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Abstract

Methods for automatically managing the performance of
computing services must estimate a performance model of
that service. This paper explores properties that are neces-
sary for performance model estimation of black-box com-
puter systems when used together with adaptive feedback
loops. It shows that the standard method of least-squares
estimation often gives rise to models that make the control
loop perform the opposite action of what is desired. This
produces large oscillations and bad tracking performance.
The paper evaluates what combination of input and output
data provides models with the best properties for the con-
trol loop. Plus, it proposes three extensions to the controller
that makes it perform well, even when the model estimated
would have degraded performance.

Our proposed techniques are evaluated with an adaptive
controller that provides latency targets for workloads on
black-box computer services under a variety of conditions.
The techniques are evaluated on two systems: a three-tier e-
commerce site and a web server. Experimental results show
that our best estimation approach improves the ability of
the controller to meet the latency goals significantly. Previ-
ously oscillating workload latencies are with our techniques
smooth around the latency targets.

1 Introduction

The increasing costs associated with managing computer
systems have spurred a lot of interest in automatically man-
aging system with little or no human intervention. Exam-
ples of this includes, managing the energy consumption of
servers [4, 14], automatically maximizing the utility of data
centers [22], and meeting performance goals in file sys-
tems [15, 16], 3-tier e-commerce sites [13, 16], disk ar-
rays [3, 18, 23], databases [19] and web servers [1, 20].

For a solution to a specific management problem to be

applicable to as many systems as possible it should be non-
intrusive. The reason for this is that most computing sys-
tems have no native support for automatic management, and
in the general case, cannot be modified easily to do so due
to proprietary sources and/or the complexity of the modifi-
cations. We refer to such a system as a black-box system.
It has a number of adjustable actuators (e.g., per workload
CPU share or throughput per workload) that will change
a number of measurements (e.g., latency, availability and
throughput). Any management solution for a black-box sys-
tem has to be able to discover a relationship between the
actuators and the measurements, and then be able to set the
actuators so the the management goals are achieved.

One technique that has successfully solved management
problems of black-box systems is control-theoretic feed-
back loops [8, 9]. These methods can deal with poor
knowledge of the system, changes in the system or the
workloads, and other disturbances. Classical non-adaptive
control-theoretic methods are usually not adequate for two
reasons. First, for many systems it is not even possi-
ble to use non-adaptive control as the system changes too
much [13, 15, 16]. For example, the performance experi-
ence by a client of a three-tier e-commerce site depends on
many things: what tier a request is served from, if it was
served from the disk or the memory cache of that tier, what
other clients are in the system, and so on. Second, to be
applicable to more than one specific system configuration,
it is unreasonable to require a lot of tuning for each system
change. Thus, we will focus on adaptive controllers that
automatically tune themselves while the system is running.

Self-tuning regulators (STR) [2] are one of the most
commonly used and well studied adaptive controllers. They
consist of two parts: an estimator and a control law, which
are usually invoked at every sample period. The most
commonly used estimator in STR is recursive least-squares
(RLS) [10]. The purpose of this estimator is to dynamically
estimate a model of the system relating the measured met-
rics with the actuation. The control law will then, based on
this model, set the actuators such that the desired perfor-
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mance is achieved. The ability of the controller to achieve
the performance goals is explicitly tied to how well the
model represents the system at that instant.

This paper shows that standard RLS does not provide
good control performance for STRs used in black-box sys-
tems, and proposes and evaluates a number of extensions
of RLS that provide good control performance for STRs.
More specifically, we evaluate what measurement and actu-
ation combinations provides the best models, and we pro-
pose three methods of dealing with poor models such that
they do not decrease controller performance. These three
methods are: (1) to remember a good model and use that
one when a poor model is produced, (2) to modify the poor
model such that it becomes good, and (3) to run multiple
estimators and pick the best model out of all of them.

We have evaluated the proposed extensions using an
adaptive controller that provides latency targets for work-
loads on black-box computer services under a variety of
conditions [16]. The evaluation is performed both analyti-
cally and experimentally on two real systems: a three-tiered
e-commerce site and a web server. The results show that our
best proposed method offers superior control performance,
compared to the baseline of standard RLS without any of
our techniques. This best method uses an affine function of
throughput, and it modifies the models it detects are poor.

2 Background and Problem

Throughout this paper we use a black-box computing
system executing workloads, as depicted in Figure 1. The
computing system has a number of control parameters that
affect the system. These controls are called actuators. We
measure the effect these actuators have on the system using
the measurements that the system exports. If the computing
system does not export suitable actuators or measurements,
we can interpose the flow of requests with a scheduler [12],
allowing us to control (actuate) the flow into the system and
measure the performance at the scheduler. A system might
have actuators and measurements from either the scheduler
or the black-box system, or from both of the two parts.

