
Performance Evaluation 62 (2005) 278–294

Controllable fair queuing for meeting performance goals

Magnus Karlssona,∗, Christos Karamanolisa, Jeff Chaseb

a HP Laboratories, Palo Alto, CA 94304, USA
b Department of Computer Science, Duke University, Durham, NC 27708, USA

Available online 10 August 2005

Abstract

Computing and storage utilities must control resource usage to meet contractual performance targets for hosted
customers under dynamic conditions, including flash crowds and unexpected resource failures. This paper ex-
plores properties of proportional share resource schedulers that are necessary for stability and responsiveness under
feedback control. It shows that the fairness properties commonly defined for proportional share schedulers using
Weighted Fair Queuing (WFQ) are not preserved across changes to the relative weights of competing request flows.
As a result, conventional WFQ schedulers are notcontrollable by a resource controller that adapts by adjusting
the weights. The paper defines controllable fairness properties, presents an algorithm to adjust any WFQ scheduler
when the weights change, and proves that the algorithm results in controllable-fair schedulers.

The analytic results are confirmed by experimental evaluation using a three-tier Web service and a prototype
controllable-fair scheduler called C-SFQ(D). C-SFQ(D) extends concurrency-controlled Start-time Fair Queuing
(SFQ(D), which supports proportional sharing in multi-tasking computing resources. The prototype includes an
adaptive control system that adjusts the flow weights in C-SFQ(D) to meet latency and throughput targets under
a variety of conditions. The experimental results demonstrate the importance of controllable-fair scheduling for
feedback control of computing utilities.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Weighted fair queueing; QoS; Performance goals; Controllable systems

∗ Corresponding author.
E-mail address: magnus.karlsson@hp.com (M. Karlsson).

URL: http://www.hpl.hp.com/personal/MagnusKarlsson (M. Karlsson); http://www.hpl.hp.com/personal/ChristosKaramanolis/
(C. Karamanolis); http://www.cs.duke.edu/%7Echase (J. Chase).

0166-5316/$ – see front matter© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2005.07.019

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 279

1. Introduction

Service providers and enterprises are increasingly hosting services and applications on shared pools
of computing and storage resources. For example, in many enterprises, shared network storage servers
meet the storage demands of different departments in the organization. Multiplexing workloads onto a
shared utility infrastructure allows for on-demand assignment of resources to workloads, which improves
resource efficiency while protecting against flash-crowds and outages.

A key problem in such environments is to manage the shared resources in a way that meets the
performance requirements of the customers and their workloads, while maximizing the utilization of
the resources. The performance goals of customers – response time bound sand minimum throughput
requirements – are typically expressed in the form of Service Level Agreements (SLAs). Utility services
deploy resource control mechanisms that arbitrate the use of the shared resources to comply with the
SLAs of different customer workloads. Depending on the service, workloads may compete for either
physical resources (CPU cycles, disk I/O, network bandwidth, etc.) or virtual resources (web server
bandwidth, database transactions per second, etc.). Resource control mechanisms include admission
control of workloads[1], and throttling or scheduling the demand of individual workloads[2].

This paper focuses on the problem of performance control by varying the shares of resources available to
each workload. In particular, we focus on the properties of proportional-share schedulers, which are most
commonly implemented using variants of Weighted Fair Queuing (WFQ). The use of WFQ schedulers
for meeting SLAs is based on the premise that the performance of a workload varies in a predictable way
with the amount of resource available to execute it. A number of publications have reported on the use
of proportional sharing for meeting performance goals[3–7].

A key problem for performance control with WFQ schedulers is that, in the general case, certain
share assignments do not result in predictable performance, because of the dynamic nature of workloads
and systems. To address this problem, resource control mechanisms can use feedback from workload
performance to dynamically adjust workload shares in the scheduler. Indeed, a few recent research projects
have explored the feasibility of using feedback for resource control[8,9,4,1,2,10]. A challenge, in this
case, is to derive the desirable properties for the resulting closed-loop system. Namely, that it is stable
(does not oscillate) and that it quickly achieves the desirable performance goals. We thus propose using
a rigorous, control-theoretic approach for the design of controllers. We have formalized the problem of
meeting performance goals as a quadratic optimization problem which can be solved using off-the-shelf
adaptive controllers to tune the scheduler[5].

