
Designing dependable storage solutions for
shared application environments

Shravan Gaonkar∗ Kimberly Keeton# Arif Merchant# William H. Sanders∗
∗{gaonkar,whs}@uiuc.edu, # {kimberly.keeton,arif.merchant}@hp.com

∗Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
#Hewlett Packard Labs, Palo Alto, California

Abstract

The costs of data loss and unavailability can be large, so
businesses use many data protection techniques, such as re-
mote mirroring, snapshots and backups, to guard against
failures. Choosing an appropriate combination of tech-
niques is difficult because there are numerous approaches
for protecting data and allocating resources. Storage system
designers typically use ad hoc techniques, often resulting in
over-engineered, expensive solutions or under-provisioned,
inadequate ones. In contrast, this paper presents a princi-
pled, automated approach for designing dependable storage
solutions for multiple applications in shared environments.
Our contributions include search heuristics for intelligently
exploring the large design space and modeling techniques
for capturing interactions between applications during re-
covery. Using realistic storage system requirements, we
show that our design tool can produce designs that cost up
to 3X less in initial outlays and expected data penalties than
the designs produced by an emulated human design process.

1 Introduction

Businesses today rely critically on their IT infrastructure,
and events that cause data unavailability or loss can have ex-
pensive, or even catastrophic, consequences. Such events
can include natural disasters, equipment failures, software
failures, user and administrator errors, and malicious at-
tacks. Given these threats, most businesses protect their
data using techniques such as remote mirroring, point-in-
time copies (e.g., snapshots), and periodic backups to tape
or disk. These techniques have different properties, advan-
tages, and costs. For example, using synchronous remote
mirroring permits applications to be quickly failed over and
resumed at the remote location. Snapshots internal to a disk
array are space-efficient and permit fast recovery of a con-
sistent recent version of the data. Backups to tape or disk
allow an older version of the data to be recovered. On the
other hand, remote mirroring usually has high resource re-
quirements, local snapshots do not protect against failure of
the disk array, and recovering from backups can result in
significant loss of recent updates.

To achieve adequate levels of data protection, it may be

necessary to use a combination of techniques. The stor-
age system designer must select one or more data protec-
tion techniques to apply to each application workload. Re-
sources, such as disk arrays, servers, tape libraries and net-
work links, must also be assigned to the application to sup-
port these techniques. The resources and data protection
techniques have many configuration parameters; for exam-
ple, a backup schedule needs to specify the frequency of
the backups and whether the backups will be full or incre-
mental. The designer must verify that the design will meet
both normal operational performance requirements (for ex-
ample, the backups will complete overnight), and that the
recovery behavior will be adequate under various expected
failure scenarios. These decisions must be made in a cost-
effective manner. Faced with such complexity, designers
usually resort to simple ad hoc heuristics: categorize appli-
cations by importance (gold, silver, or bronze) and assign
a standard data protection design depending upon the cat-
egory. This approach frequently results in either an over-
engineered system that is more expensive than necessary, or
an under-provisioned one that does not meet requirements.

In this paper, we provide a principled, automated ap-
proach to designing dependable data storage systems for
multi-application environments, which minimizes the over-
all cost of the system while meeting business requirements.
Previous work considers how to automatically design a de-
pendable storage system that uses a single technique to pro-
tect a single application workload [11] and how to evalu-
ate the recovery behavior of a single application workload
protected by a combination of techniques [13]. Storage sys-
tem design for multi-application environments presents even
greater challenges. First, the design space of data protec-
tion technique and resource configurations for multiple ap-
plications is extremely large. Second, if multiple applica-
tions and their data protection techniques share the same
physical resources, either in non-failure mode or in recov-
ery mode, contention for these resources may impact appli-
cation performance, compared to the case where each appli-
cation operates in isolation. Third, designing for multiple
applications may prompt different design decisions than if
each application were considered in isolation. For instance,
it may be more cost-effective to consolidate multiple work-
loads (even if some are less important) onto a high-end disk
array than to employ a high-end array for important work-

loads and a less expensive array for less important work-
loads.

Our contributions include search heuristics for intelli-
gently exploring the large design space, as well as modeling
techniques for capturing interactions between applications
during recovery, which extend earlier single-application
models [13] to multi-application environments. We quan-
titatively evaluate our heuristic approach using realistic stor-
age system environments and compare its solutions to those
produced by a simple heuristic that emulates human design
choices. For the scenarios we study, we find that our ap-
proach’s solutions reduce overall system costs due to equip-
ment and software outlays and data unavailability and loss
penalties by at least a factor of three.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the problem of designing storage systems
to protect application data. In Section 3, we describe our de-
sign methods. In Section 4, we evaluate our approach quan-
titatively. Section 5 presents related work, and Section 6
concludes.

2 Designing dependable storage systems

Our goal is to find the best storage solution, which is
the one that minimizes overall costs, including infrastruc-
ture outlays as well as penalties for application downtime
and data loss. The solution to this problem specifies: 1) a
combination of data protection and recovery techniques for
each application workload (e.g., remote synchronous mir-
roring and local snapshots and local backup); 2) how those
data protection techniques should be configured (e.g., how
frequently snapshots and backups are taken); and 3) how
physical resources like disk arrays, tape libraries and net-
work links should be provisioned to support normal and re-
covery operation.