The methods we propose are applicable to any combina-
tion of actuators and measurements, as long as the expected
relationship between them is monotonic. Examples of this
include: controlling the percentage of CPU resources each
workload gets and measuring performance in terms of trans-
fered bits/s; changing the amount redundancy and measur-
ing the dependability; and adjusting CPU frequency to meet
power consumption targets.

The adaptive controller used in this paper is the widely
used self-tuning regulator (STR) depicted in Figure 2. It
consists of two parts: an estimator and a control law. In or-
der to explain why the standard estimator does not perform
well and what kind of problems it can give the control loop,
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Figure 1. General architecture of the black-
box systems studied in this paper.
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Figure 2. The self-tuning regulator studied.

we first describe the estimator in Section 2.1 and the control
law in some detail in Section 2.2.

2.1 Recursive Least-Squares Estimation

Recursive least-squares (RLS) [10] is one of the most
widely used estimation algorithm in adaptive controllers,
due to its robustness against noise, its good convergence
speed and proved convergence properties that can be used to
prove the stability of the whole control loop. Our proposed
methods are also valid for other versions of least-squares,
such as extended least-squares, total least-squares, the pro-
jection algorithm, the stochastic approximation algorithm
and least-mean squares. It is applicable to any technique
estimating a model on the same form as RLS.

In order to explain least-squares estimation we have to
introduce some notation. Let u(k) = [u1(k) . . .uM(k)]T be
the vector of the M actuator setting during sampling in-
terval k, and let y(k) = [y1(k) . . .yN(k)]T be the vector of
the performance measurements of the N workloads, mea-
sured at the beginning of interval k. The symbols have been
collected in Table 1 for easy reference. The relationship
between u(k) and y(k) can be described by the following
multiple-input-multiple-output (MIMO) model:

y(k) =
n
∑
i=0

Aiy(k− i−1)+Biu(k− i−1) (1)

where Ai and Bi are the model parameters. Note that Ai ∈
R

N×N , B j ∈R
N×M , 0 < i≤ n, 0≤ j < n, where n is the order



Symbol Meaning
y(k) Performance measurements at time k.
u(k) Actuator settings at time k.
Ai Model parameters in front of y.
Bi Model parameters in front of u.

X(k) Model parameter matrix at time k.
φ(k) Regression vector at time k.

yre f (k) Desired performance at time k.
T (k) Throughput at time k.
TΣ(k) Total throughput at time k.
L(k) Latency at time k.
S(k) Share setting at time k.

Table 1. Frequently used symbols.

of the model. This linear model was chosen for tractability
as we know that the relationship will indeed, in all but the
most trivial cases, be nonlinear. However, it will be a good
local approximation of the nonlinear function, and this will
often be good enough for the controller as it usually only
makes small changes to the actuator settings.

For notational convenience, we rewrite the system model
in the following form, which we use in the rest of the paper:

y(k +1) = X(k)φ(k) (2)

where

X(k) = [B0 . . . Bn−1 A0 . . . An−1]
φ(k) = [uT (k) . . . uT (k−n+1) yT (k) . . . yT (k−n+1)]T

where X(k) is called the parameter matrix and φ(k) is re-
ferred to as the regression vector.

RLS is then defined by the following equations:

X̂(k +1) = X̂(k)+
ε(k +1)φT (k)P(k−1)

λ+φT (k)P(k−1)φ(k) (3)

ε(k +1) = y(k +1)− X̂(k)φ(k) (4)

P(k) =
P(k−1)

λ
−

P(k−1)φ(k)φT (k)P(k−1)

λ(1+φT (k)P(k−1)φ(k))(5)

where X̂(k) is the estimate of the true value of X(k), ε(k) ∈
R

N×1 is the estimation error vector, P(k) ∈ R
NMn×NMn is

the covariance matrix and λ is the forgetting factor (0 <
λ ≤ 1). A high λ means that RLS remembers a lot of old
data when it computes the new model. Conversely, a low
λ means that it largely ignores previous models and only
focuses on producing a model from the last few samples.

The intuition behind these equations is quite simple. (4)
computes the error between the latest performance mea-
surements and the performance prediction of the model
X̂(k)φ(k). We refer to this as the rls error. The model pa-
rameters are then adjusted in (3) according to the rls error
and another factor dependent on the covariance matrix P
computed in (5). P contains the covariances between all

the measurements and the actuators. The model X̂ is then
used by the control law described next to set the actuators
correctly.

