A m1 if 2m1 L m2.

Proof for Theorem 3: As the evaluation interval of a
heuristic executed at each single access is the time between
two accesses, m1 is the lowest evaluation interval in the sys-
tem. According to Theorem 2, a ∆ of m1 R 2 is the lower
bound of any heuristic evaluated with an evaluation inter-
val greater to or equal to m1. This would then suffice to cor-
rectly provide the lower bound of such a heuristic. However,
if there are no inter reference times in the workload between
m1 and 2m1 there is no need to include this range, thus ∆ can
be set to m1 to save some computational resources. The min-
imum time need only to be computed between all nodes n
and m that could possibly affect each other (Anm A 1). F

C. Rounding Algorithm

The linear relaxation of the IP formulation of the prob-
lem is derived by allowing the decision variables in the

problem to have fractional instead of binary values, as
shown below.

storenik S coverednik S createnik T 1 U n S i S k (6a)
storenik S coverednik S createnik V 0 U n S i S k (6b)

(6c)

routenmik T 1 U n S m S i S k (10a)
routenmik V 0 U n S m S i S k (10b)

(10c)

openn T 1 U n (15a)
openn V 0 U n (15b)

(15c)

As discussed in Section 5, the approach used to obtain
lower bounds for MC-PERF and its extensions is a combi-
nation of linear relaxation and a rounding algorithm. We
propose a greedy rounding algorithm that provides feasi-
ble solutions with cost cost f eas close enough to costLP to al-
low meaningful conclusions about the tightness of the lower
bound. The algorithm is described in detail, in Figures 6, 7
and 5. The intuition behind the algorithm have already been
described in Section 5.

The LP solution of the problem may assign fractional
values to variable storenik for certain nodes, objects and in-
tervals. A rounding algorithm rounds all fractional values
either up to 1 or down to 0. In general, rounding down
decreases the cost of the solution but also decreases the
achieved QoS (percentage of accesses within the latency
threshold). On the other hand, rounding up increases the
cost and the achieved QoS. Thus, a rounding algorithm
should find the right balance between rounding values up
and down, so that the QoS goal is met (feasible solution)
with minimal additional cost due to the rounding, i.e., with-
out paying for additional QoS that is not required. Correct-
ness can be ensured by not allowing a value to be rounded
down, unless it has been preceded by a round-up that in-
creased the QoS by at least as much as the negative QoS
impact due to the subsequent round-down.

Based on this principle, we propose a simple greedy
rounding algorithm, which works as follows. First, some
fractional value of the LP solution is rounded up to 1. This
increases QoS and cost. The algorithm then rounds down as
many fractional values as possible to reduce cost, as long
as the QoS goal is not violated. When no more values can
be rounded down, the process is repeated, until there are no
more fractional values in the solution. The final result is a
feasible solution, with cost cost f eas.

The fundamental issue that the algorithm needs to ad-
dress is how to choose the values to be rounded up and down
and the order in which to do that. To make these decisions,
the algorithm uses a third metric (in addition to cost and
QoS), called reward. To reach a rounding decision, the al-
gorithm considers the achieved QoS only due to values that
are set to 1, at each stage of its execution. Reward reflects

node n .3

node m .4

node p .4 of
 o

bj
ec

t k
pl

ac
em

en
t

interval i

intervals

Figure 4. Example of reward versus QoS impact.
Nodes n, m and p are within the latency thresh-
old from each other. According to the LP solution,
they store (fractional values of) object k during in-
terval i; there are no other nodes within the latency
threshold from them that store k during i. Since,
the total value for k across the three nodes is W 1
in i, rounding up any one of them does not have
any impact on QoS. Reward is the impact to QoS
if all fractional values are considered 0.

the impact to that QoS by rounding up or down a specific
value.

To explain why we need this metric, consider the round-
up case, where we would like to pick the value that provides
the highest increase in QoS at the lowest cost. In Figure 4,
rounding up any one of the three fractional values would
have zero impact to QoS, since it would not increase the de-
mand satisfied within the latency threshold. However, we
have to round up at least one of those three values to pro-
duce a feasible solution. Thus, we choose to round up the
value with the highest reward and lowest cost impact (low-
est cost X reward ratio). Similarly, for rounding down, the
value with the highest cost X reward ratio is chosen in each
iteration.