However, when used in tandem with an adaptive controller, WFQ schedulers could not be controlled
to meet performance goals of workloads. The closed-loop system often became unstable and would not
converge to the performance goals, even though there were sufficient resources in the system. The main
problem is that the obtained performance, given a weight setting, is not predictable. The cause is that the
fairness property of the scheduler is not preserved across changes to the weights. This paper proves that
WFQ schedulers are unfair in the presence of dynamic control, defines a stronger notion of fairness called
controllable fairness that is required to allow stable control, develops a backlog reordering algorithm to
ensure that WFQ schedulers are controllable-fair, and proves properties of controllable-fair schedulers.

To validate the notion of controllable-fair scheduling, we developed and implemented a new type of
scheduler, CSFQ(D). CSFQ(D) is a controllable-fair variant of concurrency-controlled start-time fair
queuing (SFQ(D)), a WFQ algorithm that can deal with concurrency in the scheduled system[4]. We
evaluated the scheduler in a three-tier Web application service. The scheduler is placed on the network

280 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

path between the service and its clients, where it intercepts http requests sent to the service and re-orders or
delays them to enforce proportional sharing of the service’s capacity to serve requests. The experimental
results show that C-SFQ(D) can be used with an adaptive controller that dynamically sets workload shares
in the system to effectively enforce throughput and latency goals in the three-tier service. We also show
that when the same controller is used with a conventional WFQ scheduler that is not controllable-fair, it
results in an unstable system that oscillates and does not converge to the desired performance goals.

2. Overview

A utility service comprises an ensemble of computing resources (servers, disks, network links, etc.)
that are shared by multiple customers with contractual performance assurances (SLAs). SLAs contain
statistical performance goals, expressed in terms of averages or percentiles over some time interval.
Examples of utility services include shared storage systems[11,4,2,6]or shared clusters hosting a multi-
tier Internet application for each customer[12,13]. In all these cases, a number of customer workloads
compete for access to the same computational resources. One objective of a utility service is to control
the rates by which different workloads use the service, so that the SLAs of the customers are met while
maximizing the utilization of the shared resources.

2.1. Resource control

For the discussion in this paper, we generalize the problem of resource sharing, as shown inFig. 1. The
computational unit of resource consumption is called a task. Examples of tasks include I/O operations
reaching a disk, threads competing for a CPU, network packets sent over a link, or application-level re-
quests (e.g., http requests) sent to an Internet service. Tasks are grouped into service classes called flows.
Examples of flows include all the IO operations accessing a given storage volume, the requests for CPU cy-
cles of a specific virtual machine on a host, or all http requests of the “golden” clients of a Web application.

The objective of a scheduler is to limit the resource consumption of each flowf in proportion to a
weight φf assigned to it. If flow weights are normalized to sum to one, then we may interpret each weight

Fig. 1. A task scheduler controls how a resource (physical or virtual) is shared by a number of competing flows. A controller
sets the weights of the flows and the degree of concurrencyD in the resource, based on feedback about the performance of the
flows. The aim is to meet the SLAs of the flows while maximizing the utilization of the resource.

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 281

as representing a share of the resources. The weights enforce the essential property ofperformance
isolation: they prevent load surges in any flow from unacceptably degrading the performance of another.
Thus, weights have to be set to the appropriate values that result in satisfying the SLAs of the different
flows. The premise is that the performance of a flow improves when increasing its share of resources.
Another factor that affects performance is the degree of concurrency, i.e., the maximum number of
concurrent tasks allowed to use the resource at any moment in time. (D in Fig. 1). In general, higher
concurrency results in higher aggregate throughput and resource utilization, but also higher response
latencies. Thus, the concurrency degree is another scheduler parameter that can be tuned to meet flow
SLAs.

We focus specifically on Weighted Fair Queuing (WFQ) schedulers, that have a property known as
work conservation. In contrast to guaranteed reservations, which ensure a minimum allotment of resource
to each flow even when the flow has low load, a work-conserving proportional-share scheduler shares
surplus resources among active flows in proportion to their configured weights. A flow may receive more
than its configured share unless the system is fully loaded and all competing flows areactive, i.e., they
have backlogs of queued tasks. The advantage of work-conserving schedulers, that makes them very
popular in practice, is that they use resources more efficiently and improve the performance of active
flows, when the system is lightly loaded.