2.2 Control Law

The only way RLS defines an error in the model is
through the rls error. In this section, we will show that even
if a model has no rls error, it still might give rise to unac-
ceptable controller performance. To be able to explain why
this is the case and what other property other than rls error
the model need to have, we need to explain a bare mini-
mum self-tuning regulator (STR). While this basic STR has
a number of drawbacks, it serves the purpose of explaining
the problem with as little as possible of control-theoretic de-
tails. All other direct STRs have this problem, the equations
are just more elaborate.

Assume for notational convenience that the order of our
system model is one. The model (1) is then:

y(k) = A0y(k−1)+B0u(k−1) (6)

To turn this model into a controller, we observe that a
controller is a function that returns u(k). If we shift equation
(6) one step ahead in time and solve for u(k), we get:

u(k) = B−1
0 (y(k +1)−A0y(k)) (7)

If this equation is to be used to calculate the actuation set-
ting u(k), then y(k +1) represents the desired performance
to be measured at the next sample point at time k+1, i.e., it
is yre f (k). Thus, the final control law is:

u(k) = B−1
0 (yre f (k)−A0y(k)) (8)

This is a simple STR for the model given by (6).
To illustrate the point that a model with zero rls error can

still cause the controller to underperform, consider a black-
box computing system where the actuator is the share of
CPU we give to each workload, and the performance metric
we care about is latency. For this system, consider two es-
timators that produce these two models with only one input
and one output:

X1(k) = [−0.2 0.6]

X2(k) = [0.2 0.4]

If y(k − 1) = y(k) = 4 and u(k − 1) = 2 i.e., φ(k − 1) =
[2 4]T , then X1(k)φ(k − 1) = X2(k)φ(k − 1) and both have
the same rls error. Consider now what happens when we
use these two models that are equivalent in the least-squares
sense, in the control law (8) when yre f (k) = 1. For model 1,
the actuator setting would be u1(k) = 1

−0.2(1−0.6 ·4) = 7.
Model 1 does what we would expect. When the controller



observes a latency that is higher than desired it should in-
crease the CPU share of the workload that its latency will
go down. But with model 2, it does the complete oppo-
site of what is desired, as u2(k) = 1

0.2(1 − 0.4 · 4) = −3.
It decreases the CPU share so that the latency is increased
and the latency target is missed even more. If the model
was constant, the controller using model 2 would eventu-
ally reach the latency goal. But with an adaptive controller,
the model changes, so this bad behavior might go on for a
much longer time. We will show in the experimental section
that this happens frequently and gives rise to performance
degradations.

In the example above, B0 is negative when the controller
works and positive when it does not work. The physical
meaning of B0 in (6) should reflect the fact that if more
share is given to a workload, the latency should go down,
and conversely, if less is given the latency should go up.
For that to be true, B0 has to negative. To illustrate why it
is more important for B0 to have the correct sign than any
other model parameter, consider this control law derived us-
ing a second order model.

u(k) = B−1
0 (yre f (k)−A0y(k)−A1y(k−1)−B1u(k−1))

(9)
If one of A0, A1 or B1 has the incorrect sign, the other pa-
rameters might correct for this and the whole expression
within the parenthesis comes out with the right sign. How-
ever, if B0 has the wrong sign there is no single parameter
that can compensate for this, unless the whole expression
within the parenthesis comes out with the wrong sign too.
The higher the order, the more critical it is that B0 has the
right sign, compared to the all the other model parameters.

When the model has more than one input and one output,
B0 is a matrix. The diagonals of this matrix should then be
negative as an increase in CPU share of a workload should
result in lower latency. Each entry in the anti-diagonal cap-
tures the effect increasing the share of one workload has
on the latency of one other workload. These should then
be positive or zero. Positive if the two workloads compete
for some resource in the system as increasing the share of
one would decrease it for the other, and zero if they do not
compete for a resource1. A correct B0 would then for the
combination of a CPU share actuator and latency as the per-
formance measurement, look like this:











< 0 ≥ 0 · · · ≥ 0
≥ 0 < 0 · · · ≥ 0
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. . .
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≥ 0 ≥ 0 · · · < 0











(10)

1It is actually possible for the anti-diagonal entries to be negative as
increasing the amount of resources for one workload might positively help
another. This might occur if one workload loads data into a cache that the
other workload then reads. However, we have not been able to observe this
on our systems.

Other actuator and performance measurement combina-
tion would have other rules on what a correct B0 is. For
example if the performance measurement was throughput
instead of latency, the diagonals of (10) would be > 0,
as higher CPU share means higher throughput. The anti-
diagonals would then be ≤ 0.