To understand how the design tool makes choices among
design alternatives, this section describes the design space
and all the parameters used to prescribe a particular design.
We begin by describing how we model the design space,
including the data protection and recovery techniques, ap-
plication workload characteristics, device infrastructure, and
failure scenarios. We then describe how the cost of a partic-
ular solution is computed and provide a precise description
of the problem we solve, in terms of this design space.

2.1 Data protection and recovery techniques

Protecting applications against data loss and unavailabil-
ity requires making one or more secondary copies of the data
that can be isolated from failures of the primary data copy.
Although standard redundant hardware techniques such as
RAID [16] are used to protect data from internal hardware
failures, they are not sufficient to protect data from other
kinds of failures, such as human errors, software failures or
site failure due to disasters. Geographic distribution of sec-
ondary copies (e.g., through inter-array mirroring [10, 17] or
remote vaulting) provides resilience against site and regional

disasters. Point-in-time [4] and backup [5, 9, 18] copies ad-
dress application data object errors like accidental deletion
and software failures, such as buggy software or virus in-
fection, by permitting restoration of a previously consistent
copy. These data protection techniques can be combined to
provide more complete coverage for a broader set of threats.

After a failure, application data can be recovered either
by restoring one of the secondary copies at the primary site
or a secondary site, or by, failing over to a secondary mirror.
Failover requires a later fail back operation (performed in
the background) to copy data and transfer computation back
to the target site.

We leverage the framework described in [13] to model
data protection and recovery technique behavior, includ-
ing creation, retention and propagation of secondary copies.
Primary and secondary copies are modeled as a hierarchy,
where each level in the hierarchy corresponds to either the
primary copy or one of the techniques used to maintain a
secondary copy. The data protection technique parameters
specify how frequently secondary copies are made (the ac-
cumulation window) and how long they take to propagate to
a given level of the hierarchy (the propagation window), thus
determining how much data loss might be experienced after
a disaster. (Table 2 provides examples of these parameters
for our experimental environment.) Evaluation of the mod-
els also determines how the techniques consume resources,
such as storage device and network link bandwidth. Sec-
tion 3.2 describes how this framework is extended to model
resource contention in multi-application environments.

2.2 Application workload characteristics

To estimate the bandwidth and capacity requirements for
creating secondary copies, we must understand the appli-
cation’s data access patterns. Techniques that retain a full
copy of the data require the solver to understand the ca-
pacity of the dataset. Techniques that immediately propa-
gate updates, such as synchronous mirroring, require an un-
derstanding of the application’s peak (non-unique) update
rate to determine the required network bandwidth. Asyn-
chronous mirroring techniques require network bandwidth
to support the application’s average (non-unique) update
rate. Techniques that periodically create secondary copies
require the solver to understand the unique update rate. Fi-
nally, recovery techniques that redirect application compu-
tation, such as failover, also require the solver to understand
the application’s average access (read + write) rate. Ta-
ble 1 provides examples of these parameters for the work-
loads considered in our experiments.

2.3 Device infrastructure

Data protection and recovery techniques employ storage
devices, such as disk arrays, tape libraries, and network in-
terconnects, to store and propagate copies, respectively. Re-
covery techniques like failover also employ computational
resources.

As in [13], we model several aspects of device resource
configuration. Capacity and bandwidth are allocated in dis-
crete units. Each device has capacity and bandwidth con-
straints that limit the number of applications and data pro-
tection techniques that can simultaneously use that device.

In addition, we model the outlay costs necessary to use
the device infrastructure. Each device has a fixed cost asso-
ciated with acquiring an instance of that device type (e.g.,
the cost of a disk array enclosure). A device may also have
a per-capacity cost and a per-bandwidth cost (e.g., the costs
of tape cartridges and tape drives for a tape library). The re-
source costs cover the direct and indirect costs of using the
resources, including the hardware (e.g., purchase or lease
price), software licenses, service contracts and management
costs and facility costs. Table 3 provides examples of these
cost, capacity and bandwidth parameters for the device types
used in our experiments.

The solution must completely describe the employed re-
sources, including each of the available sites, the different
storage devices employed at each site, the interconnects be-
tween the sites, and their parameters.

2.4 Failure model

The primary copy of an application’s dataset faces a vari-
ety of failures after deployment, including hardware failures,
software failures, human errors and site and regional disas-
ters. A failure scenario is described by its failure scope, or
the set of failed storage and interconnect devices. Exam-
ples include primary data object failure, primary disk array
failure and primary site disaster. A primary data object fail-
ure indicates the loss or corruption of the data due to human
or software error without a corresponding hardware failure.
Each failure scenario also has a likelihood of occurrence,
which describes the expected likelihood of experiencing that
failure.

Failed applications incur penalty costs due to the unavail-
ability and loss of data. We model these penalties as de-
scribed in [11]. In particular, a data outage penalty rate
describes the cost (e.g., in US$ per hour) of data unavail-
ability. After a failure, data is recovered from a secondary
copy, which may be out-of-date relative to the time of the
failure, thus implying the loss of recent updates. The recent
data loss penalty rate describes the cost (e.g., in US$ per
hour) of recent data loss. Table 1 provides examples for the
workloads used in our experiments.

2.5 Solution cost

In order to choose among alternative designs, the design
tool must assign a cost to each potential solution. The over-
all cost of the storage solution includes the outlays for the
employed resources and the penalties for recovering the ap-
plication data. Outlay costs are calculated for the entire
resource infrastructure, including the fixed and incremental
costs of the devices and the facilities costs of the data center
sites.