2.2. Dynamic control

The flow weights and the degree of concurrency need to be continuously adjusted by a controller in
response to observable performance metrics (e.g., response latency, throughput or bandwidth) obtained by
each flow. In some cases, the controller may be a human system administrators who adjusts the scheduler
parameters manually. In most cases, however, adjustments must happen at a fine time granularity thus
requiring automated dynamic control.

The use of dynamic control to meet performance goals has been discussed in the literature[8,9,12,2,1]. A
challenge, in this case, is to derive the desirable properties for the resulting closed-loop system. Namely,
that it is stable (does not oscillate) and that it achieves the desirable performance goals, preferably
fast. Control theory provides an ideal framework for the systematic design of dynamically controlled
systems. In particular, existing research has shown that the dynamics of typical computer systems and
their workloads require the use of adaptive controllers[2,14]. That is, controllers that automatically adapt
their parameters according to the behavior of the target system at any point in time. An example of
a computationally efficient adaptively controller, that is widely used in the industry is theSelf-Tuning
Regulator (STR)[15].

The key question now is whether existing computer systems are amenable to dynamic control by such
controllers. In our case, in particular, we are concerned with fair-queuing schedulers that arbitrate the
sharing of computing services. Control theory has come with a list of necessary and sufficient properties
that when met by the controlled system, then a closed loop with an adaptive controller(STR in particular)
is stable and converges to the set goal[15,16]:

C.1. The system’s behavior must be sufficiently approximated by a linear model. This model must have
low variance over time and the relation between actuators and observed behavior must be monotonic
in average.

282 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

C.2. The system must have a known reaction delay to actuation. That is, there is a known time lag between
changing some parameters (e.g., flow weights in our case) and observing the effects of that change.

C.3. Recent actuations must have higher impact than older ones to the behavior of the system. This implies
that the effects of an actuation can always be corrected or cancelled by another, later actuation.

Regarding requirement C.1, we have seen in practice, that a linear model provides a good local approx-
imation for the relation between weights and observed performance, given a period for system sampling
that is sufficiently long to avoid quantization effects but short enough to trace system dynamics[5].
Moreover, this relation is indeed monotonic in average over long periods of time. However, as we will see
in Section3, existing WFQ schedulers do no meet the low variance requirement as well as properties C.2
and C.3. As a result, native WFQ algorithms are not controllable—they result in unstable systems that
do not converge to the desired performance goals as our experimental evaluation in Section5.3 shows.
In Section4, we propose a variation of WFQ, which we show, both analytically and experimentally, to
be controllable.

3. Weighted fair queuing

All existing variants of WFQ scheduling algorithms follow the same principles. Each flowf consists of
a sequence of tasksp0

f . . . pn
f arriving at the server. Each taskpi

f has an associated costci
f bounded by a

constantcmax
f . Fair queuing allocates the throughput of the resource in proportion to weights assigned to

the competing flows. Only the relative values of the weights are significant, but it is convenient to assume
that the weightφf for each flowf represents a percentage share of resource throughput, and that task
costs are normalized to a resource throughput of one unit of cost per unit of time.

WFQ schedulers are fair in the sense that active flows share the available resource proportionally to
their weights, within some error margin that is bounded by a constant over any time interval. Formally, if
Wf (i) is the aggregate cost of the tasks from flowf served during any time intervali, then a fair scheduler
guarantees:∣∣∣∣∣Wf (i)

φf

− Wg(i)

φg

∣∣∣∣∣ ≤ Uf,g, (1)

wheref andg are any two flows continuously backlogged with tasks duringi. Interval i = [ti, ti+1) is
the time period between theith andi + 1th sampling/actuation in the system.Uf,g is a constant that
depends on the flow weights and the maximum cost of flow tasks. All algorithms try to ensure low values
of Uf,g, which indicates better fairness.1 Poor fairness implies large variability in the relation between
performance and weights, violating property C.1 in Section2.2.