3 Solutions

In this section, we propose two types of solutions, both
aimed at improving models and thus the control perfor-
mance. First in Section 3.1, we look at what combination
and arithmetic manipulation of actuators and measurements
produces the best models when considering the rls error and
the error to B0. Second, we propose a number of techniques
that can alleviate the impact of a B0 with incorrect signs in
Section 3.2.

3.1 Possible Input Vectors

As an example in this section we will use the measure-
ments and actuators we use in the evaluation in Section 4.
The techniques presented in this section can be used with
other actuators and measurements as long as the relation-
ship is monotonic. Actuators can be grouped into two main
types: ratios and absolute actuators. Our example system
uses a ratio actuator namely the share (S(k)) of the number
of requests that is submitted to the system on a per work-
load basis. However, it is also possible to map the absolute
throughput (T (k)) to the real physical actuator, by just di-
viding each individual workload’s throughput with the total
throughput from all the workloads. We then have two actu-
ators we can use, S(k) and T (k). In the system, we can mea-
sure latency (L(k)) and we are interested in meeting latency
goals. y(k) should then be set to L(k) as we are interested
in predicting and controlling latency. The question is then,
what should we then put in φ(k) to get an estimation that is
as good as possible?

There are some rules of thumb to think about when mak-
ing this decision. First, the fewer the variables, the faster
RLS will generally converge. To leave out critical vari-
ables is not good either, for obvious reasons. Second, we
do not include variables that are heavily dependent on each
other as the covariance matrix P will become rank deficient.
At that point, strange results might occur due to very low
or high numbers being produced coupled with the limited
floating point accuracy of CPUs. Models can sometimes
become random when this occurs.

For notational convenience, let V−1(k) signify a row vec-
tor with the last entry removed from the original vector V ,
and VΣ(k) signify the sum off all the elements in row vec-
tor V . The most obvious choice of φ(k) would be to just
enter the share percentages S(k). However, as SΣ(k) = 100,



Short-hand φ(k) Comments
Ratio (R) ST

−1(k) Fewer variables, but a nonlinear ratio.
Throughput (T) T T (k) Provides absolute numbers.
RatioAffine (RA) [ST

−1(k) 1] As Share but affine.
ThroughputAffine (TA) [T T (k) 1] As Throughput but affine.
ThroughputSum (TS) [T T

−1(k) TΣ(k)] Adds sums to Throughput for scaling.
ThroughputSumAffine (TSA) [T T

−1(k) TΣ(k) 1] Affine function plus sum for Throughput.

Table 2. Various ways of forming φ(k) and some comments.

entering all the entries in S(k) does not provide any extra
information. Instead, we drop the last entry of S(k) and
use S−1(k). The good thing about this choice is that φ(k)
has few variables. One drawback is that the share ratios
hide the absolute throughput of the system, which also af-
fects latency. When the capacity of the system changes, this
shortcoming results in poor tracking. This choice of φ(k) is
called Ratio. It, and all others described below, have been
tabulated in Table 2.

The second choice is to use the throughput T (k). This
corresponds to the share ratio prior to normalization by
the summed inputs and therefore has a more constant re-
lationship relative to latency. We refer to this choice as
Throughput. Even if the total capacity of the system
changes, this model will be good. However, it would still
not be a good approximation if the service time of the indi-
vidual requests changes.

A number of tricks used in other fields to improve esti-
mation, that we could use to extend the list of possible φ(k).
The models we have proposed so far are not affine, i.e., they
all start from the origin. This is a drawback when using
share ratios or throughputs to model latency. No share, or
close to no share, for one workload will not mean zero la-
tency to that workload. One way of dealing with this is to
extend φ(k) by an additional input dimension that is always
constant [21], say 1. The model equations will then become:

y(k) =
n
∑
i=0

(Aiy(k− i−1)+Biu(k− i−1))+C ·1 (11)

where C ∈ R
N×1 can take on any value estimated by

RLS. Allowing affine functions produces two new possi-
ble ways to form φ(k) referred to as RatioAffine and
ThroughputAffine as shown in Table 2.

A second trick used in image processing [6] is to add
the sum of the throughputs to φ(k). When the through-
put is changing, having this extra dimension gives a way
for least squares to approximately scale the effects expected
from T (k). It is analogous to the scaling that you do to get
a ratio, but instead of being a division that RLS does not
have access to (and which introduces a non-uniform rescal-
ing on its input vectors), it can be used to estimate a linear
approximation to the normalized ratio. Adding this to the

Short-hand Description
None Do nothing and hope for the best.

Remember Remember a good model from the past and use
that one if B0 is bad.

