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Abstract—Restoring data operations after a disaster is a
daunting task: how should recovery be performed to minimize
data loss and application downtime? Administrators are
under considerable pressure to recover quickly, so they lack
time to make good scheduling decisions. They schedule
recovery based on rules of thumb, or on pre-determined
orders that might not be best for the failure occurrence. With
multiple workloads and recovery techniques, the number of
possibilities is large, so the decision process is not trivial.
This paper makes several contributions to the area of data
recovery scheduling. First, we formalize the description of
potential recovery processes by defining recovery graphs.
Recovery graphs explicitly capture alternative approaches
for recovering workloads, including their recovery tasks,
operational states, timing information and precedence
relationships.  Second, we formulate the data recovery
scheduling problem as an optimization problem, where the
goal is to find the schedule that minimizes the financial
penalties due to downtime, data loss and vulnerability to
subsequent failures.  Third, we present several methods
for finding optimal or near-optimal solutions, including
priority-based, randomized and genetic algorithm-guided ad
hoc heuristics. We quantitatively evaluate these methods
using realistic storage system designs and workloads, and
compare the quality of the algorithms’ solutions to optimal
solutions provided by a math programming formulation and
to the solutions from a simple heuristic that emulates the
choices made by human administrators. We find that our
heuristics’ solutions improve on the administrator heuristic’s
solutions, often approaching or achieving optimality.

Categories and Subject Descriptors: D.4.5 Operating sys-
tems: Reliability, K.6 Management of computing and infor-
mation systems, G.1.6 Numerical analysis: Optimization

General Terms: Management, reliability, algorithms, design

Keywords: Data storage, disaster recovery, backup/restore,
management, scheduling, optimization, math programming,
genetic algorithms
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1. INTRODUCTION

““In the midst of a disaster, the recovery team is under stress.
That’s not the time to be exercising seldom-practiced proce-
dures that could be made automatic.”” —Glen Bellomy, Veritas
System Engineer [25]

Disasters aren’t limited to naturally occurring events like
earthquakes, fires or floods. Any event that leads to a loss
of data or the inability to access it can have disastrous conse-
quences, such as lost worker productivity, lost revenue, dam-
aged corporate reputation or even bankruptcy. Under such cir-
cumstances, system administrators must work quickly to re-
store operations, hopefully minimizing data loss and vulnera-
bility to subsequent failures during recovery. The cost of inef-
ficiency is high: one hour of unnecessary downtime can cost
enterprises hundreds of thousands or millions of dollars.

Today administrators often use rules of thumb, serializing
recovery of workloads based on the workloads’ criticality to
the business. To minimize the chaos that ensues after an event,
many businesses institute disaster recovery plans or business
continuity plans, which describe what steps to take after a
disaster, as well as who is responsible for completing these
tasks [25]. Recovery plans centralize information from a va-
riety of disparate sources about the IT system’s structure and
how to recover it. These plans are designed ahead of time, and
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Figure 1: Data recovery scheduling problem. Application data
may be protected by a combination of techniques, such as snap-
shots, remote mirroring, tape backup and remote vaulting of tapes.
Applications have associated penalty rates for outage duration, re-
cent data loss and vulnerability to additional failures. In the event
of a failure that affects multiple applications, the application re-
covery operations share resources. We must choose which copy to
recover for each application, and determine a schedule for there-
covery operations that minimizes the overall penalty costs.



thoroughly tested, to ensure that personnel are familiar enough
with the procedures to be able to execute them smoothly dur-
ing a highly stressful time. This process is a lengthy one,
meaning that updating the plan to handle changes in system
configuration, business requirements, or service providers is
non-trivial. Teams generally develop a handful of specific
plans, to respond to more likely disaster scenarios (e.g., a hur-
ricane in the Gulf of Mexico), and a more general plan to han-
dle all other disasters. As a result, the plan that is executed to
recover from an unanticipated disaster may not be tailored to
best handle the failure scenario.

The focus of this paper is the data recovery scheduling prob-
lem, as illustrated in Figure 1. This problem includes deter-
mining what copy or copies of data should be used to recover
each workload, how recovery operations should be balanced
with each other and with the continued execution of workloads
unaffected by the failure, and how device resources should
be scheduled. With multiple workloads to recover and multi-
ple strategies for accomplishing each workload’s recovery, the
number of possible recovery schedules is large. Because of
these factors, administrators find it difficult to optimize their
scheduling of recovery tasks to best respond to the event at
hand.

This paper makes several contributions. First, we formalize
the description of potential recovery processes by defining re-
covery graphs. Recovery graphs explicitly capture alternative
approaches for recovering workloads, including their recov-
ery tasks, operational states, resource requirements and prece-
dence relationships. Solution architects who design disaster
recovery plans tell us that recovery graphs provide more struc-
ture for gathering relevant information and defining recovery
plans. Recovery graphs also provide a framework for quanti-
tatively evaluating candidate recovery plans to determine their
potential effectiveness and permit comparisons. They may
also help in rehearsing plans, either piecemeal or in their en-
tirety, to debug the plans themselves (e.g., have recovery oper-
ations been missed?) and to increase administrator familiarity
with recovery steps. Finally, they may be helpful in evaluat-
ing the success rate and execution time for different recovery
operations during rehearsals.

Second, using this formal description, we formulate the
data recovery scheduling problem as an optimization problem,
where the goal is to find the recovery schedule that minimizes
the financial penalties due to application downtime, loss
of recent data, and wvulnerability to subsequent failures.
An optimization-based approach produces higher-quality
recovery schedules than administrators’ rules of thumb,
because it can consider a larger number of possibilities.
Recovery schedules could even be generated on the fly, so that
they could be tailored to the actual scenario that occurred. An
automated, optimization-based approach produces the best
recovery schedule quickly, simplifying the initial recovery
plan design and plan maintenance as the environment evolves.
The recovery solver may even be used to compare the
recovery behavior of different storage solutions, to inform the
design of a dependable storage system [21].

Third, we present several methods for addressing the data
recovery scheduling problem, including priority-based, ran-
domized and genetic algorithm-guided heuristics. We com-
pare the quality of the solutions produced by these methods to
the optimal solutions provided by a math programming for-

mulation, and to the solutions from a simple heuristic that
emulates administrator behavior. We find that the adminis-
trators’ categorical approach does not provide optimal solu-
tions, with the inefficiencies resulting in millions of dollars
of extra penalties in the face of disasters. Although simple,
greedy approaches may be effective if resource constraints are
loose, these approaches do not succeed in more tightly con-
strained environments. Randomization helps, if the algorithm
is permitted to search a sufficiently large portion of the solu-
tion space. The best overall performance for our case studies
is provided by an algorithm that uses a genetic algorithm to
choose the recovery alternative and a greedy approach for de-
termining the schedule. This algorithm produces results suffi-
ciently quickly that it could be used to provide recovery sched-
ules on the fly.

The rest of this paper is organized as follows. Section 2
more formally defines the data recovery scheduling problem,
and introduces recovery graphs. Section 3 presents our formu-
lations of the problem, and describes our prototype implemen-
tations. Section 4 provides quantitative experimental results
for several example storage system designs and recovery sce-
narios. Section 5 summarizes related literature and Section 6
concludes.

