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Abstract

The cost of large storage systems is dominated by
management costs. Typically, skilled administrators
configure storage manually using rules of thumb.
However, designing a storage system for a given
workload is a difficult task, because there are mil-
lions of possible configurations and mappings of
data, and because storage system behavior is com-
plex. Ergastulum is a new storage system designer
that can be used both to guide administrators in their
design decisions and as part of an automatic storage
system management tool like Hippodrome [4]. Er-
gastulum generalizes the best-fit bin packing heuris-
tic with randomization and backtracking to effi-
ciently search through the huge number of possible
design choices. Design decisions are informed by
device models that estimate storage system perfor-
mance. We show that Ergastulum quickly generates
near-optimal storage system designs. It is faster and
generates better solutions than previous tools, and it
is substantially faster than an integer programming
implementation that generates optimal solutions for
simplified device models. We conclude that Ergastu-
lum is a comprehensive solution to the storage sys-
tem design problem.

1 Introduction

Previous studies [1, 20] have indicated that the cost
of large storage systems, over the course of their life-
time, is dominated by management costs. Currently
storage systems are managed by skilled and expen-
sive administrators using rules of thumb. Unfor-

tunately, because storage systems are complex and
application workloads are complicated, the result-
ing systems are often over-provisioned, which makes
them unnecessarily expensive, or under-provisioned,
in which case they perform poorly. Given that enter-
prise class storage systems that cost $1,000,000 are
not uncommon, over-provisioning by just a factor of
two in an attempt to reduce the management costs
can be extremely expensive.

This paper presents Ergastulum: a storage sys-
tem design tool. Ergastulum takes a workload de-
scription, efficiently explores the huge number of
possible storage system designs that could support
the workload and chooses the one that best achieves
some externally-specified goal, such as a minimal,
balanced design. Administrators can use Ergastulum
to determine if they have under or over-provisioned
their storage system by running the tool on their ex-
isting workload, and comparing the resulting design
to the one they are using. Even better, they can use
Ergastulum as part of an automatic storage manage-
ment system such as Hippodrome [4], thereby reduc-
ing storage management costs. Hippodrome iterates
through a loop, first improving the storage system
design using Ergastulum, second implementing the
new design, and third analyzing the workload as it
runs on the new storage system.

Ergastulum generates a storage system design
based on an input workload, a set of allowed device
types, and a goal. This design captures both a map-
ping of the workload’s data onto a storage system
and the configuration of that storage system, includ-
ing the number of disk arrays used, the number and
type of drives in those arrays and the RAID configu-
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ration of the drives.
Ergastulum uses analytic storage system perfor-

mance models to evaluate whether a candidate de-
sign supports a given workload. Analytic models are
better than trace-driven simulators because they are
faster. Ergastulum treats the performance models as
a black box, making frequent calls to them through a
narrow interface. Ergastulum is currently used with
several different performance models [30, 3, 21], de-
pending on which device types are used.

The storage system design problem is complex.
With capacity-only constraints and fixed-size disks,
it is as hard as the NP-complete bin-packing prob-
lem [13]. For arbitrary goals or models only an ex-
haustive search would find an optimal design.

One way to solve this design problem is to cast
it as a integer-linear programming (IP) optimization
problem. However, it is difficult to convert the com-
plex device performance models into a form suitable
for IP constraints. Furthermore, the techniques that
are used to solve IP problems are very slow. How-
ever, as we will show in Section 4.2, this approach is
useful for evaluating Ergastulum.

Another approach to this problem is to use genetic
algorithms to try to “evolve” a good storage system
design. This approach was attempted [33], but it was
found to be substantially slower than previous ap-
proaches [2] and at best it generated the same quality
solutions.

A third approach to this problem is to use bin-
packing algorithms. Unfortunately, storage systems
introduce constraints that existing algorithms don’t
handle. For instance, device utilization constraints
are non-additive; i.e., the net utilization of a device
by multiple parts of a workload is not the simple sum
of the independent utilizations of each part. Exist-
ing bin packing algorithms [18, 25] require that the
constraints are additive but, as we show, some of the
best-fit packing algorithms [19] can be adapted to
handle non-additive constraints.

The approach used in Ergastulum is a generaliza-
tion of the best-fit bin-packing algorithm. First, we
add randomization because it often helps in complex
search problems. Second, we add re-assignment,
where existing parts of the assignment are un-done
and then re-tried, to help the design tool avoid local
minima. Third, we can run re-assignment at different

granularities to fine-tune the design.

Ergastulum is designed to find “good” (as opposed
to optimal) solutions in a reasonable amount of time.
As the problem is NP-hard, we cannot expect to find
optimal solutions in all cases. However, we provide
experimental evidence that the solutions generated
by our design tool are near optimal.

The primary contribution of this paper is to de-
scribe a fast tool for finding near-optimal storage
system designs. Section 2 summarizes the inputs
and dependencies of a storage system design tool.
Section 3 describes the architecture, the central data
structure, and the search techniques used in Ergas-
tulum. Section 4 experimentally evaluates Ergastu-
lum in comparison to the Minerva design tool [2], in
comparison to the optimal results generated by an in-
teger programming design tool, and probabilistically
by generating hundreds of thousands of random de-
signs. Section 5 provides a summary of other related
work, and finally, Section 6 concludes and discusses
future directions.