Modify Modify the model so that B0 becomes good.
RunAll Estimate models from all estimators all the time

and use the model that is the best.

Table 3. Our three techniques of dealing with
a B0 with incorrect signs plus the baseline.

shares only creates rank deficiencies, so they have not been
included. Instead, we end up with two more possible φ(k)
called ThroughputSum and ThroughputSumAffine
that are shown in Table 2.

3.2 Dealing with an Incorrect B0

As we will see in the experimental section, none of the
input data permutations above gets rid of erroneous B0 ma-
trices. Therefore, in this section we will present three meth-
ods to alleviate or completely remove the effects of B0 er-
rors. The methods are presented in Table 3.

The Remember method always saves the latest known
good model that had a correctly signed B0. When a new
model is estimated with a B0 sign error, it uses the last
known good model instead of the new model. It keeps on
using the last known good model until the new model recov-
ers and gets a correctly signed B0. While simple, the draw-
back of this method is that the model might never recover,
and in that case we will use an outdated model forever that
might not at all represent the system any more.

The Modify method tries to tackle this problem by
forcefully modifying the model when a B0 error is detected.
Let B0 be a matrix with a B0 error and let B0 + B̃ be a matrix
that does not have a B0 error. B̃ is chosen so that an entry
with the wrong sign gets the value 0.001 if it should be pos-
itive and -0.001 if it should be negative. We did not chose
the value 0 as it might give rise to divisions by zero and sin-
gular matrices. If we were to modify B0 alone in this way,
the model would suddenly predict completely different u(k)



values than before and have an rls error. This might actu-
ally make the controller perform much worse than before.
Therefore, we need to modify the whole model such that it
predicts the same model locally with the modified B0 + B̃
matrix as it did before with only B0.

Let K be the predicted output of the unmodified model
without the terms Bi and Ai for i > 0, that can safely be
ignored for our purpose. Then the unmodified model is:

K = A0y(k)+B0u(k) (12)

Then the problem can be specified as:

K = (A0 + Ã)y(k)+(B0 + B̃)u(k)
= Ay0(k)+ Ãy(k)+B0u(k)+ B̃u(k) (13)

Using (12), this is equivalent to

Ãy(k)+ B̃u(k) = 0 ⇔ Ãy(k) = −B̃u(k) (14)

This equation has multiple solutions as −B̃u(k) is a row vec-
tor and Ã is a matrix. One possible solution is to set Ã to the
following:

Ã =











−V1/y1(k) 0 · · · 0
0 −V2/y2(k) · · · 0
...

...
. . .

...
0 0 · · · −VN/yN(k)











(15)
where Vi is row i of B̃u(k) and yi(k) is row i of y(k). Note
that this modified model will only be the same as the un-
modified one locally around φ(k).

The last method RunAll runs six estimators in parallel.
One for each single possible φ(k) in Table 2. Out of those
six models, we will the pick the model that has no B0 sign
errors and that has the lowest rls error. If there is no model
with a correctly signed B0, we pick the one with the least
amount of B0 error. The intuition behind this is that hope-
fully at least one of the estimators will always produce a
good model that we can use, and we believe that a good B0
is more important than a perfect rls error. Many other ways
to pick the model to use exists, e.g., forming a weighted
sum of the two errors and the pick the one with the lowest.
We chose the former one for its simplicity and its lack of
tunable parameters.

4 Experimental Results

In this section we present the experimental methodology
and the results. In summary, the results show that:

• Standard RLS estimation does not work for the black-
box systems examined.

• There is no single regression vector that consistently
produces good results. This is highly dependent on
workload and system.

• The Modifymethod of mitigating B0 errors works the
best and manages to quickly correct any errors in B0,
and improve both rls error and controller performance.

• The combination of inputting individual workload
throughputs together with a constant input parameter
(ThroughputAffine) combined with the Modify
technique consistently provides the best controller per-
formance.

4.1 Experimental Methodology

The experimental evaluation is performed on two differ-
ent systems. First, we use a three-tier e-commerce system
that consists of three components: a web server, an applica-
tion server and a database. Client requests arrive at the web
server. Unless they are for static content, they are forwarded
to the application server, which creates a dynamic page by
accessing the database. The generated page is then sent to
the client.

The web, application, and database servers are hosted
on separate server blades, each with two 1 GHz Pentium
III processors, 2 GB of RAM, one 46 GB 15 krpm SCSI
Ultra160 disk, and two 100 Mbps Ethernet cards. The
web server is Apache version 2.0.48 with a BEA WebLogic
plug-in. The application server is BEA WebLogic 7.0 SP4
over Java SDK version 1.3.1 from Sun. The database client
and server are Oracle 9iR2. All three tiers run on Windows
2000 Server SP4. The site hosted on the 3-tier system is
a version of the Java PetStore [11] that has been tuned in
order to support a large number of concurrent users.