2. DATA RECOVERY SCHEDULING
PROBLEM

In this section, we more formally define the data recovery
scheduling problem, and introduce recovery graphs as an ab-
straction for representing the problem.

2.1 Background

We assume an environment with multiple sites and multiple
applications, where each application’s persistent data is
protected by one or more data protection techniques, as
illustrated in Figure 1. Standard solutions for protecting data
include intra-array redundancy (e.g., RAID techniques [27]
and point-in-time copies [2] like split mirroring and
space-efficient snapshots), inter-array mirroring (local
and remote, synchronous and asynchronous) [17, 30],
backup (e.g., to traditional tape systems or faster disk-based
systems) [7, 14, 37], and remote vaulting. Replication and
erasure coding are used in distributed storage systems such as
PASIS [34] and FAB [29] to maintain data availability despite
component failures.

In all cases, a primary copy of the data is protected by mak-
ing one or more secondary copies, which are isolated from fail-
ures that may affect the primary copy. Several techniques may
be combined to protect a given application. For instance, a
combination of snapshots, tape backup and tape vaulting may
be used to protect against user error and provide archival stor-
age, and synchronous mirroring may be used to protect against
site disaster.

In the event of a disk array failure or site disaster, multi-
ple applications may be within the scope of the failure and
subsequently require recovery. Recovery involves either data
restoration from a secondary copy at the primary site or a sec-
ondary site, or site failover to a secondary mirror. For the for-
mer, data is copied from the secondary copy to the target site;
for the latter, the computation is simply transferred to the sec-
ondary mirror, without any data copy operations. Failover re-
quires a later failback operation (performed in the background)



to copy data to the target site. The recovery process is com-
pleted once the system has returned to its normal (i.e., pre-
failure) mode of operation — all application workloads are
running, and all of their data protection workloads have been
resumed.

Failed applications incur penalty costs due to recovery time
and lost recent data (because the secondary copy chosen as the
recovery source may be out-of-date). Additionally, applica-
tions otherwise unaffected by the failure may be stopped (or
their performance degraded) temporarily to free resources for
recovering failed applications, thus incurring outage penalties.
The data outage and recent data loss penalty rate input re-
quirements describe the rate (in US$ or Euros/hour) at which
penalties are incurred for data unavailability and recent data
loss, respectively. The data protection workloads for the unaf-
fected applications may also be stopped (or degraded) to free
resources for recovery. This degradation may result in an in-
creased vulnerability to further, future failures affecting this
application. We capture this increased potential for loss with
the data vulnerability penalty, which is the worst case recent
data loss penalty the application might incur for subsequent
failures, discounted by the (conditional) likelihood of those
failures.

The goal of data recovery scheduling is to find a sched-
ule that minimizes the overall penalties — data outage, loss
and vulnerability penalties — across all applications. The key
questions to be answered include:

Which secondary copy should be used to recover each
failed application? Tradeoffs exist between different
secondary copies: for instance, the one that provides the
smallest recent data loss may take longer to recover than
an alternate copy that provides greater data loss and faster
recovery time (e.g., depending on resource availability due to
competition with other recovery or unaffected workloads).
The correct choice depends on the relative importance of
recovery (i.e., outage) time and recent data loss, as given by
the penalty rates.

How should otherwise unaffected applications be handled?
Recovery workloads will share resources with workloads
unaffected by the failure — both the application workloads,
which read and write the primary copy of the data, as well
as the data protection workloads used to make secondary
copies for these workloads. If the outage penalty rates for
the unaffected workloads are low relative to those of the
failed workloads, we may choose to degrade or shut down the
unaffected application workloads and/or their data protection
workloads, in favor of speeding the recovery of failed
workloads.

We note that degrading an application’s performance re-
quirements will also reduce its protection technique require-
ments (e.g., a reduced update rate means fewer updates to
copy). Degrading or stopping the data protection workloads,
while the application runs at normal performance, may result
in increased vulnerability to future failures, however.

How should device resources (e.g., disk arrays, tape
libraries, wide area network links) be scheduled to support
recovery operations and unaffected applications? Answers
to the first two questions determine the set of operations
to be performed to complete recovery. \We must determine
how to schedule these operations to avoid oversubscription
of the underlying resources. Many of these resources
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Figure 2: Partial recovery graph for a workload impacted by a
primary array failure. Thisfigure describesthreerecovery alterna-
tives and their recovery operations for the “B” (commercial bank-
ing) workload shown in Figure 1, in the event of a primary array
(arrayl) failure. The recovery paths correspond to the following
recovery strategies: failover to remote mirror (FM), restore from
remote mirror (RM), and restore from backup (RB). A full recov-
ery graph includes recovery pathsfor all workloadsin the system.

can easily be shared between multiple workloads. This
approach would allow recovery to proceed in parallel with
the continued operation of unaffected applications, or allow
multiple recovery workloads to share a resource concurrently.
Alternately, we may choose to allocate resources to a single
workload at a time to permit individual recovery actions to
complete sooner; in this case, we must decide the order in
which the different workloads should hold a resource.

2.2 Recovery graphs

To facilitate the development of automated scheduling al-
gorithms, we want to formalize the representation of the data
recovery scheduling problem. A recovery graph captures dif-
ferent alternatives for recovering application datasets for a par-
ticular failure scenario. Figure 2 presents a partial recovery
graph for one of the applications from Figure 1 after a primary
array failure. Each recovery strategy (e.g., recovery from a
secondary copy with a particular set of resources) is encoded
as a path in the graph. The graph may contain multiple paths
per application, depending on how the application’s data was
protected. For instance, the paths in Figure 2 correspond to
failing over to a remote mirror (FM), restoring the dataset from
aremote mirror (RM), and restoring from a backup copy (RB).

Each recovery path consists of a set of operations (also
called “jobs”) to recover the application to its normal mode
of operation, including restoring the data, restarting the
application and restarting the data protection workloads.
Some jobs must be completed before others may start (e.g.,
data can only be reloaded onto a failed array after the array
has been repaired or replaced). The recovery graph captures
these operations as a set of nodes, connected by directed
edges that express precedence relationships. For instance,
the restore from backup path includes the following steps:
reprovisioning the primary array; restoring data from the full



backup; restoring data from the incremental backup; restarting
the application; and resuming backups and mirroring to bring
the workload into its pre-failure state of protection.

Recovery jobs demand resources. For storage devices, we
assume that resources correspond to device instances (e.g., re-
covery of a mirror copy can only proceed from the specific
array holding that copy). For network and computational de-
vices, a resource may be a specific instance or a “virtual”
device corresponding to the aggregate capabilities of an un-
derlying class of devices (e.g., a network with an aggregate
bandwidth of 40 MB/s). We assume that resources may be
shared between different workloads. Resources have capabili-
ties (e.g., bandwidth, capacity), which must be explicitly spec-
ified, to permit enforcement of resource constraints. The sum
of all demands for a given resource cannot exceed its capabil-
ities.