Ergastulum

Device tree Speculation

Search algorithm Goal
functions

Device
models

Specifications parser

Workload summary
Goals

Constraints

Design meeting goals

Figure 1: Ergastulum’s architecture: The search algo-
rithm uses the device tree to keep track of the current de-
sign, and the speculation engine to rapidly switch between
alternative designs. Different goal functions are used in
different phases of the search. Ergastulum takes its input
(and generates its output) in the Rome specification lan-
guage [34]. The device models are used to quantitatively
evaluate the quality of the design.
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2 Inputs to Ergastulum

The inputs to the Ergastulum design tool are a work-
load description, a set of potential devices, op-
tional user-specified constraints, and an externally-
specified goal. The design tool chooses the appropri-
ate types of devices to use, the configuration of each
device and the mapping of application data onto the
devices, to best achieve the specified goal.

2.1 Workloads, devices and constraints

The workload description [34] captures capacity and
performance requirements in terms of stores and
streams. A store is a logically contiguous block of
storage used to hold, for example, a file system, a
database table-space, or application data. The size of
the store is its most significant attribute. A stream,
which captures the dynamic component of the work-
load, summarizes an I/O request pattern. Streams
capture information about the I/O accesses to a sin-
gle associated store, such as an average request rate,
an average request size, and a summary of the se-
quentiality in block accesses. Further information on
stream attributes can be found in [30, 3, 21].

Disks in an array are grouped together into logi-
cal units (LUs) using RAID [23]. Stores are packed
into the LUs of configured disk arrays. The array
types available to the design tool are specified as in-
puts, along with any restrictions on their configura-
tion. Disk arrays inherently have certain constraints
such as limits on the number of disks in a RAID
group, the maximum number of disks in the device,
and the maximum bandwidth of controllers. Ergas-
tulum uses this information to generate a configura-
tion, setting device parameters for each LU, such as
RAID level, stripe size, and disks used, and global
parameters such as cache page sizes.

The user may place additional constraints on valid
designs. For example, they may restrict the valid de-
vice configurations, by limiting choices of RAID lev-
els or disk types. They can specify a maximum total
system cost, or a maximum utilization of any device.
Furthermore, they can specify that certain stores be
placed on particular devices, or on LUs with partic-
ular RAID levels.

The final input is a user-specified goal, which

is used by the design tool to determine the “best”
choice from a set of possible configurations. There
are many possible goals for a storage system design
such as minimal price, balanced load or low utiliza-
tion. The goal is implemented as a function that
chooses between two different configuration choices.

2.2 Device performance models

As mentioned above, Ergastulum needs device per-
formance models. The device performance models
take a possible configuration of a device and a map-
ping of stores onto the LUs of a device, and returns a
prediction of the utilization of the components of the
device. For example, if a single disk can handle 100
small random reads/second, and it has two uncorre-
lated streams on it each performing 25 reads/second,
then the performance model would report that the
disk is 50% utilized. Ergastulum uses three differ-
ent performance models: monolithic equation-based
models as described in [21], modular equation-based
models as described in [30], and table-based models
as described in [3], depending on which device types
are used. All the models use summaries [34, 31] of
the workload (I/O traces) to make their predictions.
Since neither device performance modeling nor I/O
summarization is the focus of this paper, we refer
interested readers to the above references for more
details.

3 Architecture of Ergastulum

Ergastulum consists of three main components: a
data structure, called the device tree, that keeps track
of the current design, previous designs and possible
configuration changes; a search algorithm that uses
various strategies to find a near-optimal design; and
a state management component, called speculation,
that allows Ergastulum to easily roll back to a pre-
viously generated design with low overhead. These
components are illustrated in Figure 1.

3.1 Device tree

Our search heuristic uses the device tree as the cen-
tral data structure. An example is shown in Figure 2.
The device tree serves four different purposes.
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First, the device tree represents the current storage
system design. It records the configuration param-
eters for the different storage devices, the mapping
of stores onto LUs and the current utilization of dif-
ferent components of each device. In Figure 2, the
current design contains an existing, but expandable,
XP256 disk array [16].

Second, the device tree represents the possible
configuration changes that can be made to the design.
It records where new arrays or components can be
added to the configuration, for example, where a new
RAID group can be added to an array. It also records
where array configurations can be transformed into
alternative configurations, for example changing a
RAID-1/0 LU into a RAID-5 LU. In Figure 2, the
device tree can potentially be changed to add a new
FC-60 disk array [15] and some LUs.

Third, in cooperation with speculation, the device
tree represents prior, saved designs. All necessary in-
formation is recorded to allow Ergastulum to quickly
switch to a prior design.

Fourth, attributes attached to nodes in the device
tree isolate the design tool from external modules.
The attributes encapsulate the device models, and act
as the interface to the goal functions. For instance,
Figure 2 shows existing or potential attributes cap-
turing aspects of device performance associated with
an array. These attributes represent controller, back-
plane and SCSI bus utilization.