WFQ schedulers dispatch tasks in order oftags assigned at task arrival time. When thejth taskpj
f of

flow f arrives, it is assigned a start tagS(pj
f) and a finish tagF (pj

f) as follows:

F (p0
f) = 0, (2)

S(pj
f) = max (v(A(pj

f)), F (pj−1
f)), j ≥ 1, (3)

1 Fairness is always defined on all pairs of flows; of course, there may be more than two flows using a resource.

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 283

F (pj
f) = S(pj

f) + c
j
f

φf

, j ≥ 1, (4)

whereA(pj
f) is the arrival time of taskpj

f . Table 1summarizes the symbols used in this paper.
These tags represent the times at which each task should start and finish according to a scheduler

notion of virtual timev(t). Virtual time advances monotonically and is identical to real time under ideal
conditions. Calculatingv(t) exactly is computationally expensive, but there are two WFQ algorithms
that approximatev(t) efficiently by clocking the rate at which the resource actually completes work.
Self Clocked Fair Queuing (SCFQ)[17] and Start-time Fair Queuing[18] (SFQ) approximatev(t) with
(respectively) the finish tag or start tag of the task in service at timet.

All WFQ algorithms have well-defined fairness bounds. SCFQ[17] and SFQ[18] are among the
algorithms with the best known bound:

Uf,g =
(

cmax
f

φf

+ cmax
g

φg

)
. (5)

Most existing WFQ schedulers are designed for resources that handle one task at a time, such as
a router’s outgoing link or a CPU, and thus are not suitable for all computing resources (e.g., disk,
multi-processors, file servers). Aconcurrency-controlled variant of SFQ (SFQ(D)) has been proposed
recently to deal with task scheduling in multi-tasking resources[4]. In this case,Uf,g also depends on
the maximum concurrencyD allowed in the resources.D reflects a trade-off between resource utilization
and the worst-case fairness bound of the scheduler.

3.1. WFQ is not controllable

In this section, we show that, in the general case, WFQ algorithms cannot ensure any fairness bound
under dynamic control of the weights. For the proofs, we refer to WFQ algorithms that emulatev(t) by
the start tag of the last submitted task (e.g., SFQ[18]). The proofs are similar for algorithms that emulate

Table 1
Frequently used symbols in this paper

Symbol Meaning

φf (i) Weight of flowf during time intervali
p

j

f Thej-th task of flowf
c

j

f Cost of taskpj

f

cmax
f (i) Maximum cost for a task from flowf during time intervali

v(t) Virtual time at timet
D(i) The maximum number of outstanding tasks during time intervali
D′(i) The actual number of outstanding tasks during time intervali
A(pj

f) Arrival time of taskpj

f

S(pj

f) Start tag of taskpj

f

F (pj

f) Finish tag of taskpj

f

Wf (i) Total amount of work/cost served from flowf during time intervali
Uf,g(i) The fairness bound during time intervali
U∗

f,g The controllable fairness bound over a sequence of time intervals

284 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

v(t) by the finish tag of the last submitted task (e.g., SCFQ[17]), but are omitted due to lack of space.
We assume without loss of generality that all tasks have unit cost.

The proven fairness bounds for WFQ schedulers assume that flow weights are fixed over time. By the
definition of interval, the values of flow weights do not change for the duration of an interval. However,
when weights do change dynamically between intervals, i.e.,φf (i) �= φf (i − 1) for some flowf, then
there may exist intervals in which a flow receives no service irrespectively of its weight setting. Consider
the example ofFig. 2with two continuously backlogged flowsf andg. Suppose that during time interval
1 φf = 0.01 andφg = 1. f has one task served, and the start tag of the next task is set tov(t) = 100, as
S(p2

f) = max (0, 0 + 1/0.01) = 100 according to(3). Flow g has the higher weight, so it has two tasks
served. Thus, by the end of interval 1,v(t) = 2. At the beginning of interval 2, the weights are changed
to φf = 0.5 andφg = 0.5. Yet not a single task fromf is processed, asS(p2

f) = 100, well ahead ofv(t).
In fact, even aφf = ∞ would produce exactly the same result, as the start tag of the second task off was
computed using the weight during interval 1.

This counter example shows that, when flow weights change, there exist intervals during which the
bound of(5) does not hold. In other words, fairness may be arbitrarily bad in any single interval. That is,
flow performance may vary arbitrarily depending on past weight settings and flow activity. Thus, property
C.1 is violated.