The models are evaluated (as described in Section 3.2)
to determine the recovery time (data outage time) and recent
data loss time for each failure scenario. The computed recent
data loss penalty and data outage penalty from each scenario
is weighted by the failure’s likelihood. The overall penalty
cost is the sum of the weighted recent data loss and data
outage penalties over all failure scenarios and all application
workloads.

To provide a meaningful sum of the outlays and penal-
ties, both cost categories must be calculated over a common
time frame. Since most businesses look at annual costs, our
models amortize the purchase price of devices over their ex-
pected lifetime (which is chosen to be three years). Simi-
larly, the likelihood of failure is converted to an annual ex-
pected failure likelihood.

2.6 Putting it all together: problem statement

Given a description of application penalty rates, access
characteristics, topology of data center sites, maximum
number of permitted devices among all sites, and failure
scenarios, our goal is to determine: 1) the combination of
data protection and recovery techniques for each applica-
tion; 2) the quantitative configuration parameters associated
with each data protection technique; 3) the device resources
needed to support normal and recovery operation; and 4) the
mapping of primary and secondary data copies onto the pro-
visioned resource instances, such that the overall cost of the
solution, including both outlays and expected penalties, is
minimized. The next section describes the approach we take
to make these design choices.

3 Solution techniques

Our overall approach is to decompose the problem into
two sets of decisions: (1) the choice of data protection tech-
niques and the storage resources they use and (2) the choice
of configuration parameter values for the high-level design
decisions (e.g., the frequency of backups and the number of
disks in the disk arrays). We chose to decompose the prob-
lem because the parameter space is too large to be explored
efficiently in a single pass. Since different data protection
techniques have different configuration parameters, select-
ing the data protection techniques first allows a more mean-
ingful search for the configuration parameters and reduces
the search space.

Figure 1 illustrates the architecture of the tool that em-
bodies our general approach. It consists of a design solver,
which selects data protection techniques for each applica-
tion, and a configuration solver, which completes the design
by selecting the configuration parameters for the chosen data
protection techniques and the associated storage, network
and computing resources. The user provides the applica-
tions’ business requirements (expressed as penalty rates) and
the applications’ workload characteristics as inputs. The de-
sign tool uses this information to evaluate candidate storage
designs and to produce a solution that attempts to minimize

Update Characteristics
Workload Access/

Penalty Rates ($/hour)
Data Outage/Loss

Exhaustive
Search

Evaluator
Analytic

Design Solver

Parameters
Resource

Parameters
Technique

Techniques
Protection

Storage Solution
Minimal CostDevice

Library

Algorithm

Algorithm
Refit

Algorithm

Reconfiguration

Greedy Best−fit

Technique Library
Data Protection

Configuration
Solver

Figure 1. Automated design tool for dependable storage

solutions

the overall cost. Many such complete designs are generated,
and the design with the lowest cost is selected. The output
of the design tool is a dependable storage design with near-
optimal (minimal) cost. The next sections describe the oper-
ation of the design solver and configuration solver in more
detail.

3.1 Design solver

The process of assigning data protection techniques and
resources to application workloads can be thought of as a
search on a graph of candidate partial designs. Each node in
the graph is a design with some fraction (possibly all) of the
application workloads assigned data protection techniques
and corresponding resources. If there is an edge from node
A to node B, then the design in node B can be obtained
from the design in node A, either by adding an application
workload (with the data protection technique and resource
assignments) or by changing the data protection technique
or resource assignments for one application workload.

The search consists of two stages. The first greedy stage
starts with an empty node with no application workloads as-
signed and adds one application workload at a time until a
feasible solution is found with all application workloads as-
signed. In the second, refit stage, the search explores the
graph starting from this feasible initial node until it finds a
local optimum. In both stages, each node along the way is
evaluated by running the configuration solver to complete
the design and computing the corresponding overall cost for
the node’s design. The search is repeated multiple times un-
til a required computation time or until a specific criterion is
satisfied. Since the steps in the search are randomized, all
iterations of the search are expected to be different, thus en-
abling the search heuristic to escape the local minima. The
best solution found over all the searches is returned. We de-
scribe the two stages of the search in more detail below.

3.1.1 Stage 1: Greedy best-fit algorithm

The greedy best-fit algorithm builds a storage solution by
successively adding application workloads and their data
protection techniques to the solution, assuming that the so-
lution for the previously added application workloads re-
mains constant. To add a new application, the algorithm
exhaustively tries all possible data protection techniques for

the chosen application and picks the one that minimizes the
cost. The order in which the applications are added deter-
mines the quality of the solution. The algorithm chooses
each application randomly, where the likelihood of choosing
a particular application is based on the sum of its penalty
rates. This approach favors applications with stringent re-
quirements, and the probabilistic selection provides slightly
different answers on successive iterations, allowing the algo-
rithm to escape local minima. The greedy best-fit algorithm
terminates when all application workloads are assigned data
protection technique(s). The algorithm restarts if it deter-
mines that it is not feasible to add the remaining application
workloads to the current layout. Lines 3 through 8 in Algo-
rithm 1 present stage 1 of the design solver. The function
reconfiguration is described in Section 3.1.3. The greedily
chosen feasible design is passed on to the refit stage for fur-
ther refinement.