The device tree is a naturally expandable struc-
ture, highly suited to incrementally building a stor-
age system design. Changes to the configuration rep-
resented by the device tree are performed by meth-
ods associated with each node of the device tree.
Thus, the search algorithm is independent of the id-
iosyncrasies of the actual device configurations. Two
types of functions may be associated with each node
in the tree: expansion (add new tree nodes) and
transformation (change existing tree nodes). Expan-
sion functions increase the resources in the tree by
adding a child node, for example by creating a new
disk array or adding an LU (and its associated disks)
to a disk array. In Figure 2, an expansion function
defined at the FC-60 factory node causes the addi-
tion of a new FC-60 array to the device tree. Trans-
formation functions transform nodes in the tree by
replacing one node with another that has different

Root

FC-60

Factory

Single

XP-256

FC-60
ACP-A ACP-B

LU A0 LU A4... LU A5 LU B0

R5 LU R10 LU

Root

Filesystem
Market

Basket

Table

LU Capacity

Bus-1 Utilization

Controller A

Utilization
ACP

Utilization

Backplane

Utilization

Figure 2: A sample device tree, part-way through an as-
signment. Devices are shown in ovals, attributes are in
rectangles, and stores are in hexagons. Solid lines in-
dicate existing nodes in the device tree, dashed ones in-
dicate potential nodes that could be added. The FC-60
factory on the left can create multiple FC-60 disk arrays
which in turn can create RAID-5 or RAID-1/0 LUs; FC-
60 LUs share SCSI bus utilizations. Because the admin-
istrator specified that a single XP-256 disk array should
be used, there is no factory for the XP. The XP-256 has a
multi-level internal structure; up to 4 array control pairs
(ACP) can be attached to the backplane and LUs are at-
tached to an individual ACP. Many additional attributes
and possible transformations are possible.

parameters; for example, by transforming a RAID-
1/0 LU into a RAID-5 LU, or by changing the disk
type in an LU. In Figure 2, a transformation function
defined at the RAID-5 LU node of the FC-60 could
replace that node with a RAID-1/0 LU node.

Nodes in the device tree have attributes which
capture device properties such as the price of a par-
ticular node, the available and maximum capacity
of an LU, or the utilization of the SCSI buses in
a device. Some attributes (such as SCSI bus uti-
lization) can be shared between multiple nodes in
the device tree. Utilization attributes are determined
by the device performance models. As stores are
added and removed from the tree, and the device
configuration changes, the values of the attribute will
change appropriately. Assigning a store to a par-
ticular leaf should only affect the attributes associ-
ated with nodes on the path from the root to that
leaf. Constraints on the device configuration can be
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recorded as maximum values of attributes. The goal
functions use the values stored in attributes to inform
their choice between possible configurations.

3.2 Search heuristic

The search heuristic in Ergastulum is a generalized
version of best-fit bin packing with randomization.
Ergastulum uses multiple phases to optimize the de-
sign.

Initial assignment starts with empty devices. The
list of stores is randomized, and each store is as-
signed into the device tree using a best-fit search of
the tree. Because best-fit bin packing is a greedy al-
gorithm, initial assignment often ends in a local min-
ima. To escape from a local minima, a random sub-
set of stores are removed from the device tree and
re-assigned. Re-assignment in Ergastulum currently
operates at two levels of granularity: on one or more
LUs and on a single store.

The different assignment phases use slightly dif-
ferent goal functions because they serve different
purposes. For example, LU-level reassignment tries
to reduce the total number of LUs, by using the goal
of a tight packing, but store-level reassignment tries
to balance the load for use in a real system. Earlier
work [6] showed that using a special goal function
during initial assignment can also help the design
tool avoid local minima.

The key operation is the process of adding a single
store into the device tree. Ergastulum uses the same
algorithm for adding a single store during both initial
assignment and reassignment. The rest of the search
algorithm assumes that adding a single store finds
the best incremental design with the new store added
into the tree.

3.2.1 Adding a store into the device tree

Given a store to assign, the design tool searches
through all leaf nodes in the device tree looking for
the “best” location for the new store. The “best” lo-
cation is determined by a path comparison function,
which is a simplification of the general goal func-
tion. Since the store will be assigned to a particular
leaf, and the only attributes which change are along
the path from the root to the leaf, it is sufficient and
faster to choose between two different assignments

by looking at only the attributes along the two paths.
Ergastulum provides both paths to the path compar-
ison function, and the path comparison function se-
lects the “better” path.

The search through all of the leaf nodes is per-
formed as a depth-first search of the device tree to
minimize recalculation of attributes in interior nodes.
At each node in the tree, we first try to assign the
store to that node (a simple assignment). If a con-
straint at that node is violated, or the path compari-
son function indicates that this path is worse than the
best path so far, the algorithm skips searching any
children of the node. If the simple assignment suc-
ceeds, and the search has reached a leaf, then this
path is saved as the “best” path so far, and the search
then backtracks.