The root cause of this problem is that the tags of the backlogged tasks are not adjusted in any way
when the weights change. In order to improve the fairness of WFQ schedulers, we need to recalculate the
tags of backlogged tasks when weights change. One naive way of doing this would be to use Eqs.(2)–(4)
to recompute the tags of all backlogged tasks, every time the weights change. All flows would start with
a clean slate (F (p0

f) = 0) for this interval. This re-computation would indeed result in a good fairness
bound for every single intervali, as given by Eq.(5). Thus, property C.1 would be satisfied. However,
as we prove in the following theorem, using this approach for tag re-computation does not provide a
fairness bound when looking over a sequence of time intervals. As a consequence, properties C.2 and C.3
in Section2.2are still not satisfied. But, first, we introduce the notion of controllable fairness to capture
the fairness of a scheduler when weights vary dynamically.

Definition 1. For any sequence of consecutive intervalsT = 〈i, · · · , i + N − 1〉 during which flowsf
andg are constantly backlogged and weightsφf (i) andφg(i) are constant within each intervali, i ∈ T ,
controllable fairness is defined as:

∑
i∈T

∣∣∣∣∣Wf (i)

φf (i)
− Wg(i)

φg(i)

∣∣∣∣∣ ≤ U∗
f,g. (6)

Here,U∗
f,g is the controllable fairness bound for the entire sequence of intervals.

Fig. 2. When weights change in SFQ, there exist intervals in which a flow receives no service independent of its weight setting.
The white blocks depict task execution; the gray blocks depict backlog but no execution.

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 285

Fig. 3. Example showing that it is possible to construct an unbounded number of consecutive intervals during which there is a
flow that receives no service, even though it has non-zero weight.

Theorem 1. When the flow weights can vary and the tags of backlogged tasks are recomputed using Eqs.
(2)–(4)every time some weights change, then the controllable fairness is unbounded, i.e., U∗

f,g = ∞.

Proof. We use a counter-example to show thatU∗
f,g is unbounded asN → ∞. Consider the scenario

of Fig. 3. There are two flowsf andg that are continuously backlogged during an infinite sequence of
intervals. The start tags of the first tasks of both flows are set to 0 at the beginning of interval 1. WFQ
arbitrarily picks to submit the task off. At the beginning of interval 2 the weights are changed to some
new value (the actual value does not matter in this example). At this point, the task of flowf is still not
completed, thus, virtual time is still 0. After recomputing the tags of the backlogged tasks, the start tags
of the next tasks of both flows are again 0. The outstanding task fromf completes during interval 2 and
WFQ arbitrarily picks to submit the next task from flowf, as both have the same start tag. This pattern of
execution and tag re-computation may continue for an infinite sequence of intervals. Flowf receives all
the resource, whileg gets nothing.Theorem 1follows directly from the above counter-example.�

We thus need a tag re-computation phase that results in bounded controllable fairness asN → ∞. A
scheduler with this property is presented in the following section. The discussion and counter examples
used in this section refer to resources that process one task at a time. The results are trivially applicable
to concurrency-controlled WFQ variants (e.g., SFQ(D) [4]).

4. Controllable WFQ

In this section we propose an extension to WFQ algorithms that provably provides good controllable
fairness and thus good predictability and responsiveness when flow weights change. In particular, we
present and analyze an algorithm called Controllable SFQ, CSFQ for short, which is an extension of
SFQ. The extension is also applicable to finish-tag emulated algorithms.

With C-SFQ, the following recursive computation is performed whenever any weights change. The
computation updates the tags of the backlogged requests of the flows for which the weight have changed.
Assume, without loss of generality, that there areQf backlogged requests for flowf and that they are
numbered fromj to j + Qf − 1. In the following equations,i is the new interval.v(t) refers to the value
of virtual time as it evolved in previous intervals, according to WFQ.

F (pj−1
f) = S(pj−1

f) + c
j−1
f

φf (i)
, (7)

S(pk
f) = max (v(t), F (pk−1

f)), j ≤ k < j + Qf, (8)

286 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

F (pk
f) = S(pk

f) + ck
f

φf (i)
, j ≤ k < j + Qf . (9)

Eq. (7) recomputes the finish tag of the last submitted request of flowf (in some interval beforei), as
if it had the new weight setting. The tags of the backlogged requests are adjusted accordingly in Eqs.(8)
and (9)which are equivalent to(3) and (4)of WFQ. Re-computation(7) moves the start tag of the next
request off further down in time if the weight has decreased, and closer in time if it has increased. When
the weights have not changed, this algorithm reduces to the original WFQ algorithm.