3.1.2 Stage 2: Refit algorithm

Starting from the greedily chosen design, the refit stage it-
eratively searches its neighborhood in the design graph un-
til a local optimum is found. In each iteration (Lines 14
through 42 in Algorithm 1), the algorithm randomly selects b
(typically, 3) neighbors of the initial node and does a depth-
first search up to a level d (typically, 5) from each neigh-
bor (Lines 21 through 35 in Algorithm 1). At each level,
b randomly selected neighbors are evaluated, and the best
(minimal-cost) node is selected. At the end of the search, the
best node found in that iteration is selected as the initial node
for the next iteration. A local optimum is detected when the
iteration completes without any improvement. Traversing
an edge in the design graph in the refit stage requires a re-
configuration, in which the data protection techniques and
resources assigned to an application workload are changed.

3.1.3 Reconfiguration algorithm

Reconfiguring an application is done by first removing
the application from the design, and then providing it with
a new data protection design and data layout. Although
the choice of the application to reconfigure is random, the
selection is biased towards applications that contribute the
most towards the overall cost of the design, so that the re-
configuration has a higher chance of reducing the cost sig-
nificantly. The algorithm chooses the data protection tech-
nique(s) to protect the application probabilistically, based
on the application’s requirements. To restrict the space of
possible data protection configurations to explore, we divide
both the applications and the data protection techniques into
a small number of classes (e.g., three). Applications are
categorized based on fixed thresholds of the sum of their
penalty rates. Data protection techniques are categorized
according to the level of protection they provide against
downtime and data loss. In descending order of protection,
categories include techniques using mirroring with failover

Algorithm 1 Design Solver
1: Let

N = number of applications
Ai = ith application with its parameters, 1 ≤ i ≤ N

unC = unassigned set of applications, i.e.
⋃N

i=0
Ai

curC = ∅, current partial candidate solution
newC = new partial candidate solution
bestC = minimum candidate solution seen so far
d = level of depth of the search of a sibling tree
b = breadth of search of sub-tree
stack[b ∗ d] = stack
tos = top of stack
rfgCnt = reconfiguration iteration count

2: rfgCnt = 0
{STAGE 1: greedy best-fit algorithm}

3: repeat
4: choose Ai such that sum of recovery time and data loss penalty rate

is maximum from the set of applications in unC.
5: reconfiguration(curC,Ai)
6: newC =configuration solver(curC)
7: curC+ = Ai, unC− = Ai

8: until (unC = ∅)
{STAGE 2: re-fit algorithm}

9: tos = 0
10: bestC = curC
11: if rfgCnt > threshold then
12: terminate solver, return bestC to User.
13: end if
14: repeat
15: stack[tos + +] = curC
16: for i = 1 to b do
17: curC = reconfiguration(curC)
18: curC = configuration solver(curC)
19: stack[tos + +] = curC
20: j = 0
21: while (j <= d) do
22: popCnt = 0
23: for k = 1 to b do
24: newC = reconfiguration(curC)
25: newC =configuration solver(newC)
26: if (cost(newC) < cost(curC)) then
27: stack[tos + +] = curC
28: popCnt = popCnt + 1
29: end if
30: end for
31: curC = find min(stack,popCnt)

{find minimum cost solution for the current level}
32: tos = tos − popCnt
33: stack[tos + +] = curC
34: j = j + 1
35: end while
36: curC = stack[0]

{restart search for the next sibling of the initial node}
37: end for
38: bestC = find min(stack,tos)
39: tos = 0
40: curC = stack[tos + +] = bestC
41: rfgCnt = rfgCnt + 1

{if sufficient progress check fails, go back to best-fit}
42: until (rfgCnt > max) || (user-defined termination condition)
43: return bestC

recovery, techniques using mirroring with data restoration
and techniques using backup alone. For a given application
class, the algorithm considers only data protection config-
urations from the corresponding class or better. It evalu-
ates all such eligible configurations to determine their in-
cremental costs in the context of the full candidate solution.
The algorithm chooses one of the eligible techniques ran-
domly, with a bias towards picking inexpensive techniques.
More precisely, technique dpt is chosen with probability
1 − cost dpt/

∑all eligible dpt
cost dpt.

The algorithm next determines the data layout (choices of
devices and their layout on the sites) for the application. The
resources that can be used are limited to those that can sup-
port the chosen data protection technique. Currently unused
resources are excluded, unless the resource list is empty. The
resources are selected randomly; the selection is biased to-
wards under-utilized resources (to encourage load balanc-
ing) and against those that have been used for this appli-
cation workload in previously explored configurations (to
encourage diversity of choices). More precisely, the selec-
tion probability of each eligible resource A is proportional
to αutil ∗ (1 − util(A)) + (1 − αutil) ∗ (1 − usage(A)),
where util(A) is the current utilization of A, usage(A) is
the fraction of times that A has previously been used for this
application workload, and αutil is a weight between zero
and one. We generally set αutil close to one, favoring load-
balance over historical diversity. The new choices of data
protection technique(s) and resource layout are added to the
design solution and returned to the design solver (Lines 5,
17 and 24 in Algorithm 1).

3.2 Configuration solver

Given the partial candidate solution provided by the de-
sign solver, the configuration solver optimizes the configu-
ration parameter values to obtain a complete candidate so-
lution (Lines 6, 18 and 25 in Algorithm 1). It performs
an exhaustive search over a discretized range of values for
each of the parameters. These valid ranges of values are
based on policies (e.g., the period between successive back-
ups must be in 12-hour increments) and infrastructure de-
ployment (e.g., a physical limit on the number of network
links between two sites).