Recovery graphs distinguish between two types of jobs: re-
covery tasks and operational states. Recovery tasks corre-
spond to a fixed amount of work (e.g., restoring a full backup
copy or reprovisioning a resource). Their execution time de-
pends on the allocation of resources required to accomplish the
work. For instance, restoring a one TB full backup using 60
MB/s of tape drive bandwidth takes nearly five hours; it would
take nearly ten hours at 30 MB/s. For tasks that demand no
IT resources (e.g., overnight shipment of tapes from a remote
vault), the execution time is modeled as a constant delay. Af-
ter the work has been completed, recovery can transition from
this node to the next node along the path.

Once application data has been restored, the application and
its data protection workloads are eligible for resumption. Re-
covery graph nodes describe the operational states that recov-
ery must pass through to restart all of these workloads. Each
state’s resource demands are the minimum resources neces-
sary to support the workloads that are active during that state
(e.g., the application’s access rates if the application has been
restarted).

In Figure 2, recovery tasks are represented by circles and
operational states by squares. The smaller, shaded circles in-
side the nodes correspond to resources demanded by that job.
We assume that each job’s resource demand is quantified as an
annotation to the node in the graph.

2.3 Problem statement

Given the definition of recovery graphs, we can more for-
mally define the data recovery scheduling problem. The inputs
to the problem include the following: a set of outage, loss and
vulnerability penalty rates for each application workload; a set
of capabilities (e.g., bandwidth) per resource; and a recovery
graph describing alternate recovery paths for each workload,
including their jobs, the jobs’ resource requirements and their
precedence relationships.

As stated above, our goal is to find a solution that minimizes
the total penalty costs incurred by all workloads. The solution
includes a) the choice of a recovery strategy (e.g., recovery
path) for each workload and b) a schedule of jobs. A feasible
schedule is constructed by picking a recovery path for each
workload, and then scheduling the jobs in the selected paths
so that both precedence constraints and resource constraints
are met.

3. SOLUTION TECHNIQUES

In this section, we describe several algorithms for solving
the recovery scheduling problem. We begin by establishing
baselines for subsequent evaluation: Section 3.1 presents a
heuristic to approximate the ad hoc approach used by human
administrators, and Section 3.2 describes a mixed integer pro-
gramming (MIP) formulation, which provides optimal solu-
tions for small problem sizes. We then present several heuris-
tic approaches in Section 3.3.

3.1 Human administrator heuristic

Human administrators approach recovery scheduling by
classifying workloads into a small number of categories
(e.g., platinum, gold, silver, bronze), based on coarse-grained
estimates of sensitivity to data outage, loss and vulnerability.
Workloads are recovered by category, starting with the
highest priority category: all failed workloads in one category
are recovered (and unaffected workloads restarted) before
beginning the next category.

The Administrator heuristic captures this approach using
five categories, one for each order of magnitude of the appli-
cations’ data outage penalty rate input requirements, ranging
from $100/hour to $1M/hour. For each workload, the heuristic
picks the recovery path that leads to the least recent data loss
(e.g., remote mirroring is chosen over tape backup/vaulting).
If multiple such paths exist, the algorithm favors the one that
leads to the shortest recovery time for an environment with in-
finite resources (e.qg., failover is preferred over reconstructing
the mirror).

Within a category, multiple workloads may be simultane-
ously recovered, sharing access to resources. Within each cat-
egory the heuristic builds the schedule by choosing jobs in de-
scending penalty rate order from the list of eligible jobs, and
continuing to schedule jobs as long as sufficient resources ex-
ist. Ties are broken by favoring jobs from recovery paths for
failed workloads over jobs from unaffected workloads. After
applying these rules, any remaining ties are broken by choos-
ing a random job.

Optimizations to this algorithm are possible. For instance,
if a recovery path chosen for a workload in a lower priority
class uses a disjoint set of resources from the chosen paths in
higher priority categories, it may proceed. Sharing resources
between workload recovery in different classes is not permit-
ted, however. The lower priority class path must wait until the
higher priority class path has completed its use of the shared
resources for recovery before the lower priority class path can
start.

3.2 Mixed integer program

To provide an optimal comparison point for small problem
sizes, and to further formalize our thinking about the problem,
we formulated a mixed integer programming (MIP) solution.
This section summarizes the MIP formulation (referred to as
Optimal in subsequent sections); a more detailed description
can be found in Appendix A.

The inputs to the MIP formulation are a set of penalty rates
(e.g., outage, recent data loss and vulnerability penalty rates)
for each application, device resource capabilities, and a recov-
ery graph describing alternate recovery paths for each work-
load, including their jobs, resource requirements and prece-
dence relationships. The MIP chooses a recovery path for



each workload and determines a schedule for the recovery op-
erations, specified as the start time for each chosen job. The
objective function is to minimize the overall penalties incurred
by all workloads in the system.

Constraints govern the choices that can be made. For in-
stance, for each application, only a single recovery path can
be chosen, and all jobs on a workload’s chosen path will be
selected for execution. The chosen schedule must satisfy the
precedence constraints specified in the input recovery graph.
Constraints also govern resource usage: the sum of all re-
source demands for a given device must not exceed the ca-
pabilities for that device.

Our prototype MIP implementation uses ILOG’s CPLEX
solver [16], the standard tool for math programming search
space exploration, to find an optimal solution.

3.3 Ad hoc heuristics

In addition to the Administrator and Optimal algorithms,
we have implemented three ad hoc heuristics. Each heuris-
tic has two steps: choosing a path and scheduling the jobs in
the chosen paths. The algorithms use various combinations
of priority-based, randomized, and genetic algorithm-guided
decision-making for these two steps.

3.3.1 MLP-PRS

The first algorithm, called min-loss path, penalty rate sched-
ule (MLP—PRS for short), deterministically picks the “best”
path for each workload by choosing the one that minimizes re-
cent data loss. If multiple paths are equivalent, the algorithm
breaks ties by choosing the path that minimizes the data vul-
nerability penalties. (We note that the algorithm cannot use the
actual outage times as the priority, because these times aren’t
known until the schedule is determined.) It then deterministi-
cally schedules jobs for the chosen paths from the list of eligi-
ble jobs in the order of the workload’s outage penalty rate, as
long as resource capacity constraints are not violated. Thus,
eligible jobs from “high priority” workloads are preferentially
scheduled over eligible jobs from “low priority” workloads.
This heuristic is intended to be a more sophisticated version of
the Administrator heuristic described in Section 3.1.

3.3.2 RP-PRS

In a resource-constrained environment, a greedy choice of
paths may not always provide the best solution. The second
heuristic, random path, penalty rate schedule (RP— PRS for
short), randomly chooses the path for each workload, and uses
the same penalty rate priority scheme as MLP— PRS to sched-
ule eligible jobs. Path selection and scheduling are repeatedly
applied until an execution time limit is reached, and the best al-
ternative is chosen. This heuristic is intended to explore paths
with non-minimal data loss that might be otherwise ignored by
MLP—PRS.

We also explored an additional variant, random path, ran-
dom first fit schedule (RP — FFS), which randomly chooses the
path for each workload, and randomly schedules jobs from the
list of eligible jobs, as long as the resource constraints are sat-
isfied. For the examples we considered, we found that the
RP—PRS algorithm outperformed the RP— FFS algorithm,
so we discuss only the RP— PRS variant.