The intuition behind the following theorem is that C-SFQ behaves exactly like SFQ within each interval.
Thus, the fairness bound within every single interval is the same as that of SFQ.

Theorem 2. For any sequence T of consecutive intervals during which flows f and g are constantly
backlogged, the controllable fairness of C-SFQ is bounded by:

U∗
f,g = max

i∈T

(
cmax
f (i)

φf (i)
+ cmax

g (i)

φg(i)

)
. (10)

Proof. Assume that for each intervali there is a hypothetical SFQ execution, such that all the following
apply:

(1) For every flowf, the weight of this execution is constant throughout the execution and equal to the
C-SFQ weight duringi, i.e.,φs

f = φc
f (i) for all f. (2) At some point in time, the virtual time of the SFQ

execution is equal to that of C-SFQ at the beginning of intervali, i.e., vs(t′) = vc(t). (3) At that same
point in time, the finish tag of the last submitted request in the SFQ execution is equal to the re-calculated
finish tag by C-SFQ at the beginning of intervali, Fs(pk

f) = Fc(pj−1
f) for somek andj. (4) At that same

point in time, the set of backlogged requests for all flows in the SFQ execution is the same as that in the
CSFQ case. (5) From that point in time and at least for a period of time equal to that of intervali, the SFQ
scheduler receives the same sequence of requests as C-SFQ.

If C-SFQ executesM steps in intervali, all those steps would be identical to theM following steps in
the SFQ execution. Thus, the fairness bound of C-SFQ during intervali would be the same as that of SFQ
for the sameM steps.

We now need to show that it is always possible to construct a sequence of requests for a hypothetical SFQ
so that all the above hold. It is trivial to construct such an execution using SFQ, by submitting a request with
costck

f = Fc(pj−1
f)φs

f , whereφs
f = φc

f (i). This ensures thatFs(pk
f) = ck

f /φs = Fc(pj−1
f)φc(i)/φc(i) =

Fc(pj−1
f). If at that pointvc(t) > Fc(pj−1

f), thenvs(t′) can be advanced tovc(t) by sending one request from

flow g where the ratiocg/φg = vc(t) − vs(t′). We do not need to consider the case wherevc(t) ≤ Fc(pj−1
f),

as the max expression in(8) favors theFc(pj−1
f) term. If at this point, SFQ instantaneously receives the

same set of requests as those backlogged in the C-SFQ case at the beginning ofi, their backlogged requests
will have the exact same start and finish tags.

We know that for any period of time [t1, t2), SFQ ensures fairness bounded byUf,g =
(

cmax
f

φf
+ cmax

g

φg

)
[18]. Thus, this bound holds for every single interval of an execution with C-SFQ. In fact, the fairness
bound in every single interval is a function of the maximum cost of the requests actually executed during
that interval (not of the maximum cost of any request of a flow). This results in a tighter fairness bound

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 287

for each intervali, defined as:

U∗
f,g(i) =

(
cmax
f (i)

φf (i)
+ cmax

g (i)

φg(i)

)
. (11)

Thus, the fairness bound across a sequence of intervals is the worst bound among all individual intervals
in the sequence, given by Eq.(10). �
As shown in Section5.2, the maximum concurrencyD also needs to be adjusted according to system and
workload dynamics. A controllable scheduler must thus be fair even whenD changes. We present and
analyze an algorithm called Controllable SFQ(D), C-SFQ(D) for short, which is an extension of SFQ(D)
[4]. The original fairness bound for SFQ(D) for when weights andD do not change is[4]:

Uf,g = (D + 1)

(
cmax
f

φf

+ cmax
g

φg

)
. (12)

Theorem 3provides the controllable fairness bound for C-SFQ(D) whenD as well as flow weights
change between intervals. To provide that bound we first prove the following lemma.

Lemma 1. The number of outstanding requests during interval i, denoted D′(i) is bounded by:

D′
max(i) = max(D(i), D(j)), (13)

where D(0) = 0 and j, j < i is the latest interval before i during which a request was dispatched to the
service.

Proof. Consider a sequence of intervals during which all flows are constantly backlogged. Intervalj < i

is the last interval beforei during which at least one requests is dispatched. That means that the number of
outstanding requests duringj is D′(j) = D(j). On the other hand, no requests are dispatched during any
interval betweenj andi. That is, the number of outstanding requests in all these intervals isD′(k) = D(j),
for all j ≤ k < i. There are two cases to consider for intervali:

(1) If D′(k) ≤ D(i), there areD(i) − D′(k) new requests that the scheduler can dispatch to the service
in i. Thus, the maximum possible number of outstanding requests duringi is D′

max(i) = D(i) as the
flows are continuously backlogged.