The configuration solver determines the recent data loss
times and recovery times for each failed application under
all failure scenarios. These times are used to compute the
penalties for recovering the failed applications.

3.2.1 Recent data loss time

Upon failure of the primary copy, a secondary copy must be
used to recover the data. The recent data loss time is the
difference in time between the failure occurrence and the
point in time represented by the secondary copy used for
the recovery. The configuration solver applies the method-
ology described in [13] to determine how out-of-date each
secondary copy is, and to choose which copy should be used

for recovery. The configuration parameter values determine
an upper bound on the staleness of the most recent copy,
based on how frequently copies were made and propagated.
From these consistent secondary copies that are still acces-
sible after the failure scenario, the solver chooses the copy
that provides the minimum recent data loss.

3.2.2 Recovery time

Recovering an application from failure involves specific re-
covery tasks at each level of the recovery hierarchy. These
tasks include repairing failed resources, copying consistent
data back onto the primary disk arrays, reconfiguring the ap-
plication, and more. Application and data protection work-
loads that are unaffected by the failure continue to run un-
interrupted, using their assigned resources. The remaining
bandwidth and capacity are made available for recovery op-
erations. Scheduling recovery of failed applications is itself
a complex problem; for simplicity, we assume the following
precedents. If multiple recovery operations compete for the
same resource, their execution is serialized according to a
priority (the sum of each application’s penalty rates). Re-
covery tasks for applications with higher penalty rates get
higher priority, thus delaying the execution of lower-priority
recovery tasks. The configuration solver simulates the re-
covery process to determine the recovery time for each failed
application.

The configuration solver optimizes the resource-related
parameters by first evaluating the recovery times for con-
figurations containing the minimum resources required to
support the applications and their data protection workloads.
However, it is possible to shorten these initial computed re-
covery times, by adding resources to the system (e.g., ad-
ditional network links or tape drives to provide more band-
width). The algorithm continues to add resources until it no
longer produces any cost savings. The configuration solver
determines which set of configuration parameter values min-
imizes the overall cost and returns the fully specified candi-
date solution and its cost to the outer design solver.

4 Experimental results

We present experimental results to evaluate the design
tool. In doing so, we compare the design produced by our
design tool with that of a hypothetical human storage solu-
tion architect (approximated by a “human heuristic”) and a
random design selection algorithm. After we describe the
heuristic, we compare our method with three types of re-
sults. We first describe a simple case study for a small en-
vironment, in order to build our intuition about the design
tool’s operation. We then study the scalability of our algo-
rithms using a larger number of applications. Finally, we
analyze the algorithm’s sensitivity to failure likelihood.

4.1 Human heuristic

To understand the effectiveness of our design tool, we
need a comparison point that approximates the behavior of
a human storage solution architect. Based on our discus-
sion with storage system architects, they categorize applica-
tions, data protection techniques and resources into different
classes (gold, silver, bronze, etc.) based on their business re-
quirements, features and capabilities. The architect applies
the data protection techniques and resources from a given
class to the applications in the corresponding class. Depend-
ing upon the availability of resources, the architect spreads
the applications uniformly over the resource topology and
sites to minimize the penalties due to failure.

Our “human heuristic” emulates this process by classi-
fying the applications, data protection techniques and re-
sources into three categories, as described in Section 3.1.3.
The heuristic provides each application with data protec-
tion from the same or a better category of data protection
technique. Each category might have multiple applications,
so applications are assigned data protection techniques in
a randomized priority order, based on the sum of the ap-
plication’s penalty rates. Similarly, there may be multiple
data protection techniques in each class; the heuristic selects
one of these techniques, where all of the techniques have
the same probability of being selected. The set of required
resources and sites is chosen such that applications are well-
distributed over all the sites. Once all the applications have
been assigned a data protection design, the heuristic uses the
configuration solver to optimize the remaining configuration
parameters.

The heuristic determines if the assignments make the
storage protection solution infeasible; if so, it restarts the
algorithm. After a fixed number of iterations, it returns with-
out a solution. Since the choices are random in nature, the
human heuristic is run for a bounded execution time, and the
minimum-cost solution is selected.

4.2 Environment

Our experiments use a common set of input parameters
for application business requirements and workload char-
acteristics, data protection technique alternatives, and re-
source capabilities and costs. Table 1 describes the appli-
cation classes used in our experiments. The penalty rate
magnitudes are based on market research [6], and the ap-
plication workload characteristics are based on scaled ver-
sions of the cello2002 workload described in [11]. Table 2
summarizes the data protection alternatives considered by
our algorithms. Table 3 enumerates resource characteristics
for disk arrays, tape libraries, network links and data center
sites. The likelihoods of an application data object failure
(e.g., due to user error or software malfunction), a disk ar-
ray failure, and a data center site disaster are set to once in
three years, once in three years, and once in five years, re-
spectively.