The workload applied mimics real-world user behav-
ior [5], e.g., browsing, searching and purchasing behaviors
including their respective time scales and probabilities. For
the experiments here, we emulate 75 users partitioned into
two classes. Each class is considered to be one “workload”.
The control interval for both the controller and all the mea-
surements is 1 s.

As a second experimental setup, we use the web server
in the above setup with only static content of size 64K. The
client accesses are generated by httperf and has a Pois-
son arrival process. The sampling interval is also 1 s for the
web server setup.

In order to be able to control the performance of the
black-box systems above, we have used an approach based
on interposing a fair-queuing scheduler [12] on the path be-
tween the system and its clients, as depicted in Figure 1.
The scheduler enforces a configurable share of the system’s
capacity that each workload receives. The only available



measurements from the outside is the latency and through-
put each workload receives. We will focus on latency as it
is harder to estimate due to its nonlinear dependency on the
share. The order of the model and the controller is set to
two, as it has proven to be a good approximation of the two
systems examined.

4.2 Estimation Results

In this section, we evaluate what regression vector makes
the best predictions of future latencies. To make the com-
parison as fair as possible, the estimation is performed on
two sets of measurement data that has been previously gath-
ered from the two systems. Each set consists of 14,400
samples from a 4 hour run. The data was gathered by
picking a uniformly random number i ∈ [30,70] at begin-
ning of each sample interval and then setting the shares to
u(k) = [i 100− i]T . This is white noise input and provides
the estimator with values (and frequencies) from all over
the interval. The reason that the interval is not larger than
[30,70] is that there is no good linear approximation be-
tween share and latency for intervals larger than that. In
Section 4.3, we will see that when an STR is put on top
of the estimator, the estimator performance will often be
degraded as the controller will make sure that only certain
values of the shares and latencies are seen by the estimator
as it aims for a specific latency goal that usually corresponds
to a small subset of share values.

The regression vectors are evaluated using two metrics:
rls error and B0 error. RLS error is the error according to re-
cursive least-squares and tells us how well the current model
predicts the next y(k) vector. It is defined as

ERLS(k) =
∑N

i=1 |yi(k)− X̂i(k−1)φ(k−1)|

N (16)

where X̂i(k) is row i of X̂(k). The B0 error, on the other
hand, will tell us how wrong the signs of B0 are. If there are
any entries with wrong signs, the metric will have a value
greater than zero. The greater the impact of the wrong signs
to the controller output u(k), the higher the B0 error. A B0
with no sign errors has a B0 error of zero. It is formally
defined as

EB0(k) =
∑N

j=1 ∑M
i=1 |β ji(k)ui(k)|

N (17)

where each entry of β(k) ∈ R
N×M is zero if the correspond-

ing entry in B0 has the correct sign or the value of the cor-
responding B0 entry if that entry has the wrong sign.

The top two graphs in Figure 3 show the mean and the
standard deviation of the rls error as a function of the forget-
ting factor (λ) for the six ways of forming φ(k) for the three-
tier system. From the graph, we can see that Ratio and
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Figure 3. The mean and standard deviation of
the RLS error and the B0 error for the three-tier
system.

RatioAffine has a worse rls error than the ones based
on throughput measurements that are more or less overlap-
ping in the graph. However, the errors are within one stan-
dard deviation of the mean, so we cannot say with certainty
that there is a statistically significant difference in rls error.
Figure 4 plots the rls error as a function of time for two of
the input vectors, showing that the rls error indeed varies a
lot over time with no clear winner.

The bottom two graphs of Figure 3 show the B0 er-
ror of the regression vectors as a function of the forget-
ting factor (λ). Note, that the graph is logarithmic, thus
any point not found on the graph has a B0 error of zero.
The results in terms of B0 error are much clearer than
those given by rls error. From the graph we can see
that for λ ≤ 0.97, RatioAffine, Throughput and
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Figure 4. RLS and B0 error as a function of
time for the three-tier system when λ = 0.95.

ThroughputAffine are clearly better than the rest, with
no B0 error at all. A λ = 1 also gives no B0 error, but that
model is probably useless, as it will never change after a
while and be unresponsive to changes in the system. Look-
ing at the B0 error as a function of time in Figure 4, we can
see that the B0 errors occur in bursts. In between, B0 has
correct signs.