(2) If D′(k) > D(i), a new request can be submitted only afterD′(k) − D(i) + 1 requests have completed.
Thus, the largest possibleD′(i) occurs when no request is completed in intervali. That is, the maximum
possible number of outstanding requests duringi is D′

max(i) = D′(k) = D(j).

In either case,D′
max(i) is independent of anyD(m), m < j. �

Theorem 3. For any sequence T of consecutive intervals during which flows f and g are constantly
backlogged and both D and flow weights vary between intervals, the controllable fairness of C-SFQ(D)
is bounded by:

U∗
f,g = max

i∈T

(
(D′

max(i) + 1)

(
cmax
f (i)

φf (i)
+ cmax

g (i)

φg(i)

))
, (14)

where D′
max(i) is defined as in Lemma 1.

288 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

Proof. When the maximum concurrencyD is changed between intervals, the maximum possible number
of pending requests during some intervali is given byD′

max(i) in Eq.(13). According to(12), the bound

for a specific intervali is then (D′
max(i) + 1)

(
cmax
f

(i)

φf (i) + cmax
g (i)
φg(i)

)
. Thus, the worst-case bound in sequenceT

is the highest bound of any single intervali ∈ T , as given by Eq.(14). �
In C-SFQ(D), we now have a scheduler that is controllable, i.e., it provably satisfies all the requirements
stipulated in Section2.2.

5. Experimental evaluation

In this section, we present experimental results from a real system, that reconfirm the analytical results
of earlier sections. In particular, we make the following points.

• Demonstrate that the values of flow weights andD have to vary dynamically in order to enforce
performance goals, given the dynamics of a realistic system and its workloads.

• Show that a typical WFQ scheduler, SFQ(D), is not controllable in practice, when flow weights vary
dynamically.

• Confirm that the proposed WFQ extension results in fair, controllable schedulers for varying weights
andD.

• Perform a sensitivity analysis of the controllable fairness of C-SFQ(D), with respect to the values as
well as the deltas of weights andD.

5.1. Experimental platform

We use a three-tier system as our platform for all the experiments in this section. According to the
terminology of the previous sections, the entire three-tier service is the shared resource we are concerned
with. The system consists of three components: a web server, an application server and a database server.
A controlled scheduler is placed on the network path between the clients and the service front end (web
server). Client requests are intercepted by the scheduler which aims at enforcing proportional sharing.
The scheduler forwards the requests to the web server and, unless they are for static content, they are
forwarded to the application server. The application tier generates a dynamic page from information it
obtains from the database server. The application server then forwards the generated page to the web
server, which, in turn, responds to the client that requested it. Responses are also intercepted by the
scheduler for keeping performance statistics.

The web, application and database servers are hosted on separate server blades, each with two 1 GHz
Pentium III processors, 2 GB of RAM, one 46 GB 15 krpm SCSI Ultra160 disk, and two 100 Mbps
Ethernet cards. The web server is Apache version 2.0.48 with a BEA WebLogic plug-in. The application
server is BEA WebLogic 7.0 SP4 over Java SDK version 1.3.1 from Sun. The database client and server
are Oracle 9iR2. All three tiers run on Windows 2000 Server SP4. The site hosted on the three-tier system
is a version of the Java PetStore (java.sun.com) that has been tuned in order to support a large number
of concurrent users.

The workload applied to this system mimics real-world user behavior[19] on the PetStore shopping site.
These users log in, browse and search for products, put products in their carts, and sometimes checkout

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 289

the cart which gives rise to credit card verifications, adjusting inventory, etc. The end-to-end latencies
vary between 10 and 700 ms for the various operations. The workload also captures the corresponding
time scales and probabilities these occur with. This workload is generated usinghttperf on a separate
machine that is identical to the ones above but runs Linux. The scheduler and controller also run on this
machine. For the experiments in the rest of this section, we generate 80 concurrent client sessions and
we usually consider two flows each consisting of 40 clients. The sample interval for gathering statistics
and for changing the weights andD is 1 s.