3.3.3 GAP-PRS
Randomization may not be the most efficient way to explore

the space of potential path selections. The third heuristic, ge-
netic algorithm path, penalty rate schedule (GAP—PRS for
short), uses a genetic algorithm to choose the path for each
workload, and then uses the same penalty rate priority scheme
as the previous two heuristics to schedule eligible jobs. This
heuristic is intended to explore whether evolutionary adapta-
tion can more efficiently explore the path space than a random
search.

The genetic algorithm [26] considers a set of candidate so-
lutions that evolves over time based on a set of adaptations, as
described below. The algorithm starts with a population of 100
randomly chosen solutions (e.g., individuals). Using a genetic
metaphor, the individual is defined by a set of genes that corre-
sponds roughly to a vector of decision variables from the MIP
formulation. Our individual is defined as a set of path choices,
one per workload.

During each iteration of the algorithm, a new population is
chosen by evaluating which candidate solutions are best us-
ing an evaluation (fitness) function analogous to the objective
function in the MIP. The schedule for the evaluation is deter-
mined by applying the greedy penalty rate scheduling algo-
rithm described above. In particular, the algorithm picks two
individuals at random and applies the fitness function to deter-
mine the winner, which is included in the population for the
next iteration. This process is repeated until the new popula-
tion is filled. An individual in the old population may be se-
lected multiple times, and therefore multiple copies of a good
individual may appear in the new population. A place is also
reserved in the new population for the best individual ever
found.

The new population then undergoes several adaptations, in-
cluding crossover and mutation. Each crossover operation ran-
domly selects a pair of individuals and “mates” them with a
certain probability (empirically set to 0.87 in our experiments)
to produce two new individuals, which replace the parent indi-
viduals. (If no mating occurs, the new pair of individuals is the
same as the original pair.) Mating or crossing two individuals
entails swapping a subsequence of the genes, as defined by
pivot points, which divide the genes into contiguous regions.
Our crossover algorithm uses two pivot points, exchanging
the genes between these pivot points, and retaining the orig-
inal genes elsewhere. After crossover, genes are mutated with
a certain probability (empirically set to 0.04 per gene in our
experiments). Each gene mutates within its domain (e.g., [0,
pathsinWkId) for path choice genes).

We experimented with a variant called genetic algorithm
path, genetic algorithm schedule (GAP— GAS), that uses
two distinct genetic algorithms: one to choose the path, and
a second to determine the schedule. For the examples we
considered, we found that the GAP—PRS and GAP— GAS
algorithms performed equally well, so we discuss only the
GAP— PRS variant.

We also tried to improve the results produced by the ad hoc
algorithms (e.g., Administrator, MLP— PRS, etc.) by using
a genetic algorithm that simultaneously evolves the path and
the schedule, and seeds its initial population with the best so-
lutions found by the ad hoc algorithms. In practice, we found
that this algorithm didn’t improve on the solutions found by
the other algorithms, primarily because the other algorithms
produced high-quality solutions at the outset. As a result, we
do not present results for this algorithm in Section 4.



Type | Outage Recent loss | Vulnerability
penalty rate | penalty rate | penalty rate

Student accounts (S): Storage of data owned by students is
tolerant of recent data loss, outages and vulnerability.

| $0.5K | $0.5K | $0.5K
Company documents (D): Documents such as presentations
and design documents are tolerant to small outages and
vulnerability, but less tolerant to loss of recent writes.

[ $5K | $500K [ $5K
Web server for online retailer (W): Outages are expensive,
because when the server is down, orders stop. Recent data
loss and vulnerability are tolerable, because data can be
replaced from other sources.

| $500K | $5K | $5K
Consumer banking (C): Consumer banking is tolerant of
modest outages (since account holders are unlikely to switch
banks), but not data loss or vulnerability to additional failures.

[ $50K [ $5M [ $50K
Central banking (B): Central banks are required by
regulations to have zero data loss and small outage windows;
they also desire negligible vulnerability.

| $5M | $5M | $50K

Table 1. Summary of requirements for example workloads.
These workloads and penalty rates are based on the industry seg-
ment examples described in [21].

4. EXPERIMENTAL RESULTS

In this section, we present experimental results to illustrate
the recovery solver’s operation. We begin with two simple
case studies of small-scale environments, to build the reader’s
intuition. We then study the scalability of our algorithms using
larger configurations. Finally, we examine the sensitivity of
the algorithms to execution time, input information, and the
tightness of resource constraints.

4.1 Environment

We assume that all workloads are protected using the com-
bination of techniques illustrated in Figures 1 and 2, includ-
ing synchronous mirroring, intra-array split mirroring, tape
backup and tape vaulting. Recovery from array failure or site
disaster can be achieved through failover to the remote site
or reconstruction of the mirrored or vaulted copy to the target
primary site. Our case study environments employ disk arrays,
tape libraries and inter-site links. Table 5 in Appendix B de-
scribes the bandwidth and capacity capabilities of these device
types.

Our case studies use five different application classes
whose penalty rate magnitudes are based on market research
data [23], as described in Table 1. For simplicity, we assume
that the capacity and access characteristics for all applications
are the same. They are based on the access characteristics
for the cello2002 workload described in [21]. Table 6 in
Appendix B describes these characteristics for normal mode
(e.g., non-degraded) operation.

4.2 Simple case studies

In this section, we explore several simple case studies to
build intuition. These studies model a primary-secondary site
environment and a two-way peer environment.

4.2.1 Case study 1: primary-secondary sites

The primary-secondary scenario is intended to model a
shared disaster recovery site environment, where workloads
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Figure 3: Evaluation of optimal solution to primary-secondary
scenario. Thisfigure showsa scheduling chart, data outage periods
and resour ce utilization.

running at a primary site are protected by mirroring and
vaulting to the recovery site. The shared nature means that
customers pay a reduced fee to share access to the recovery
site resources, as compared to a dedicated facility, where
resources are dedicated to a particular workload, albeit at a
higher fee. Customers gain access to recovery site resources
by invoking a disaster, and resources are consumed on a
first-come-first-served basis.

In this scenario (illustrated in Figure 1), the primary copies
for five workloads are maintained at the first site, with work-
loads B, C and W on one array and workloads D and S on a
second array. Each primary workload uses a dedicated server
at the first site. The recovery site uses two arrays to mirror
these workloads, and has a single server. We examine recov-
ery after the failure of the primary array hosting workloads B,
CandW.

Figure 3 illustrates an optimal schedule, and Table 2 sum-
marizes the optimal path choices and the resulting depend-
ability properties and penalties. In the absence of contention
from other workloads, the workloads with the highest outage
penalty rates (B, W, and C) would failover to the recovery
site’s mirror copy, to minimize their downtime and data loss.
However, due to the limited resources at the recovery site,
when multiple workloads are present, failovers must be seri-
alized. As a result, in the context of multiple workloads, the
optimal schedule reconstructs C from its mirror copy, instead
of waiting to failover until after B has completed its failover
and failback. Workload W has both a high outage penalty rate
and a low data loss penalty rate, so its optimal recovery path is
to restore from a local backup copy, trading off a small amount
of recent data loss for a shorter recovery time than restoring
from the remote mirror, or waiting to failover.