After trying the simple assignment at a node and
its children, the search algorithm then iteratively tries
the various expansion and transformation functions
defined at that node. If a function succeeds, then a
simple assignment is re-tried on this alternative state
of the node. Otherwise, the search algorithm undoes
any changes to the tree made by the function, and
tries the next function. Once all the functions have
been tried and the best resulting path has been saved,
the depth-first search continues. The functions can
therefore be viewed as “virtual” children in the depth
first search. Logically, saving the best path, and un-
doing the changes made by the expansion and trans-
formation functions is done by saving and restoring
the entire tree. Section 3.3 describes how we use
speculation to reduce the overhead of the save and
restore operations.

Removing stores from the device tree so they can
be assigned elsewhere is essentially the inverse of
adding a store. First, the attributes are updated ap-
propriately. Then a contraction function (roughly
the inverse of the expansion functions) is run on the
nodes that were updated to determine if any of the
nodes in the tree can be removed. Removing nodes
in the tree may further update the attributes.

3.2.2 Initial assignment phase

In the initial assignment phase, Ergastulum builds an
initial configuration from an empty device tree, start-
ing from a root node. Initial assignment takes the list
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of available stores, randomizes it and iterates through
the list, adding each store into the device tree. If a
store fails to fit anywhere in the tree because of some
constraint, Ergastulum reports that the store did not
fit, and stops after initial assignment without gener-
ating a design. Otherwise, once all stores have suc-
cessfully been assigned, the resulting device tree rep-
resents the initial assignment.

3.2.3 Reassignment phase

The initial assignment phase is followed by a number
of reassignment phases. Each reassignment phase
randomly removes some set of stores from the cur-
rent assignment, and reassigns them into the tree. It
then uses a tree comparison function (derived from
the goal function) to select which design is better.
For improved efficiency, and to avoid having to keep
both trees directly available, the tree comparison
function first summarizes a tree and later compares
the two summaries.

The reassignment phases differ in the rule that
they use to remove stores from the existing config-
uration. This is done to support the different goals of
each reassignment stage. We currently use two rules
for removing stores: remove all the stores from one
or more randomly selected LUs and remove a sin-
gle random store. In each case, after removing the
stores, they are randomly sorted, and assigned back
into the tree using the single-store assignment algo-
rithm described earlier.

The LU-level reassignment phase attempts to re-
duce the number of LUs used in the design by remov-
ing all of the stores on one or more LUs, and trying
to reassign them into a tighter packing. We option-
ally remove all the stores from multiple LUs because
experimentation has shown that removing the stores
on a single LU results in no changes, either because
that LU only contains a small number of stores or be-
cause there is little space available on other LUs. The
design tool supports options to specify both a mini-
mum total number of stores to remove and a min-
imum number of LUs. LUs are selected randomly
from the set of remaining, not-yet-reassigned LUs.
Once all the LUs are reassigned, this phase may be
repeated for a user-specified number of rounds.

The store level reassignment phase is designed to

balance the load across the minimized devices. It
works by removing a random store and reassigning
it with the goal of balancing the load. Store level
reassignment reassigns some fraction of the stores in
the configuration.

3.3 State management with speculation

To support the rapid try/undo pattern exhibited by
the design tool, we use an idea called speculation
to avoid making complete copies of the device tree.
Speculation only copies data in the tree just before
it is written; before a node in the device tree modi-
fies itself, duplicates are made of anything that might
change. Before modification of a sub-tree, specula-
tion only makes a copy of the nodes in that sub-tree,
since changes in the sub-tree can’t affect nodes out-
side of it.

Speculation uses multiple stacks of “in-flight”
configurations to support swapping between widely
different configurations. The search algorithm only
needs to restore or save from the top of any stack
because of the structure imposed by the depth-first
search. We support an arbitrary number of state
stacks, as some expansion or transformation func-
tions may want to try out a possible change, but the
search algorithm itself only uses a current “trial” and
“best” state.

The main advantage of speculation is that it elim-
inates the need to track how the design tool got
to a particular configuration. This means that we
only need to implement the “forward” modifications
to the device tree, rather than having to record the
operations that would undo a particular transition.
Recording the full set of transitions would get pro-
hibitively complex for handling substantially differ-
ent designs. A second advantage of speculation is
that it makes switching between different designs
linear in the number of changed nodes, rather than
the number of operations. As the number of nodes is
usually much smaller than the number of operations,
this is a substantial improvement.

4 Evaluation

We evaluate Ergastulum using two metrics. Our pri-
mary metric is the quality of the solution. For exam-
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ple, given a device model, a minimum cost goal, and
an input workload, the best solution is the one with
the lowest cost. Our second metric is the running
time used by the various approaches, with a more
qualitative goal of showing that the performance of
the tool is “good enough” to be usable in practice.

We first compare Ergastulum with Minerva [2] to
show that our new solution is better than previous
work. We then attempt to evaluate how well Ergas-
tulum does on an absolute scale. Our first compar-
ison point uses integer programming (IP) to gener-
ate optimal solutions for small inputs and simplified
device models. Our second comparison point uses
random sampling to show that with realistic work-
load and device models Ergastulum generates near-
optimal solutions, provided that we use reassignment
to optimize the initial assignment.