For notational convenience, the fractional value in
storenik is denoted v. Let v Y node Z n, v Y interval Z i
and v Y ob ject Z k. Also, let v Y value Z storenik,
v Y succ Z storen [i \ 1 [k, and v Y prev Z storen [i] 1 [k. To cover
the corner cases for the beginning or end of the se-
quence of intervals, we set v Y prev Z 0 if v Y interval Z 0 and
v Y succ Z v Y value if v Y interval is the last interval.

The algorithm is shown in Figure 5. For every fractional
value, we calculate the three metrics that the algorithm uses:
cost, reward, and the QoS impact (qos) of rounding it up
or down. Calculating reward, and qos is straightforward—
they are proportional to the different demand satisfied due to
the rounding. cost consists of storage cost and replica cre-
ation cost. The impact on storage cost is proportional to the
value change.

The impact on replica creation cost, on the other hand,
is not necessarily proportional to the value change. It de-
pends on the values before and after the target interval (for
the same node and the same object). Consider, for example,
rounding up the fractional value of storenik. If at least one of

cost ^ lower bound from linearization
qos ^ Tqos
V _ set of all fractional values in store
while V `^ /0a

v b V calculate round up benefit(v)
find v b V with lowest vc cost d vc reward
// round up v
storeve node f ve interval f ve ob ject ^ 1
cost ^ cost g vc cost
qos ^ qos g vc qos
V _ V hji v k
repeata

v b V calculate round down benefit(v)
C _li v b V : qos g vc qos m Tqos k
if C `^ /0

find v b C with vc reward ^ 0 n vc cost o 0
if no v found

find v b C with highest vc cost d vc reward
// round down v
storeve node f ve interval f ve ob ject ^ 0
cost ^ cost g vc cost
qos ^ qos g vc qos
V _ V hji v k

until C ^ /0
if storage constraint present

find cmax , the max no. of objects stored on a node
during any intervala

i b I p n b N;cost ^ cost g α qsr cmax h ∑k t K storenik u
find c̄n, the max no. of objects stored on node n

during any intervala
n b N;cost ^ cost g β qvr cmax h c̄n u

if replica constraint present
find cmax , the max no. of replicas of any object

during any intervala
i b I p k b K;cost ^ cost g α qvr cmax h ∑n t N storenik u

find c̄k, the max no. of replicas of object k
during any intervala

k b K;cost ^ cost g β qvr cmax h c̄k u
output cost

Figure 5. The rounding algorithm used to find the
tightness of the lower bound.

storen w i x 1 w k and storen w i y 1 w k is set to 1, then the cost for a full
replica of k on node n during i is included in the solution
cost and rounding up storenik has zero impact on replication
cost. If both those intervals have values less than storenik,
the impact on replica creation cost is β z 1 { storenik | . If one
of them, say storen w i x 1 w k, has a higher value, then the im-
pact is β z 1 { storen w i x 1 w k | . In fact, the impact may be neg-
ative if both neighboring intervals have higher values than
storenik. The algorithm is show in Figure 6

The rounding down algorithm displayed in Figure 7 is
symmetric to the rounding up case. There are the following
cases to consider (reflected in “if” statements in Figure 7):
1) If either v } succ or v } prev have values higher than v } value,
then unnecessary replica creation cost has been included in
the solution, as the lesser value of v } succ and v } prev is not
needed. This can be deducted from the cost. If v } succ is
higher, the deduction is β ~ v } prev; if v } prev is higher, it is

function calculate round up benefit(v)
if (vc succ m vc value m vc prev)

vc cost ^ β qvr 1 h vc succ u
else if (vc succ o vc value o vc prev)

vc cost ^ β qvr 1 h vc prev u
else if (vc succ m vc value n vc prev � vc value u

vc cost ^ β qvr 1 h vc prev h�r vc succ h vc value u�u
else if (vc succ � vc value n vc prev o vc value u

vc cost ^ β qvr 1 h vc value u
vc cost ^ vc cost g α qvr 1 h vc value u
// reward only from nodes within the latency threshold
// that are not fully covered by another node
M _�i n b N : distn f ve node ^ 1 n

∑m t N � storem f ve interval f ve ob ject � q distnm ^ 0 k
vc reward ^ ∑n t M demandn f ve interval f ve ob ject
// QoS impact only if sum of all stored replicas
// within latency threshold is less than one before rounding
M _�i n b N : distn f ve node ^ 1 k
if ∑n t M storen f ve interval f ve ob ject o 1

vc qos ^ vc reward qvr 1 h ∑n t M storeve node f ve interval f ve ob ject u
else

vc qos ^ 0

Figure 6. The rounding up benefit function.