[ Metric | B] C] W] DJ S|
Expected path FM | FM FM nla n/a
(in isolation)
Optimal path FM | RM RB nfa n/a
(in context)

Outage time (hr) 1 31 24 0 0

Loss time (hr) 0 0 48 0 0

Vulnerability 30 0 0 0 0
time (hr)

Per-workload 5.0 [ 155 | 12.24 | 0.00 | 0.00
penalty (M $)

Table 2: Summary of optimal primary-secondary solution. The
expected path row describes the path that one would expect to be
chosen, if thisworkload were operating in isolation. The optimal
path row describes the optimal path choice when multiple work-
loads are present, due to contention for resources. Recall that FM
means failover to mirror, RM meansrestore from mirror, and RB
means restore from backup.
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Figure 4: Comparison of algorithm solution quality for primary-
secondary scenario.

Figure 4 compares the quality of the solutions provided by
the various algorithms by breaking down the overall penalties
into three categories. Infinite resources penalties are the penal-
ties due to the duration of recovery tasks and the existence
of precedence constraints; they represent the penalties for the
preferred path and schedule choices under infinite resources,
where contention is not an issue. Finite resources penalties
are the penalties incurred due to the scheduling compromises
that must be made to address resource contention in a finite
resource environment; the sum of finite and infinite resource
penalties is equivalent to the optimal solution. Finally, path
and scheduling penalties are the penalties due to inefficiencies
in an algorithm’s recovery path selection or recovery schedul-
ing. Infinite resources penalties are inherent penalties that can-
not be eliminated, whereas path and scheduling and finite re-
sources penalties can be addressed through algorithm design
and overprovisioning of resources, respectively. As a result,
we compare algorithms on the basis of the percent reduction
in these addressable costs, relative to the Administrator algo-
rithm.

We observe that the RP— PRS and GAP— PRS algorithms
both produce optimal solutions, resulting in a 44% (or
$5.9M) improvement over the Administrator algorithm. The

[ Metric [ Ci] Cc2] C3] W] D]

Expected path FM | FM | FM n/a n/a
(in isolation)

Optimal path FM | RM | RM nfa n/a
(in context)

Outage time (hr) 1 31 31 0 31

Loss time (hr) 0 0 0 0 0

Vulnerability 30 0 0 0 0
time (hr)

Per-workload 0.05 | 155 | 1.55 | 0.00 | 0.16
penalty (M $)

Table 3: Summary of optimal two-way peer solution.

MLP— PRS algorithm results in a much more limited (e.g.,
6%) improvement over Administrator. The MLP— PRS and
Administrator algorithms do not achieve optimal solutions
because they do not consider paths that lead to non-minimal
data loss, such as recovering from a backup copy.

4.2.2 Case study 2: peer sites

The peer scenario is intended to model an environment
where two sites each serve as the primary for a subset of the
workloads, and as a secondary (i.e., remote mirror) for the
workloads served primarily by the other site. This might
occur, for example, in a corporation with multiple branch
offices that serve as peers for one another.

In this example, the first site serves as primary for three con-
sumer banking workloads (C1, C2 and C3), and the second site
serves as primary for two workloads (W and D). At each site,
one array hosts C1, C2 and C3, and another array hosts W
and D. We assume that each site is provisioned with enough
servers for its primary workloads. \We examine recovery after
the failure of the primary array at the first site hosting work-
loads C1, C2 and C3.

Table 3 summarizes the optimal path choices and the result-
ing dependability properties and penalties. As expected, the
highest penalty rate workloads (W, which was unaffected by
the failure, and C1, one of the failed consumer banking work-
loads) are scheduled first to use the server resources at site2 to
minimize their outage time. The remaining failed workloads
(C2 and C3) recover from the remote mirror copy, rather than
waiting to serialize their failover after C1’s failover and fail-
back. Once C1 has completed failback, the server resources at
site2 become available for restarting workload D.

Figure 5 illustrates the effectiveness of the various algo-
rithms. RP— PRS and GAP— PRS achieve optimal solutions,
resulting in a 39% (or $1.2M) improvement in addressable
penalty costs over the Administrator solution. MLP—PRS
results in no improvement over Administrator. These algo-
rithms always pick the minimal data loss path, and in the case
where multiple paths have the same data loss, they choose the
path that would produce the shortest outage in the absence of
resource contention. This policy leads to the choice of failover
for all three failed workloads. Tasks are scheduled according
to descending outage penalty rate order, meaning that the un-
affected W will be scheduled immediately, forcing the serial-
ization of the failover operations, and leading to a sub-optimal
schedule.
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Figure 5: Comparison of algorithm solution quality for peer sce-
nario.
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Figure 6: Scalability of solution quality for separate administra-
tive domains primary-secondary scenario.

4.3 Scalability experiments

Although the examples in the previous section are useful for
building intuition about recovery schedules, many real-world
environments have more applications — up to tens of appli-
cations, according to solution architects. In this section, we
explore the scalability of our formulations as the size of the
environment increases.

4.3.1 Separate administrative domains

We begin with an environment that models a service
provider that maintains separate administrative domains
for each of its customers. This environment is constructed
from the smaller environments used in Section 4.2; both
the collection of workloads and the devices are replicated.
We assume a failure model of one array per administrative
domain, analogous to the failures used in Section 4.2. The
scale factor describes how many administrative domains
(e.g., copies of the smaller environment) are used in a given
experiment.

The benefit of these experiments is that the optimal solution
is known. Section 4.2 presents the MIP’s optimal objective
function for the smallest (e.g., scale factor SF1) experiment.
The MIP formulation solver is unable to complete execution
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Figure 7: Scalability of solution quality for separate administra-
tive domains peer scenario.

for problems with scale factor larger than SF1 (it runs out of
memory); however, we can derive the optimal solutions for
these larger problems from the solutions to the SF1 experi-
ments. Because the individual administrative domains operate
independently, the optimal objective function as the scale fac-
tor grows is merely the scale factor times the baseline (SF1)
objective function.

To provide a meaningful comparison between the
algorithms, we bound the amount of execution time given to
each algorithm for a given problem size. Our experimental
platform is an HP ProLiant DL360G3 dual-processor server
with 2.8 GHz Intel Xeon processors and 4 GB of main
memory, running Debian Linux version 2.4.27. The execution
time bounds are: one minute for five application workloads,
five minutes for ten workloads, ten minutes for twenty
workloads and one hour for fifty workloads. We note that
Administrator and MLP—PRS finish significantly before
these bounds (e.g., in well under one second for all problem
sizes), because they only consider a single alternative,
whereas the other algorithms use the entire execution time
allotment.