Table 1. Application business requirements and workload characteristics

Type Outage Recent loss Data size Avg update Peak update Average access Category
penalty rate ($/hr) penalty rate ($/hr) (GB) rate (MB/sec) rate (MB/sec) rate (MB/sec)

Central banking (B): critical, expects zero data loss and data outage loss
B $5M $5M 1300 5 50 50 Gold
Company web service (W): high transaction volume, modest recent data loss, zero outages
W $5M $5K 4300 2 20 20 Silver
Consumer banking (C): high transaction volume, expects zero recent data loss, modest outages
C $5K $5M 4300 1 10 10 Silver
Student accounts (S): student accounts, tolerant to data loss and vulnerability
S $5K $5K 500 0.5 5 5 Bronze

Table 2. Data protection techniques

Data protection Reconstruct (R) Category Level 1 Level 2 Level 3
technique type or snapshot (S) or tape library vault

Failover (F) mirror (M) in days in days
accWin propWin accWin propWin accWin propWin

Synchronous mirror Failover Gold M 0.5 min n/w
with backup S 12 hr tape 7 days tape 28 days 1 day
Synchronous mirror Reconstruct Silver M 0.5 min n/w
with backup S 12 hr tape 7 days tape 28 days 1 day
Asynchronous mirror Failover Gold M 10 min n/w
with backup S 12 hr tape 7 days tape 28 days 1 day
Asynchronous mirror Reconstruct Silver M 10 min n/w
with backup S 12 hr tape 7 days tape 28 days 1 day
Synchronous mirror Failover Gold M 0.5 min n/w
Synchronous mirror Reconstruct Silver M 0.5 min n/w
Asynchronous mirror Failover Gold M 10 min n/w
Asynchronous mirror Reconstruct Silver M 10 min n/w
Tape backup Reconstruct Bronze S 12 hr tape 7 days tape 28 days 1 day
note:“n/w” and “tape” indicate that the propagation delay depends on the available network or tape library bandwidth

Table 3. Resource description (unamortized purchase price)
Resource Class Fixed Incremental cost ($) Total number of Capacity BW
type cost BW per unit per unit capacity BW per unit per unit

($) (MB/s) capacity BW (units) (units) (GB) (MB/s)
Disk array (XP1200) High 375,000 512 8723 1024 143 25
Disk array (EVA800) Med 123,000 256 3720 512 143 10
Disk array (MSA1500) Low 123,000 128 3720 128 143 8
Tape Library High 141,000 2400 18,400 720 24 60 120
Tape Library Med 76,000 400 10,400 120 4 60 120
Network High 640 500,000 32 20
Network Med 160 200,00 16 10
Compute High 125,000
Site 1,000,000

Table 4. Data protection solution chosen by design tool for peer sites

App Type Data protection technique Primary site Site P1 Site P2 network
array tapelib array tapelib

1 B Async mirror (F) with backup P2
√ √ √ √

2 C Sync mirror (R) with backup P1
√ √ √ √

3 W Async mirror (F) with backup P1
√ √ √ √

4 S Tape backup P1
√ √

5 B Async mirror (F) with backup P1
√ √ √ √

6 C Sync mirror (R) with backup P1
√ √ √ √

7 W Sync mirror (F) with backup P1
√ √ √ √

8 S Tape backup P2
√ √

0

6

20 180 340 500 660 820 980 1140 1300 1460 1620 1780 1940

Cost (Million $)

Fr
eq

ue
nc

y
D

is
tr

ib
ut

io
n

(M
ill

io
n

so
lu

tio
ns

)

Figure 2. Distribution of data protection solution costs of

peer sites

4.3 Simple case study: peer sites

To build our intuition about the solution space and the
algorithms’ behavior, we model a simple peer environment
where a pair of sites serves as the primary site for a fraction
of the applications and as a secondary site for the applica-
tions served primarily by its peer. This scenario models a
multi-site corporation or service provider.

We want to deploy eight applications on two peer sites
P1 and P2. Each site can accommodate a maximum of two
disk arrays (e.g., one high-end and one low-end), a single
tape library and compute resources for eight applications. A
network with a capacity of up to 32 links connects the two
sites. We execute each heuristic for a fixed time of thirty
minutes.

4.3.1 Solution space insight

The parameter space of the dependable storage solution
problem is extremely large. Even the partial configuration
parameter space is about xt, where x = da, d is the num-
ber of primary disk arrays, a is the number of applications
deployed and t is the number of data protection techniques.
As a result, it is intractable to obtain the optimal solution
for comparison with our heuristics’ solutions. Instead, we
estimate solution quality by randomly sampling a large col-
lection of solutions and evaluating their overall costs. Using
this technique, we can estimate the quality of the heuristics’
solutions in terms of where they reside in the empirical dis-
tribution of solutions.

Figure 2 illustrates the distribution of the peer sites’ solu-
tion space, which is empirically determined from about one
hundred million solutions. We observe that solution costs
vary by more than an order of magnitude across the distri-
bution. The goal of any heuristic is to pick solutions on the
left side of the graph.

The distribution of solution costs is multi-modal, where
each mode corresponds to a different set of choices being
made for the design tradeoffs. Low-cost solutions protect
applications with stringent requirements by increasing re-
source outlay expenditures to decrease penalties. Protec-
tion for applications with more relaxed requirements may be

0
20
40
60
80

100
120
140
160
180
200

Human Heuristic Random Heuristic Design Tool

Algorithm

O
ve

ra
ll

C
os

ts
 (M

ill
io

n
$)

Data loss penalty Data outage penalty Outlay cost

Figure 3. Comparison of algorithm data protection solu-

tion costs for peer sites

able to leverage the resources already in place for the more
stringent applications. Higher-cost solutions provide inade-
quate protection for workloads with stringent requirements
and thus incur high penalties.