4.1 Comparison with Minerva

The design of Ergastulum benefits from experience
with an existing configuration design tool called
Minerva [2]. Minerva sometimes generates poorer
quality solutions, because it separates the steps of
selecting RAID levels for stores, configuring devices
and assigning stores onto devices. In addition, Min-
erva takes considerably longer to generate solutions,
because it uses an expensive search heuristic, that
prevents it from taking full advantage of incremen-
tal models,

Since Minerva only supports the the Hewlett-
Packard SureStore Model 30/FC High Availability
(FC-30) disk array [14], it is used in this compari-
son. Fully-configured, an FC-30 can support 8 LUs,
using 30 4GB disks, two front-end controllers and 60
MB of NVRAM cache.

We perform the comparison using the workloads
previously used to evaluate Minerva [2]. Most of
the workloads are semi-synthetic; although they have
been extrapolated from traces, phasing behavior is
simplified. The tpcd workloads use the full analysis
of a 10 GB TPC-D-like benchmark.

1. The file-system workload is a heterogeneous
workload extrapolated from a work-group file
server trace. It is characterized by moderate-
sized requests (average 20KB) and essentially
random accesses.

2. The filesystem-cap workload reduces the re-
quest rates and increases the store capacities to
make the workload capacity-bound.

3. The oltpSplit specification is based on a trace of
the TPC-C online transaction processing bench-
mark [29]. It has small random requests, and
about 75% reads.

4. The scientific3 workload is based on measure-
ments of the NWchem application described
in [27]. It has large sequential reads and writes.

5. tpcd-2x takes two copies of a 10 GB TPC-D-
like analysis (to make it large enough to be
interesting) and specifies that the two copies
have uncorrelated overlaps. This workload has
long, complex database queries, with interest-
ing phasing behavior and a mix of both random
and sequential accesses.

6. tpcd-4x has four copies of the TPC-D-like anal-
ysis, combined as for tpcd-2x.

Three results are generated for each workload by
1) Minerva, tagging stores with a RAID level be-
fore assignment, 2) Ergastulum, using the same sep-
arate tagging approach (Ergastulum-Tag); and 3)
Ergastulum, using integrated RAID level selection
(Ergastulum-RLS). The two different cases for Er-
gastulum enable us to compare the device config-
uration and assignment differences separately from
the approach taken to RAID level selection (see [6]
for more details on the latter). Results are based on
ten iterations in each case. LUs are configured as
4-disk RAID-1/0 or 5-disk RAID-5. Both tools use
the monolithic, equation-based device performance
models [21] that were designed to accurately model
the FC-30.

4.1.1 Execution time

Figure 3 shows that Ergastulum-Tag takes only
15-25% of Minerva’s execution time to generate
a configuration design (note the log-scale y-axis).
Ergastulum-RLS takes longer than Ergastulum-Tag
(but still less than Minerva) because integrated
RAID level selection explores more alternatives.
Ergastulum-RLS consistently comes up with the
lowest cost solution.
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Figure 3: Comparison of execution times between Min-
erva and two variants of Ergastulum. Ergastulum-Tag is
restricted to making the same RAID level choices as Min-
erva. Ergastulum takes only 15-25% of Minerva’s execu-
tion time (note the log-scale y-axis).

For a typical execution of the scientific3 work-
load, Minerva spends half of its time generating its
first complete assignment and the other half running
a single optimization pass. Conversely, Ergastulum
spends only 6% of its time on generating a (some-
what worse) initial configuration, relying on random-
ized reassignment to improve the configuration. This
difference is because Minerva uses a more compli-
cated heuristic to try to determine the correct loca-
tion for a store in a single pass.

4.1.2 System cost

Figure 4 compares the system costs for Ergastulum
and Minerva. We can see that with the RAID levels
fixed, Minerva and Ergastulum-Tag are quite com-
parable, each doing slightly better than the other in
some cases. In particular, Minerva does better on the
two tpcd workloads, while Ergastulum-Tag does bet-
ter on the filesystem and oltp workloads. However,
the added flexibility provided by Ergastulum’s inte-
grated RAID level selection allows Ergastulum-RLS
to always generate solutions that are as good as Min-
erva, and often improve the solutions further.

4.2 Comparison with IP design tool

One way to assess the quality of Ergastulum solu-
tions is to use integer-linear programming (IP) [22]
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Figure 4: System cost comparison between Minerva and
Ergastulum. When Ergastulum is restricted to using the
same RAID levels as Minerva for each store, the results
are comparable. Allowing Ergastulum the flexibility of
selecting RAID levels itself makes Ergastulum-RLS as
good or better than Minerva in all cases.

to generate optimal solutions. Integer programming
uses branch and bound techniques to eventually find
an optimal configuration. Unfortunately, IP cannot
be used to solve the full storage system design prob-
lem because the device performance models can’t
be converted into integer-linear constraints. There-
fore, we restrict our evaluation to a simpler utiliza-
tion model which allows an IP formulation.

To simplify the IP formulation, we make the fol-
lowing assumptions: a) all disks have the same ca-
pacity, b) all I/Os are read-only, c) only one stream is
associated with each store, and d) all LUs are RAID-
1/0. We also use the simpler stream-interaction for-
mula as described in [5].