Figure 6 illustrates algorithm scalability for the primary-
secondary scenario. MLP— PRS provides a modest (e.g., 6%),
but consistent improvement over Administrator for all prob-
lem sizes. The RP—PRS and GAP—PRS algorithms pro-
duce optimal solutions for small to medium problem sizes,
thus providing up to 44% improvement in addressable costs
over solutions produced by Administrator. Solution quality
degrades for RP— PRS for the largest problem size, though,
because it is unable to explore a sufficiently large fraction of
the possible solution space. This solution space increases ex-
ponentially as the number of workloads increases linearly. For
the 50-workload problem, GAP— PRS successfully uses the
genetic algorithm to select the optimal paths, and the priority-
based algorithm to determine an optimal schedule, resulting
in a 44% (or $58.6M) improvement in addressable costs over
Administrator.

For the peer scenario (shown in Figure 7), MLP— PRS isn’t
able to improve on the solutions provided by Administrator,
due to their path and scheduling decisions, as outlined in
Section 4.2. RP—PRS and GAP—PRS achieve optimal
solutions for small and medium problem sizes within the
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Figure 8: Scalability of solution quality for site consolidation peer
scenario.

execution time bounds, resulting in a 41% improvement over
Administrator. However, as with the primary-secondary
scenario, solution quality for RP—PRS degrades for the
largest problem size, given the prescribed execution time.
Again, GAP—PRS finds optimal solutions and a 41%
($12.8M) improvement over Administrator, even for large
problem sizes.

4.3.2 Site consolidation

We also explored a site consolidation environment using a
single aggregate resource per resource type (e.g., server, disk
array or tape library). These consolidation experiments are in-
tended to show that our algorithms do not rely on knowledge
of the problem structure to determine high-quality solutions.
We found that the primary-secondary scenario results are sim-
ilar to the separate administrative domains case, so we focus
our discussion on the peer scenario.

The experiments scale the capabilities of the aggregate re-
sources, so that sufficient bandwidth exists to run all of the
workloads. Each primary site has a large enough aggregate
server to run its primary workloads. In each peer scenario,
60% of the workloads are consumer banking, 20% are web
server, and 20% are company documents. (This application
mix is the same as the separate administrative domains case.)
As in the separate administrative domains case, for five work-
loads, the first site acts as primary for the three consumer bank-
ing workloads, and the second site serves as primary for the
web server and company documents workloads. This base
case differs from the one outlined in Section 4.3.1, however,
in that all workloads are affected in some way by the failure:
workloads whose primary copy was at the failed site need to be
recovered, and those whose secondary copy was at the failed
site must wait until that site has been reprovisioned before re-
suming remote mirror operation. In the larger scenarios, each
site serves as the primary for half of the workloads in each
application category.

For these experiments, the optimal solution is unknown,
as our MIP solution does not scale beyond the five workload
case and, unlike the separate administrative domains scenario,
the optimal solution cannot be derived from the solution of a
smaller problem. Because we cannot determine the optimal
solution for the larger problem sizes, we cannot distinguish
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between the finite resources penalties and path and scheduling
penalties, as in Figure 5. As before, we compare algorithms
on the basis of the percent reduction in overall (e.g., finite re-
sources and path and scheduling) addressable costs, relative to
the Administrator algorithm.

Figure 8 illustrates algorithm scalability for the site
consolidation peer scenario. The Administrator algorithm
consistently performs worse than the other algorithms at all
problem sizes, due to its coarse-grained scheduling policy,
which under-utilizes the available device resources. In the
five-workload case, MLP— PRS provides 1.4X improvement
in overall addressable costs, and both RP—PRS and
GAP—PRS provide 2.0X improvement. For medium-sized
problems (e.g., up to 20 applications), MLP— PRS improves
on the Administrator solution by 2.2X, and both RP—PRS
and GAP—PRS improve by 2.3X. These trends continue
through 50 applications (resulting in savings of up to $31.8M)
for all of the algorithms except RP—PRS, which cannot
sufficiently explore the large solution space in the bounded
one-hour execution time.

4.4 Senditivity experiments
In this section, we examine the sensitivity of our results

to algorithm execution time, input data specification and the
tightness of resource constraints.

44,1 Executiontime

The bounded execution times used for the scalability results
in the previous section were sufficient for the GAP— PRS al-
gorithm to achieve optimal results, even for large problem
sizes. These bounds (e.g., one hour for the 50-application
case) may seem long, however, if an administrator wants to
start recovery as soon as possible after an incident. In this sec-
tion, we explore whether the GAP— PRS algorithm might be
used more interactively, even for large recovery schedules.

Figure 9 illustrates how quickly the GAP— PRS algorithm
converges, by plotting the ratio of solution objective functions
for GAP—PRS and Optimal. Results are shown for the 50-
application primary-secondary and peer variants of the sep-
arate administrative domains environment. (Recall that we
can extrapolate the optimal solution objective function for the
separate administrative domains environment, even for large



problem sizes.) In both cases, GAP— PRS’s solutions con-
verge to within 10% of optimal within the first five minutes of
execution. Solutions within 1% of optimal are achieved within
13 minutes (peer scenario) and within 16 minutes (primary-
secondary), respectively. Thus, it is possible to achieve near-
optimal solutions in considerably less execution time.

4.4.2 Input information

A common criticism of automated approaches is that
they require too much input data, especially high-level
requirements (e.g., penalty rates), which may be hard to
quantify. We investigate the sensitivity of our solutions to
the choice of penalty rates by simulating the case where the
administrator is only able to provide inexact penalty rates.
We compare the solution chosen in this case to the solution
chosen if the penalty rates are more precisely specified. More
specifically, we evaluate the objective function for the solution
chosen with the inexact penalty rates using the precise penalty
rates, and compare this result with the objective function for
the solution chosen with the precise penalty rates.

Here we present results for the primary-secondary scenario,
with the mixture of workloads described in Section 4.2.1. We
simulate inexact penalty rates by converting all penalty rates
into an order-of-magnitude estimate (e.g., $100/hr, $1000/hr,
etc.) Precise penalty rates are represented by a range of values
at each order of magnitude (e.g., $10K/hr, $20K/hr, $30K/hr,
etc., for the consumer banking workloads). We found that the
objective functions for the solutions provided by inexact and
precise inputs differed by less than one percent, for all ranges
of workloads (e.g., five through fifty workloads). We found
this result to be true for both the separate administrative do-
main environment, as well as the site consolidation environ-
ment.

Although the precise specification of input requirements
may be unnecessary, our approach does require the ability to
differentiate between different classes of applications. Several
techniques may assist administrators in quantifying their
requirements [20]. First, the best practices in the consulting
community include business impact assessment (BIA)
interviews and questionnaires, to assess the financial impacts
of downtime. Second, marketing research firms can provide
rules of thumb for particular industry segments (e.g., [23]).
Third, as described in [18], even if users can’t quantify
their requirements, we may be able to provide toolsets to
allow them to perform “what if” analyses to explore the
design ramifications of different input requirements. Finally,
knowledge of higher-level business processes and their data
flows may provide direct insight into data requirements.

4.4.3 Resource constraint tightness

As shown in our earlier experiments, contention for
resources during recovery may lead to non-obvious recovery
path or scheduling decisions. Resource overprovisioning,
which is often used to address many other IT concerns, may
permit simpler recovery scheduling algorithms to find optimal
or near-optimal solutions.