To see how these results change for other systems, con-
sider Figure 5. For the web-server, RatioAffine is
clearly the best choice as it provides the lowest rls error and
has no B0 error. We have run experiments with a number
of other workloads on top of the three-tier system, where
we varied the ratio of CPU intensive content to more light-
weight content and the rate at which this changed during
the execution. We also changed the distribution of docu-
ment sizes for the web server and changed the interval that
is used to draw random share value. (The results from all
these experiments are not shown in the paper due to space
considerations.) By looking at these experiments and the
ones shown here, there is no clear method that is better than
the other. If one is the best for one workload, it is the worst
for another. But as will be shown in the next section, there
is a combination of regression vector and B0 method that
consistently outperforms all the other approaches.

4.3 Controller Results

To be able to study how the results of the previous sec-
tion hold and how the B0 methods work, we evaluate them
within a self-tuning regulator. The STR used [16] is de-
signed using the basic principles of Section 2.2. However,
it contains more additions in order to improve the perfor-
mance of the control loop. These additions are among oth-
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Figure 5. The mean and standard deviation of
the RLS error and B0 error for the web server.

ers, to deal with actuator constraints, maximize system us-
age while meeting the latency goals, handle drastic changes
in the system, and improve stability. The details of the con-
troller is outside the scope of this paper and can be found in
Karlsson et al. [16]. In order to get a concise metric on how
well the controller meets its latency target we define control
error as:

Ectrl =
∑N

j=1 ∑K
i=1 |yre f , j(i)− y j(i)|

KN (18)

where K is the number of samples during the execution.
This is the mean absolute deviation from the performance
reference throughout the execution and among all work-
loads. We will focus on the results from the three-tier sys-
tem, as the results from the web-server produced the same
conclusions.
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Figure 6. How the controller manages to track
the latency reference with time and how that
ability degrades when there is a B0 error. The
B0 error method is None and Throughput is
used for u(k).

To see that B0 errors reduce the performance of the con-
trol loop, consider Figure 6, plotting the request latency
and the B0 error as a function of time. The system uses
Throughput for the RLS estimation and None for cor-
recting the B0 errors. The rls error is small during the whole
time interval. From the graph, we can see that B0 errors
have a large negative impact on the ability of the controller
to meet the latency target. When there is a B0 error, the la-
tency is up to 6 times as high as targeted. When there is no
B0 error, the controller manages to track the latency target
well. Note, that the estimator eventually recovers from the
B0 error.

Table 4 shows statistics from the various runs. The met-
rics are the means across the whole 4 h execution. All of
the regression vectors suffers from B0 errors. There are two
main observations to take away. First, that the control error
is a function of both the rls error and the B0 error. If at least
one of them is high, the control error also tends to be high.
Second, that ThroughputSum seems to be better than the
others when there is no B0 method.

Let us try to decrease the errors of the estimated model
and thus improve the control performance, by studying the
Remember method. Figure 7 shows the latency and B0 er-
ror as a function of time for an illustrative time period of an
execution using ThroughputAffine and Remember.
At around time 50 s, there is a sudden change in the sys-
tem performance and the model estimated suddenly starts
to have B0 errors. As soon as this is observed, the controller
will start to use the latest good model without a B0 error.
However, the estimated model never recovers from the B0
error and the old model is used for the rest of the execution.
The key point to note here is that as the system changes,
the model used will not as we are using an old model with-
out a B0 error. The negative impact of this can be seen in

Method None
Input vector R RA T TA TS TSA
rls error 118 88.1 50.8 90.6 27.5 39.5
B0 error 37.8 88.4 47.6 25.4 69.6 67.4
control error 61.2 41.4 45.3 55.4 29.8 86.4

Method Remember
Input vector R RA T TA TS TSA
rls error est. 134 60.5 6.86 7.40 12.0 40.8
rls error used 319 127 73.0 75.3 75.2 143
B0 error est. 31.4 92.2 63.0 118.3 219 484
B0 error used 2.34 2.70 0.52 0.38 0.35 0.34
control error 133 31.2 14.4 18.3 14.8 38.5

Method Modify
Input vector R RA T TA TS TSA
rls error 72.0 36.5 13.4 8.79 11.4 13.4
B0 error est. 4.77 4.37 8.98 6.29 6.43 5.05
B0 error used 0 0 0 0 0 0
control error 44.1 23.3 14.7 12.0 14.1 16.4

Method RunAll
Input vector ALL
rls error used 22.3
B0 error used 15.4
control error 19.3

Table 4. Overall error statistics for all the input
vector and B0 error methods. The “est.” rows
are for the model produced by the estimator
and “used” rows are for the model used by
the control law.

the latency slowly diverging from the goal as time goes by
and the performance characteristics of the system changes.
Remember only works well when there are short bursts of
B0 errors, not when they last for a long time.