The IP design tool supports both simple disks with
capacity and utilization constraints, and a restricted
model of the Hewlett-Packard SureStore E Disk Ar-
ray FC-60 [15]. Fully-configured, an FC-60 con-
tains 6 disk enclosures (or trays) containing a total
of 60 9, 17, 36 or 73GB disks, one controller enclo-
sure containing two controllers, each with 512 MB
of NVRAM cache, and one 40MB/s Ultra SCSI con-
nection between the controller enclosure and each
of the six disk enclosures. LUs in an FC-60 can be
created using RAID-1/0 and RAID-5 with arbitrary
numbers of disks. The IP design tool uses only the
17GB disks, and the RAID-1/0 LU type.

8



10

100

1000

10000

100000

1e+06

uniform zipf normal bimodal

R
un

tim
e 

in
 lo

gs
ca

le
 (

s)

Workload

’Ergastulum’
 ’IP’

Figure 5: Comparison of the IP design tool and Ergas-
tulum execution time. Ergastulum generated optimal so-
lutions 80%–90% of the time and was never more than
2.5% from optimal. Ergastulum is about 100 times faster
than the IP design tool.

4.2.1 Experiments

We carried out three different types of experiments
in increasing order of complexity. They are:

1. Disk with capacity only: All disks have the
same capacity, store assignments must not vi-
olate capacity constraints.

2. Disk with capacity and utilization: Extending 1
by adding utilization constraints to each disk.

3. FC-60: Using the simplified FC-60 model de-
scribed above.

The capacity-only disk packing problem is a 1-
dimensional bin-packing problem. We used 17 GB
disks with four different store size distributions:

1. uniform: 500 stores with capacity uniformly
distributed in (4MB, 4GB)

2. zipf: 500 Zipf distributed stores with Zipf pa-
rameter 0.8 and range (0.8GB, 17GB)

3. normal: 500 normally distributed stores with a
mean of 17GB=10, and a standard deviation of
17GB=80.

4. bimodal: The union of two normal distribu-
tions: 200 stores obeying normal distribution
N1(17GB=4;17GB=80) and 300 stores obeying
normal distribution N2(17GB=6;17GB=80).

We ran each of the experiments 10 times to cal-
culate a mean, lower, and upper bound. Ergastulum

Workload Store Store Random 4k
count capacity reads/s

1 8 1/2 GB 100-130
2 100 1/4 GB 7.7-8.6
3 200 1/4 GB 3.8-4.3

Table 1: Synthetic workloads on FC-60 arrays. These
workloads are similar to the synthetic workloads used in
[4]

found the optimal solution in 80% - 90% of the cases,
and otherwise was within 2.5% of the optimal design
cost. Figure 5 shows (in log scale) that Ergastulum
is usually about 100 times faster than the IP design
tool.

We next hand-crafted a set of workloads for which
the best-fit 1-dimensional bin packing algorithm is
known to work poorly: a scalable workload with four
sets of stores: 17GB=4 � i�256; i = 0;1; : : : ;2n�
1, and 17GB=6 � i � 256; i = 0;1; : : : ;3n� 1. The
only optimal solution is to assign each � pair of
stores on the same disk, which would lead to a so-
lution using 2n disks. For n = 10 (20 disks opti-
mally), the Ergastulum design tool finds a 21 disk
solution in 3.98 seconds, the IP design tool finds the
same solution in 9 seconds, and takes 67 hours to find
the optimal solution. With n = 50, Ergastulum finds
a 106 disk solution whereas the optimal solution is
100 disks. For n = 100, Ergastulum uses 211 disks
whereas the optimal solution is 200 disks. Thus, we
can see that Ergastulum’s solution is approximately
5% worse than the optimal solution.

Using both capacity and utilization constraints on
single disks, we created a workload of 100 stores,
where the store capacity is uniformly distributed in
(4MB, 10GB), and the stream for each store has a
request rate uniformly distributed between 0 and 50
random 4K requests/second. A single disk can do
about 100 random 4K requests/second. Ergastulum
found a solution in 11 seconds, the IP design tool
took 24 days to find the same solution.

Finally, we evaluate Ergastulum with a set of syn-
thetic workloads on the simplified FC-60 array, as
summarized in Table 1. Each experiment was run 4
times. For all these workloads, the Ergastulum de-
sign tool produced the optimal solution, as did the
IP design tool. Figure 6 shows the running time of
Ergastulum versus the IP design tool for the three
workloads. For the largest problem, Ergastulum took
60 seconds and the IP design tool took 60 hours.
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Figure 6: Execution time comparison for the three work-
loads shown in Table 1. Ergastulum generated optimal
solutions for all experiments. The error bar (mean, lower
and upper bounds) were calculated based on 4 samples.