4.3.2 Solution to case study

Table 4 describes the data protection solution chosen for
each application by the automated design tool. As expected,
applications with high data outage penalty rates always em-
ploy failover for recovery. It is cheaper to provide additional
network links and compute resources to support failover
than to incur penalties for recovery techniques that take
longer. All applications employ some form of tape backup
to support recovery from user errors and software malfunc-
tions.

Counter to intuition, we note that the central banking
applications (1 and 5) use asynchronous mirroring instead
of synchronous mirroring. The increased recent data loss
penalty for asynchronous mirroring is small, relative to the
outlay for the additional resources to support synchronous
mirroring. Therefore, the design tool chooses asynchronous
mirroring over synchronous mirroring.

Figure 3 compares the cost of the outlays, data loss
penalty and data outage penalty among the three different
heuristics.

The design tool’s solution costs roughly 1.9X less than
the human heuristic solution and 1.3X less than the random
heuristic’s solution. The design tool’s solutions fall within
the lowest cost percentile of the solution cost space.

4.4 Algorithm scalability

Having built an intuition for the solution space, consider
an environment with four sites, each with the potential to
support two types of disk arrays, one tape library, compute
resources and six network links that connect all the sites to-
gether. We assume the classes of applications described in
Table 1 and the failure model used in Section 4.3. The en-
vironment is scaled by four applications at a time, one from
each class. Each heuristic is run for thirty minutes for each
experiment.

0

500

1000

1500

2000

2500

4 8 12 16 20 24 28 32 36 40 44
Number of applications

C
os

t (
M

ill
io

n
$)

Human Heuristic Random Heuristic Design Framework

Figure 4. Design tool’s scalability for the scenario with

fully connected sites

Figure 4 compares the scalability of the three heuristics
for the described environment. The design tool consistently
provides better solutions than the random and human heuris-
tics. These solutions are cheaper by a factor of 2X to 3X.
The human heuristic fares poorly due to its inefficient lay-
out strategy.

With the scaling of applications in a fixed-resource en-
vironment, determining even a feasible solution becomes a
challenging hurdle. With severe resource restrictions, recon-
figuration of a candidate solution takes a considerable num-
ber of retries to obtain the next partial candidate solution.
The human heuristic and design solver fail to find a feasi-
ble solution for or more applications in this environment,
due to the fixed resource constraints. The random heuris-
tic succeeds at finding feasible solutions, even at this large
scale, because it randomly generates data protection designs,
which can be tested for feasibility fairly quickly.

4.5 Sensitivity to failure likelihood

Our final experiments explore the sensitivity of the design
solver algorithm to failure likelihood. We vary the failure
likelihoods for an environment with 16 applications and four
fully connected sites. Data object failure frequency is varied
from twice a year to once in ten years. Disk array failure
frequency is varied from once in two years to once in twenty
years, and site disaster frequency is varied from once in five
years to once in fifty years. When they are not being varied,
the frequencies of data object, disk and site failures are fixed
at twice a year, once in five years and once in twenty years,
respectively.

Figures 5, 6, and 7 plot the design tool’s solution costs as
a function of the likelihood of data object failures, disk ar-
ray failures and site disasters, respectively. We observe that
solution cost is relatively insensitive to the disk and site fail-
ure likelihood. The algorithm is able to compensate for the
increased penalties from more frequent failures by slightly
increasing its resource allocations (and subsequent outlay
costs). After a certain threshold of the likelihood of data ob-
ject failure, the solver is no longer able to compensate for
the increased penalties by allocating additional resources.
This failure sensitivity analysis lets the designer determine
the range of failure likelihood for which the solution would

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.33 0.5 1 2

C
os

t (
M

ill
io

n
$)

Data outage penalty Data loss penalty

Outlay cost Overall cost

Figure 5. Design tool’s sensitivity to the likelihood of data

object failure

0

200

400

600

800

1000

1200

1400

0.05 0.1 0.2 0.33 0.5

C
os

t (
M

ill
io

n
$)

Data outage penalty Data loss penalty
Outlay cost Overall cost

Figure 6. Design tool’s sensitivity to the likelihood of disk

failure

0

200

400

600

800

1000

1200

1400

0.02 0.05 0.1 0.2

C
os

t (
M

ill
io

n
$)

Data outage penalty Data loss penalty
Outlay cost Overall cost

Figure 7. Design tool’s sensitivity to the likelihood of site

failure

protect the applications. Using this information, architects
can design solutions suitable for the observed likelihood of
failure.

5 Related Work

There is substantial work [1, 2, 3] in the design of storage
systems to meet various performance and reliability goals at
the lowest cost, but it only considers online reliability tech-
niques such as RAID. Keeton et al., explore methods for
dependable storage design in the context of a single appli-
cation and a single dependability technique [11]; this paper
considers multiple applications and combinations of tech-
niques, which is a much more complex problem. In the
area of modeling dependable storage system behavior, Kee-
ton and Merchant present a framework for evaluating the
recovery time and recent data loss for a single application
protected by a combination of techniques [13]; more recent
work by this group examines how to schedule recovery op-

erations for multiple workloads [12]. These papers consider
only the dependability evaluation of an existing storage sys-
tem, but do not consider how to design the system in the first
place, which is the topic of this paper.