We re-evaluated the separate administrative domains
primary-secondary and peer environments from Section 4.3.1,
but increased the resource capabilities by 10X, thus removing
any resource contention. \We observe that all algorithms
(MLP—PRS, RP—PRS and GAP-—PRS) find optimal
solutions for small and medium-sized problems. MLP—PRS

and GAP—PRS also find an optimal solution for the
largest problem size. The heuristic used by Administrator
consistently finds solutions that are 4.4X worse than optimal,
due to the forced serialization of workloads in different
priority classes, even though sufficient resources exist for
inter-class parallelism.

Although overprovisioning does simplify the solution
of the recovery scheduling problem, it results in grossly
under-utilized resources under normal operation. For instance,
servers purchased or leased for the sole purpose of recovery
may remain idle during normal operation. Ultimately, the
question of overprovisioning is a pre-disaster design question.
System designers should balance the additional outlay costs
of overprovisioning against the potential benefits in penalty
reduction for recovery after a disaster. Keeton, et al., describe
one method for exploring these tradeoffs [21]. The recovery
scheduling solution techniques described in this paper can be
used to provide detailed recovery time and data loss estimates,
to better inform this design process.

45 Discussion

The coarse-grained categorical recovery scheduling done by
the Administrator algorithm does not produce optimal sched-
ules, indicating that there is opportunity for improvement be-
yond what human administrators can do today. We can achieve
better solutions if we are willing to introduce more parallelism
between categories, as in the MLP— PRS algorithm. How-
ever, this scheduling parallelism is difficult for humans to rea-
son about as the number of workloads increases, so it is un-
likely to be adopted in practice, without support for automa-
tion.

If resource constraints are loose, then MLP—PRS’s
combination of greedy path and scheduling decisions will
likely produce the optimal schedule. However, if resource
constraints are tight, then greedy decisions (like those made
by both Administrator and MLP—PRS) about recovery
paths are unlikely to be optimal. For instance, it may be better
to recover from a backup copy than to wait for the opportunity
to failover to a remote site. The monetary penalty for these
suboptimal schedules depends on the penalty rates of the
workloads, but can easily scale to millions of dollars for even
small problem sizes. Ultimately, the question of resource
overprovisioning to speed recovery is a design tradeoff
between up-front outlay costs and post-disaster recovery
penalties.

One technique to overcome sub-optimal decisions for
tighter resource environments is to introduce randomization,
such as through the RP—PRS algorithm. This approach
does well if the algorithm can explore a sufficiently large
portion of the solution space. However, as the number of
workloads increases linearly, the size of the potential solution
space increases exponentially, and the quality of the solution
in bounded time is poor. Good answers are possible if the
algorithm is allowed to run sufficiently long (e.g., in an
offline fashion). The most effective approach we observed
is to use evolutionary pressure to pick the best path, along
with a greedy scheduling algorithm. We’ve demonstrated
that this approach provides optimal results in bounded time,
and converges to near-optimal solutions in even less time,
meaning that recovery schedules could easily be produced on
the fly.

For our case studies, the penalty rate scheduling provides a



good schedule, once the recovery path is chosen. We note that
there may be other scenarios where this greedy approach to
scheduling doesn’t provide the best answer. We are exploring
these scenarios as part of future work.

5. RELATED WORK

Practitioners’ guides (e.g., [8, 24, 25, 33]) offer rules of
thumb and high-level guidance for designing dependable
storage systems, and recovering these systems after disasters.
These books focus mainly on the logistical, organizational
and human aspects of disaster recovery, such as the need for a
documented disaster recovery plan, the information it should
contain, the need to maintain a list of critical personnel and
their telephone numbers at a redundant location, etc. They do
not treat detailed scheduling or resource allocation issues.

Workflow management [9, 31] provides abstractions for de-
scribing processes and their constituent activities, as well as
relationships between activities, criteria for starting and termi-
nating processes, and information about individual activities
(e.g., participants, associated applications and data). This area
of research provides many alternative languages and manage-
ment tools, which may be useful for expressing and manipu-
lating recovery graphs.

Several recent studies explore how to design a storage sys-
tem to meet user-defined goals. Total Recall [5] is a peer-to-
peer storage system that controls the level of redundancy in
the system to meet a user-specified availability goal. Keeton,
et al., present methods for automatically selecting data protec-
tion techniques (such as remote mirroring or tape backup) for
storage systems to minimize overall cost of the system, includ-
ing up-front outlay costs and recovery penalties [21]. From
that paper, we have adopted the basic approach of using data
loss and data outage penalties to evaluate alternative solutions.
Keeton and Merchant present a model for the recovery time
and data loss after a storage system failure [19]. The previous
work considers only a single recovery workload, and hence
does not investigate the question of scheduling competing re-
covery tasks. In contrast, this paper focuses on scheduling re-
covery workloads to minimize the costs of a failure affecting
multiple applications.

In the operations research scheduling literature, our treat-
ment of data recovery scheduling problem is most closely re-
lated to project scheduling with resource constraints [28]. In
a project scheduling problem, jobs are subject to precedence
constraints and the objective is to minimize makespan, or the
duration of the overall schedule. The setting is a parallel envi-
ronment with constrained resources. Authors have proposed
several methods to tackle this problem, including the criti-
cal path method and the PERT method [3, 4, 6], genetic al-
gorithms [11, 32], and other heuristics [22]. The scheduling
problem has also been addressed in other contexts, includ-
ing animation rendering [1], real-time systems [36], embedded
systems [10] and multiprocessors [15, 35]. The data recovery
scheduling problem differs from the ones addressed in the lit-
erature in that it requires a choice between multiple alternative
plans to complete the project; typically in project scheduling
there is just one way to accomplish a project. Whereas the re-
lated literature generally generally minimizes makespan as its
objective, our problem’s objective function uses penalty rates
that depend on the chosen project plan and on the state of com-
pletion of the chosen project plan. In addition, the job duration

depends on the amount of resources assigned to the job.

6. CONCLUSIONS

The data recovery scheduling problem is challenging:
with multiple workloads to recover and multiple strategies
for each workload’s recovery, the number of possible
schedules is large. Unfortunately, the categorical approaches
administrators use to devise recovery plans don’t provide
optimal solutions: their inefficiencies result in millions of
dollars of extra penalties in the face of disasters.

This paper makes several contributions toward the solution
of the data recovery scheduling problem. Our approach of
describing the recovery process as a recovery graph provides
structure to an otherwise ill-defined process. This approach is
useful for improving information and feedback gathering ac-
tivities, rehearsing recovery plans and evaluating these drills.

Given the recovery graph abstraction, we formulate
the data recovery scheduling problem as an optimization
problem. We present several formulations to solving the
data recovery scheduling problem, including priority-based,
randomized, and genetic algorithm-guided ad hoc heuristics.
Although simple, greedy approaches to path selection (such
as MLP—PRS) may be effective if resource constraints
are loose, these approaches don’t succeed in more tightly
constrained environments. Randomization (e.g., RP— PRS)
helps here, if the algorithm is permitted to search a sufficiently
large portion of the solution space. The best overall
performance is provided by the GAP—PRS algorithm,
which uses a genetic algorithm to choose paths and a greedy
approach for determining the schedule. GAP— PRS achieves
this goal in a bounded amount of time that could be used to
generate recovery schedules interactively post-disaster, so that
they can be tailored to the disaster at hand, thus increasing the
likelihood of successful recovery.