β ~ v } succ. 2) When the values of both v } succ and v } prev are
lower than v } value, we no longer have to pay for the cre-
ation cost between v } prev and v. Thus, this is deducted from
cost. However, there is now a replica creation cost between
v and v } succ that we previously did not have to pay for. Fi-
nally, the impact to cost is { β z v } succ {�z v } value { v } prev |:| .
3) For the last case, when both v } prev and v } succ have val-
ues higher than v } value, we pay for replica creation between
v and v } succ. As the value is rounded down from v } value to
0, we have to pay an extra β ~ v } value to reflect the replica
creation cost for v } succ.

The algorithm of Figure 5 is described for a QoS de-
fined over all users and all objects. Adapting the algorithm
to any of the other definitions of QoS is straightforward.
For a per-object QoS, the algorithm is run separately for ev-
ery single object k in the system. For each run, QoS and
reward refer to the corresponding object alone. For a per-
user QoS, each node has its own QoS requirement (recall
that we assume one user per node). When a fractional value
is rounded down, the rounding must not violate any node’s
QoS requirement.

In order for the rounding algorithm to produce feasible
solutions with one or more of the heuristic properties en-
abled, we have to add some functionality to it.

When the storage constraint is enabled, we search the
solution for the node that stored the most object replicas
during an interval (to keep the discussion simple, we as-
sume that all objects are of the same size and thus capac-
ity is measured in number of objects). Denote this number
cmax and denote the capacity used in interval i and node n
cni. For every node and interval, we add α z cmax { cni | to
the cost, forcing all nodes to use the same amount of stor-

function calculate round down benefit(v)
if (v� succ � v� value � v� prev)

v� cost ��� β � v� prev
else if (v� succ � v� value � v� prev)

v� cost ��� β � v� succ
else if (v� succ � v� value � v� prev � v� value �

v� cost ��� β � v� value
else if (v� succ � v� value � v� prev � v� value �

v� cost ��� β �v� v� succ ��� v� value � v� prev ���
v� cost � v� cost � α � v� value
// reward only from nodes within the latency threshold
// that are not fully covered by another node
M ��� n � N : distn � v� node � 1 �

∑m � N � storem � v� interval � v� ob ject � � distnm � 0 �
v� reward ��� ∑n � M demandn � v� interval � v� ob ject
// QoS impact only if sum of all stored replicas
// within latency threshold would become
// less than one after rounding
M ��� n � N : distn � v� node � 1 �
if ∑n � M storen � v� interval � v� ob ject � storev� node � v� interval � v� ob ject � 1

v� qos ��� v� reward �v� 1 ��� ∑n � M storen � v� interval � v� ob ject� storev� node � v� interval � v� ob ject ���
else

v� qos � 0

Figure 7. The rounding down benefit function.

age. For nodes that never (in no interval) store this many ob-
jects, we also have to add β � cmax � c̄n creation cost, where
c̄n is the maximum number of objects stored in any inter-

val on node n. This cost is then the cost for a feasible so-
lution with the storage constraint enabled. The replica con-

straint is accounted for in an analogous way, even though
the solution is searched for the object out of all nodes and
intervals that is replicated the most times.

The routing knowledge affects only the input data and as
such there is no need for any modifications in the rounding
algorithm. The global/local knowledge, the activity history
and the reactive property constraints are never violated by
the rounding algorithm as proven below.

Proposition 1 The rounding algorithm presented in Fig-
ure 5 produces a feasible solution to MC-PERF even when
the the global/local knowledge, access history and/or reac-
tive properties are included in the LP-problem.

Proof for Proposition 1: The global/local knowledge,
reactive, and the access history constraints all force storenik

to become 0 for certain values of n, i and k. This means that
the solution produced by the LP-relaxation has zeroes in
the places where the constraints demand so. As the round-
ing algorithm never rounds up any zero value in the solu-
tion, these constraints are never violated. ¡

To decrease the running time of our algorithm, we have
been experimenting with rounding entire sequences of con-
secutive intervals with the same fractional value as one unit.
We have observed that this optimization decreases the run-
ning time of the rounding algorithm by over an order of
magnitude with an increase to the cost of the solution that
is less than 5%.