Direct search methods are some of the best known tech-
niques for unconstrained optimization [14]. These tech-
niques do not make any assumption about the underlying
parameter space, but rather optimize depending upon the
value of the objective function. These techniques are bet-
ter suited to optimize continuous parameters. Pure combi-
natorial optimization problems are concerned with the ef-
ficient allocation of limited resources to meet the desired
objectives [8]. These techniques expect prior knowledge
of the bounds on the available resources to optimize. The
upper bound on the available resources makes it computa-
tionally expensive to compute all possible combinations of
allocations to solve the storage design problem using com-
binatorial optimization techniques such as linear or integer
programming. In addition, the storage design problem for
data protection requires the optimization of both continu-
ous and discrete parameters, making it significantly harder.
Local search heuristic techniques such as simulated anneal-
ing, tabu search [7] and local search are efficient in scenar-
ios where the underlying structure of the parameter space is
known [15]. Without sufficient information about the un-
derlying structure, we perform better by exploring a much
larger space at each local region, as demonstrated by our al-
gorithm.

6 Conclusion

Designing a storage system to meet dependability goals
in a multi-application environment is difficult. Interactions
between the workloads, both in normal operational modes
and recovery modes, lead to a large design space. Moreover,
the design space lacks an inherent structure for traditional
search techniques to exploit to determine an optimal solu-
tion.

This paper makes several contributions towards the goal
of near-optimal dependable storage designs. Our search
heuristic provides an intelligent method for exploring this
unstructured design space. We decompose the problem into
two stages, first determining which data protection tech-
niques should be applied to each application, and then de-
termining how to set the configuration parameters for these
techniques and the resources they use. This decomposi-
tion reduces the size of the search space, allowing our al-
gorithm to focus on the most relevant regions to achieve a
near-optimal solution. In addition, we extend the abstrac-
tions for modeling single-application recovery from [13] to
handle the interactions of multiple applications.

We compare the operation of our design tool’s search
heuristic with the ad hoc approaches used by human design-
ers today. For the examples we consider, the automated de-
sign framework consistently generates solutions that are two
to three times better than the solutions provided by the ad

hoc approach. These improvements translate into savings
of millions of dollars in the expected cost of deploying and
recovering the resulting storage systems.

References

[1] G. A. Alvarez. Minerva: an automated resource provisioning
tool for large-scale storage systems. ACM Transactions on
Computer Systems, 19(4):483–518, Nov. 2001.

[2] E. Anderson et. al. Hippodrome: running circles around stor-
age administrators. In Proc. USENIX Conf. on File and Stor-
age Technologies (FAST), pages 175–188, Jan. 2002.

[3] E. Anderson et. al. Selecting RAID levels for disk arrays. In
Proc. USENIX Conf. File and Storage Technologies (FAST),
pages 189–201, Jan. 2002.

[4] A. Azagury, M. E. Factor, and J. Satran. Point-in-Time copy:
Yesterday, today and tomorrow. In Proc. IEEE/NASA Conf.
Mass Storage Systems (MSS), pages 259–270, Apr. 2002.

[5] A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting
file systems: A survey of backup techniques. In Proc.
IEEE/NASA Conf. MSS, pages 17 – 31, Mar. 1998.

[6] Eagle Rock Alliance Ltd. Online survey results: 2001 cost
of downtime. http://contingencyplanningresearch.com/2001
Survey.pdf, Aug. 2001.

[7] F. Glover. Tabu search methods in artificial intelligence and
operations research. ORSA Artificial Intelligence Newslet-
ters, 1, 1987.

[8] M. Groetschel. Theoretical and practical aspects of combi-
natorial problem solving. In Proc. 3rd ACM-SIAM Symp. on
Discrete Algorithms (SODA), page 195, 1992.

[9] Hewlett-Packard Development Co. HP OpenView Storage
Data protector Administrator’s Guide, Oct. 2004. Mfg. Part
Number B6960-90106, Release A.05.50.

[10] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring
done write. In Proc. USENIX Technical Conf. (USENIX’03),
pages 253–268, June 2003.

[11] K. Keeton et al. Designing for disasters. In Proc. 3rd
USENIX Conf. File and Storage Technologies (FAST), pages
59–72, Mar. 2004.

[12] K. Keeton et al. On the road to recovery: restoring data after
disasters. In Proc. European Systems Conf. (EuroSys), April
2006.

[13] K. Keeton and A. Merchant. A framework for evaluating
storage system dependability. In Proc. 2004 Intl. Conf. on
Dependable Systems and Networks (DSN), pages 877–886,
June 2004.

[14] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by
direct search: New perspectives on some classical and mod-
ern methods. In Society for Industrial and Applied Math-
ematics (SIAM) Review, volume 45, pages 385 – 482, july
2003.

[15] C. H. Papadimitriou and K. Steiglitz. Combinatorial opti-
mization : algorithms and complexity. Dover Publications,
1998.

[16] D. A. Patterson, G. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks (RAID). In Proc. ACM
SIGMOD Conf., pages 109–116, June 1988.

[17] R. Schulman. Disaster Recovery Issues and Solutions. Hi-
tachi Data Systems White paper, Sept. 2004.

[18] W.-D. Zhu et al. IBM Content Manager Backup/Recovery
and High Availability: Strategies, Options and Procedures.
IBM Redbook, Mar. 2004.