We believe that this work is an important first step towards
tackling this rich problem area. Many open questions remain,
however, including extending the formulations to multiple re-
source demand attributes, coping with failures during the re-
covery process, incorporating application-level recovery and
dependencies in our recovery scheduling, and incorporating
measurements of real recoveries into our models.
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APPENDIX
A. MIPFORMULATION

This appendix presents the details of our MIP formulation.
Table 4 defines the variables, and Figure 10 lists the objective
function and constraints.

A workload’s business requirements are represented by
penalty rates for data outages (moyt,j), data 10ss (Tjess p) and
data vulnerability (m,,;). The inputs also include a recovery
graph, which consists of one or more recovery paths (Vi p).
Each path contains one or more jobs (Qp ), where the term
“jobs” encompasses both recovery tasks and operational
states. The graph represents precedence constraints (I;;)
for when job i cannot begin until job j has completed.
(Predecessor and successor jobs are further described by
P(j) and S(j), respectively.)

For each task, R; , indicates the resources required for that
task (e.g., the minimum bandwidth requirements for opera-
tional states or a minimum expected bandwidth allocation for
recovery tasks). Constraints will check to ensure that the sum
of all resource demands for a given device doesn’t exceed the
capabilities of that device (e.g., Km t). D; describes the dura-
tion required for fixed work tasks. This duration may be a fixed
delay (e.g., for provisioning resources or retrieving tapes from
a remote vault), or it may be the time to perform work (e.g., to
transfer incremental backup data from tape) at the requested
bandwidth allocation level.

Figure 10 presents our discrete time mixed integer program-
ming (MIP) formulation. The formulation’s objective is to de-
termine the solution that minimizes the overall penalties in-
curred by all workloads, as quantified in Eq 1. This solution
includes a recovery path choice for each workload (e.g., zp),
the choice of the jobs along that path (e.g., y;), and a sched-
ule of jobs (e.g., indicated by a set of task start time indicators
Sj.t)-

J Constraints govern the choices that can be made. For each
workload, only a single recovery path can be chosen, and the
chosen path must be associated with that workload (Eq 2). All
jobs on a workload’s chosen path will be selected for execu-
tion (Eq 3). Each job that’s chosen for execution starts (Eq 4)
and ends (Eq 5) only once. Jobs must start before they end
(Eq 6). The selected start times must satisfy the precedence
constraints specified in the input recovery graph (Eq 7).

Constraints also govern resource usage. We use a job’s end
time, as indicated by e; ., to track how long that job consumes
resources. Jobs corresponding to recovery tasks consume re-
sources until their work has been completed (e.g., for D;, as
shown in Eq 8). Jobs corresponding to operational states con-
sume resources until the next job begins for “intermediate”
tasks (Eq 9), and until the end of the schedule for the final job
in a path (Eq 10).

A job holds resources after it starts and before it ends
(Eq 11). It doesn’t hold resources before it starts (Eq 12) or
after it ends (Eq 13). For each device, the resources consumed
must not exceed the device’s capabilities (Eq 14).

B. ENVIRONMENT DETAILS

This appendix quantifies our experimental parameters. Ta-
ble 5 quantifies device parameters, and Table 6 presents the
application and data protection workload bandwidth demands
in the normal mode of operation.



[ Parameter | Notation | Units Description
Indices
workloads we W set of workloads in the recovery graph
paths pe P set of paths in the recovery graph (i.e., across all workloads)
jobs jied set of jobs (tasks) in the recovery graph (e.g., across all paths).
Jobs are categorized as recovery tasks (Jc), operational states (Joper) Or final
(Jfin)-
time slots teT set of fixed-duration time slots in the schedule
devices me M set of device (e.g., “machine”) instances
Input parameters
data outage Thout,j US $/hour | outage penalty rate for job j. We observe the convention that this penalty rate is
penalty rate non-zero for the first job where an application is resumed, and zero otherwise.
data loss Tloss,p Uss penalty for recovery path p, which corresponds to the product of
penalty data loss penalty rate times the recent data loss for path p
data vulnerability Toulj US $/ hour | vulnerability penalty rate for job j. We observe the convention that this penalty
penalty rate rate is non-zero for jobs where an application is resumed, but its entire set of
data protection workloads has not yet resumed,; it is zero, otherwise.
recovery path Vi.p binary indicator of whether a recovery path p is associated
validity with a workload w
recovery path Qp,j binary indicator of whether a job j is associated with a
membership recovery path p
precedence I binary incidence matrix indicating job precedence constraints
constraints (j precedes i). The associated graph must be acyclic.
predecessors P(G)cJ predecessors of job j, defined as the set of jobs that immediately
precede job j (i. e., where I;; = 1)
successors S(j)cJ successors of job j, defined as the set of jobs that immediately follow job j
(i. e., where I;; = 1). We assume there is at most one successor per job.
device capacity K.t bytes/sec total resource capacity available at device m
resource Rjm bytes/sec resource requirements for job j on device m
requirements
job allocation D, sec duration of job j
duration
Decision variables
chosen path Zwp binary indicator variable showing whether path p is chosen for workload w
chosen job Yj binary indicator variable showing whether job j is chosen
start time indicator | s;¢ binary indicator describing whether job j starts in time slot t
end time indicator | ¢ binary indicator describing whether job j ends in time slot t
(i. e., first slot where resources are released)
resource indicator | ¢ binary indicator describing whether job j consumes resources in time slot t

Table 4: Summary of notation used in discrete time M1P formulation for data recovery scheduling.

[ Workload | Resource requirements

Application local server 100%

local array 1028 KB/s

Synchronous local array 0 KB/s

- - - mirroring interconnect 7990 KB/s

| nglce type [[ Bandwidth | Capacity | remote array 7990 KBJs

Disk array 512 MB/s 18.25TB Intra-array focal array 3500 KB/s
Tape library drives * 60 MB/s | tapes * 400 GB split mirror

OCS3 network links || 20 MB/s n/a Tape backup local array 16,505 KB/s

(local) tape library | 16,505 KB/s

Table 5: Device configuration parameters. The array character-
istics are based on HP's EVA array [12], with 256 73 GB disks.
The tapelibrary (based on HP’s ESL 9595 [13]) contains up to 16
LTO tape drives and up to 500 LTO tape cartridges. These de-
vices communicate through a fibre-channel storage area network
(SAN). Sites are connected via OC3 links (155 M bps). We assume
that device reprovisioning takes 12 hours.

Table 6: Normal mode bandwidth resource demands. These
bandwidths represent the minimal requirements for maintaining
the schedules for creating secondary copies. Split mirrorsarecre-
ated every 12 hours, and four such split mirrors are retained at
theworkload’'s primary array. Each workload isbacked up using
weekly full backups (once a week, with a backup window of 24
hours) and daily incremental backups (once a day, with a backup
window of 8 hours). If remote vaulting of backup tapesisused, we
assume backup tapes are shipped offsite immediately. We assume
that one server isallocated to each application workload.