4.3 Solution quality for real models

Determining the quality of solution generated by a
heuristic for an at-least NP-hard problem is very dif-
ficult. However, we can estimate the quality of so-
lutions by sampling a large collection of random de-
signs. With the appropriate design tool options, the
final design cost is determined entirely by the store
order. Therefore, we can explore the overall search
space by generating random orders for the stores, and
performing just initial assignment. By executing this
process many times, we can limit the probability that
we missed a better design. The specific requirements
on the design tool can be found in [5]; in essence
all configurations have to be reachable, and adding
stores to a device should not decrease the utilization.

We performed the experiments using both FC-30
(see Section 4.1) and FC-60 (see Section 4.2) mod-
els, using nine different device options, as shown in
Table 2. We used 20 different workloads, and ran
about half a million individual experiments. Addi-
tional results are available [5]. We stopped running
experiments with a given workload-option pair if we
had run at least 500 experiments that included at least
100 experiments for each unique system cost found
for that workload-option pair. The workloads used
for these experiments are all from automatically gen-
erated traces of real systems.

� tpcd-4x From the Minerva experiments (see
Section 4.1).

array LU type disk size (GB) name

FC-30 RAID-1/0 4 -FC-30-r1
FC-30 RAID-5 4 -FC-30-r5
FC-30 RAID-1/0 + 5 4 -FC-30
FC-60 RAID-1/0 9 -FC-60-A-r1
FC-60 RAID-5 9 -FC-60-A-r5
FC-60 RAID-1/0 + 5 9 -FC-60-A
FC-60 RAID-1/0 9, 18, 36, 72 -FC-60-B-r1
FC-60 RAID-5 9, 18, 36, 72 -FC-60-B-r5
FC-60 RAID-1/0 + 5 9, 18, 36, 72 -FC-60-B

Table 2: Configurations explored in the initial assignment
experiments.

� tpcc-midrange A midrange TPC-C configu-
ration using one array and a two processor
server. The database was performing about
16.5K tpmC.

� om5 Trace from an OpenMail email server.
This server had about 2000 active users.

� rdw-fintense25,q50e25g Trace of a 1 TB re-
tail data warehousing workload. The intense25
variant has 25 intense (15+ minute by them-
selves) simultaneous queries. The q50e25 vari-
ant has 50 quick (few seconds individually), and
25 each (tens of seconds individually) simulta-
neous queries.

� tpcd300-f1,7g Trace of queries one and seven
of a TPC-D configuration at the 300GB scale
factor.

For the paper, we have selected 10 interesting and
representative results. In all of the results, designs
are grouped by system cost. We can learn a number
of different things from these graphs. First, the stor-
age system design problem is very complex; some of
the experiments generate hundreds of distinct system
costs. Some problems, such as tpcd300-1-FC-60-B,
are easier as the results are heavily weighted toward
the minimal cost configurations. Other problems,
such as rdw-r10-q50e25-FC-60-B, are more difficult
as the results are weighted toward more expensive
configurations. Many of the runs generate normal or
bi-modal distributions of system cost.

Second, just randomly generating designs is not
likely to find a near-optimal design. In many cases,
the best result found occurs with a probability less
than 1%. Fortunately, as we will see in the next sec-
tion, reassignment gets to the lower-cost configura-
tions fairly quickly.
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Figure 7: Subset of results of running thousands of random experiments with different workloads and device parame-
ters. Designs with the same total system cost are considered the same. All costs are calculated relative to the smallest
cost found in the random experiments, so the leftmost column in each group (at the center of the label) has the minimal
cost. The number of different costs found, total number of runs, mean relative cost, and the maximum relative cost are
shown in the captions.

Third, mistakes can be expensive. For the rdw-
r10-q50e25-FC-60-B experiment, the ratio between
the most expensive and the least expensive configu-
ration found is about 2.1. For 46 of the 145 experi-
ments, the ratio between the most expensive and the
least expensive configuration is over 1.2.

4.4 Solution quality with reassignment

As demonstrated in the previous section, stopping af-
ter generating a random design is not likely to gen-
erate a good design. We now explore how well reas-
signment improves the quality of the initial assign-
ment. We use two of the initial assignments for each
distinct cost from the experiments described in Sec-
tion 4.3.

We then ran 50 rounds of reassignment, using a
few different reassignment functions, and a mini-
mum number of LUs to reassign. All of the reassign-
ment functions select the cheapest path. If the two
designs are the same, then the MaxAvgAll function
selects the path with the higher mean utilization of
all attributes, and the MinAvgAll function selects the
path with the lower mean utilization. Both of these
functions consider paths that differ by less than 5%
to be the same. Delta selects the path with the lower
increase in utilization, and if the increase is the same
to within 0.1%, then it uses the MaxAvgAll function.

We have varied the minimum number of LUs to re-
assign between 1-5, so an experiment named 3xMax-
AvgAll means that three LUs were removed in each
reassignment round, and the MaxAvgAll comparison
function was used. We chose 50 rounds arbitrarily
based on earlier experience that most of the bene-
fit occurs in the first few rounds, but occasionally
the design is improved in later rounds. As with the
random store order experiments, we have run many
more experiments than we have room to show here.
Additional results are available in the technical re-
port [5].