Looking at the compounded results for Remember in
Table 4, the method does improve the control performance
of all input vectors except Ratio. While this method de-
creases the B0 error, it does so at the cost of an increase in
the rls error of the used model, as can be seen in Table 4.

The main drawback of Remember was that the model
used in the controller might get a high rls error if the es-
timated model most of the time has a B0 error. Modify
on the other hand, will try to use the estimator to get a
low rls error and modify that model so that B0 has the
correct signs. Figure 8 shows the latency and B0 error
of ThroughputAffine for an illustrative time period.
With this method, B0 errors are quickly correct and have lit-
tle impact on the control performance. As can be seen in
Table 4, Modify offers the least rls error as well as B0 er-
ror, and thus offers the best control performance of all the
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Figure 7. How the controller manages to track
the latency reference with time and how that
ability degrades when there is a B0 error. The
B0 error method is Remember.
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Figure 8. How the controller manages to track
the latency reference with time and how B0
errors are quickly corrected. The B0 error
method is Modify.

methods. The only exception to is Throughput that suf-
fers a small degradation compared to Remember. Modify
reduces the control error by up to 11 times compared to the
previous methods.

The results from the RunAll method are tabulated in
Table 4. Compared to the other techniques, RunAll per-
forms as well as Remember with the best regression vec-
tors, but not as well as Modify with a throughput based
regression vector. We also tried RunAll together with
Modify, but the improvement compared to Modify and
ThroughputAffine was small. As the computational
burden of RunAll is six times that of just having a single
regression vector, the best choice is to go with Modify.

To conclude the results of this section, the overall best
method is to use ThroughputAffine with Modify.

5 Related Work

There are a few examples of self-tuning regulators used
to control computer systems. Lu et al. [17] estimates a
model between cache size and the hit ratio a workload
receives. Triage [15] estimates a model between the to-
tal number of requests sent to the system and the latency.
Karlsson et al. [16] estimates a model between shares and
both latency and throughput. None of these approaches con-
sider B0 errors or evaluates different ways of estimating the
performance models. All of them could probably benefit
from the techniques presented in this paper.

There are also a number of adaptive controllers that use
ad-hoc estimation techniques that are not part of the estima-
tion literature. For example, the control law and estimator
of Yaksha [13] could probably benefit from our techniques.

While RLS is the most widely used estimation tech-
nique for STR, there are others including extended least-
squares (ELS), total least-squares (TLS), the gradient esti-
mator, the projection algorithm, the stochastic approxima-
tion algorithm and least-mean squares (see Åstrom et al. [2]
for details on all of these methods). All, with the exception
of ELS and TLS, are computationally more efficient but
generally do not provide as good estimates as RLS. How-
ever, our techniques are applicable to all the above estima-
tors too, without any modifications. In fact, our techniques
are applicable to any estimator using the same model used
in this paper.

Some of the techniques we have employed have been
successfully used in other fields. The trick of including
scaling separately, as in the ThroughputSummethod has
been used for handling perspective projection in images and
video [6]. To include a constant as input to least-squares has
been used in many fields, for example in the off-line estima-
tion of streaming media server performance [7], in order to
get affine functions. The use of multiple concurrent estima-
tors is not uncommon in adaptive control theory [2]. But
it has been used in order to lessen the impact of covariance
windup, not errors in the signs of B0.

6 Conclusions

This paper is concerned with dynamically estimating a
performance model of a black-box computer system using a
least-squares estimator that provides a self-tuning regulator
with good control performance. We show that regular least-
squares does not produce models that lead to good control
performance. This paper identifies that the signs of the B0
model parameter matrix is critical to good controller per-
formance, as well as the least-squares minimized model er-
ror. To alleviate this situation, we propose and evaluate two
sets of techniques. First, we examine what combination and
arithmetic manipulation of measurements and actuators that



provide the best models. Second, we propose three methods
that can mitigate the effects of an incorrect B0 parameter
produced by the estimator, and provide the controller with
better performance under those circumstances.

The techniques are evaluated with a self-tuning regula-
tor that provides latency targets for workloads on black-
box systems. The experimental evaluation was conducted
on two systems: a three-tier e-commerce site and a web
server. The results show that the overall best controller per-
formance is achieved by estimating the latency as an affine
function of throughput coupled with the technique of mod-
ifying models with B0 errors. This combination results in
up to 11 times average lower error between the desired la-
tency and the latency the workloads receive. Previously os-
cillating workload latencies are with our technique smooth
around the latency targets.
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