For each reassignment rule, and for each round,
we plot the current min, mean, and max system cost
derived from reassigning each of the initial assign-
ments. We can learn many things the subset of the
results shown in Figure 8. First, the very expensive
designs are eliminated fairly quickly by almost all of
the reassignment functions. Second, figure (a) shows
that using MaxAvgAll rather than the MinAvgAll usu-
ally results in better final costs, although in the first
few rounds, MinAvgAll does better; this result is why
the Delta comparison uses MaxAvgAll rather than
MinAvgAll. Third, figures (b) and (c) show that no
single LU reassignment count is best. Fourth, the
mean system cost continues to drop as the number
of reassignment rounds increases. Fifth, figure (c)
shows that reassignment may find a slightly better
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configuration than was ever discovered by running
all of the random seeds.

MaxAvgAll tends to do better than MinAvgAll be-
cause with MinAvgAll, the design tool balances load
across all the available devices, so it is less likely that
a design will be generated which can remove an LU.
Conversely, with MaxAvgAll, load is concentrated on
a few of the devices, so one LU may eventually free
up, allowing it to be removed.

5 Related work

Buzen [8] proposed a capacity planning tool in
which workloads have types; possible types are time,
sharing, transaction processing and batch process-
ing. The requirements of each type are assumed to
be the same. Devices are modeled by grouping de-
vices into groups where only one of the groups can
service a request at once. Ergastulum is a more ver-
satile tool, free of simplifying assumptions such as
all workloads have same requirements and devices
have to be grouped.

Hill [17] developed and patented a scheme for the
assignment of a workload to devices, based on at-
tributes of I/O rate and capacity. It is not clear how
well Hill’s scheme would handle the more complex
attributes needed for modeling storage systems.

Shriver [26] proposed a formalization of the stor-
age design problem that models workload units with
various attributes, objective functions for specify-
ing goals and constraints on devices that can contain
workload units. Forum [7] implements that formal-
ization and handles storage design for independent
disk systems as a multi-dimensional constrained bin-
packing optimization problem using an adaptation
of the complex Toyoda [28] bin-packing heuristic.
Minerva [2] extends Forum to handle disk arrays.
The comparison with Minerva, and hence a super-
set of Forum can be found in Section 4.1 where we
show that Ergastulum is faster and generates as good
or better designs.

Existing solutions to the file assignment prob-
lem [11, 35] use heuristic optimization models to
assign files to disks to get improvements in I/O re-
sponse times. The file allocation schemes described
in [12, 24] automatically determine an optimal stripe
width for files, and stripe those files over a set of
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Figure 8: Reassignment round vs. max, mean, min sys-
tem cost, starting with various initial assignments and
using many different reassignment rules. All figures
show that very bad configurations are usually eliminated
quickly. Figure (a) shows that MaxAvgAll is better than
MinAvgAll. Figures (b) and (c) show that the best reas-
signment rule is not clear; 2xDelta is the best rule for (b),
but 3xDelta is the best rule for (c). Figure (c) shows that
reassignment can find better configurations than initially
discovered using random seeds. The max, mean and min
for each experiment are plotted with the same symbol; the
mean is always between the max and the min.
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homogeneous disks. They then balance the load on
those files based on a form of “hotspot” analysis,
and swapping file blocks between “hot” and “cold”
disks. Ergastulum can select the appropriate num-
ber of devices to use, supports RAID systems, and
uses far more sophisticated performance models to
predict the effect of system modifications.

The AutoAdmin index selection tool [10] can au-
tomatically “design” a suitable set of indexes, given
an input workload of SQL queries. It has a com-
ponent that intelligently searches the space of possi-
ble indexes, similar to Ergastulum, and an evaluation
component (model, in Ergastulum terms) to deter-
mine the effectiveness of a particular selection based
on the estimates from the query optimizer.

Muse [9] controls server allocation and energy-
conscious, adaptive resource provisioning for Inter-
net hosting centers. Unlike Ergastulum, it focuses on
allocating computational resources. Its resource al-
location framework is based on an economic model
that factors in the trade-offs between the service
quality and the cost.

The Appia [32] system automatically generates
network fabric designs. It uses significantly sim-
pler performance models, and substantially differ-
ent heuristics because there is less natural structure
present to guide the search. The use of randomized
reassignment might be beneficial to Appia, as it has
been shown to help Ergastulum substantially.

6 Conclusion

In this paper, we have presented Ergastulum, a new
and efficient way of solving the storage configura-
tion problem. We have highlighted interesting fea-
tures of Ergastulum to show that it is highly flexible
and can be used in different scenarios. We have also
established that Ergastulum produces near-optimal
solutions and is substantially faster than other ap-
proaches. In summary, we believe that Ergastulum
is a novel way to quickly solve the storage configu-
ration problem.

In the future we plan to extend Ergastulum to han-
dle new disk arrays, and verify that the techniques we
have described can correctly handle the additional
complexity posed by those arrays. We are consid-
ering extending Ergastulum outside of the storage

system domain; in particular, we believe that we
could configure and map application host require-
ments onto appropriate hosts, so that Ergastulum
could handle both the storage and host configuration
in a data center. Finally we are examining extensions
to Ergastulum that allow us to handle multiple data
centers.
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