5.2. Weights and concurrency degree need to vary continuously

This section demonstrates that the weights and the concurrency degree (D) in a scheduler have to be
continuously adjusted to meet performance goals. There are a number of reasons for this: variation to the
service capacity, changes to the number of clients accessing the service, and modifications to the service’s
hardware or software.

For example, consider the scenario of the left graph inFig. 4. There are a number of flows accessing
the system, but we show the performance of only one of these. This flow has a latency goal of 60 ms.
At different instances during the depicted run, different weights are needed to meet that latency goal. At
some points a weight of 0.3 is sufficient, while at different points even a weight of 0.7 is not enough. If a
weight of 0.7 would have been chosen constantly, the latency goal would have been met most of the time
by a wide margin, thus wasting valuable resources that other flows could have used. It is thus desirable
to adjust the weights dynamically in reaction to the obtained performance. Note, that this experiment
was performed on a dedicated system and network, with a constant number of clients accessing a single
application that does not change. Even under these ideal condition, we see a lot of variation in the latency
provided by the system due to its unpredictability.

The degree of concurrencyD needs also to be dynamically adjusted, for the same reasons. We demon-
strate this need with the example of the right graph inFig. 4 where we have a flow with an end-to-end
latency goal of 50 ms. Before 60 s, either value ofD (2 or 16) can achieve the goal most of the time.
In this case, aD = 16 should be preferred, as it provides higher system throughput. But after 60 s,
D = 16 cannot meet the latency goal any longer, thus it needs to get adjusted down to 2 to meet the goal
again.

Fig. 4. Demonstrates the need to rapidly adjust flow weights andD. The graph on the left shows how two different weights
values produce very different end-to-end latencies for a flow. The graph on the right shows how two different settings ofD result
in different latencies.

290 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

5.3. Fairness of SFQ(D) and C-SFQ(D)

In this section, we evaluate the effects on controllability due to the proposed tag recomputation al-
gorithm. In particular, we focus on the effective differentiation achieved by SFQ(D) and C-SFQ(D) and
how this varies with changes in the values of flow weights andD. We use the following metric, called
unfairness (ϒ), to quantify effective differentiation.

Definition 2. For a set of flowsF, the unfairness of the resource allotment to flowf ∈ F compared to
all other flows during intervali is captured by:

ϒ(f) = 100

∣∣∣∣∣ φf (i)∑
g∈F φg(i)

− Wf (i)∑
g∈F Wg(i)

∣∣∣∣∣ . (15)

An unfairness of 0 means that the scheduler is perfectly fair and provides perfect differentiation, while
an unfairness of 100 signifies no differentiation at all. The higher the unfairness exhibited by a scheduler,
the harder it is to control that scheduler for enforcing performance goals.

First, we analyze the effects of the weight values on unfairness. Our goal is to capture the effects
of the entire spectrum of possible weight values (a controller could set a weight of any value) without
skewing the results due to a specific algorithm of changing the weights between intervals (e.g., a smooth
gradual change could have a lesser impact on unfairness). Thus, we set the flow weights randomly using
a white noise generator. Unfairness results with an actual controller are reported in Section5.4. For the
experiments reported inFig. 5, we consider runs with two flows,f andg. At every sample interval,φf

is set to a random number uniformly drawn from the interval (0, 100); the weight of flowg is set to
φg = 100− φf . The maximum concurrency in the service is set to 4. The results are only shown for flow
f, as the same conclusions can be drawn from the results of flowg. The left graph inFig. 5shows that the
unfairness of C-SFQ(D) is approximately two orders of magnitude lower than that for SFQ(D). About
99% of the sampled intervals have an unfairness of less than 1 for C-SFQ(D), while for SFQ(D) 90% of
the intervals have an unfairness higher than 1. Indeed, 40% of those intervals have an unfairness higher
than 25, which we will see later in Section5.4results in an uncontrollable system.

But it is not just the absolute weight values that affect unfairness. The example ofFig. 2showed that the
larger the relative change, the longer it takes for weight settings to have any effect on the flows resulting
in higher unfairness. To examine how aweight delta (φ�) affects the unfairness of a scheduler, we have

Fig. 5. Sensitivity analysis of the unfairnessϒ(f) of SFQ(D) and C-SFQ(D) against weight settings and changes during a run
of 1000 intervals. The graph on the left shows the CDF of unfairness for all the intervals of a run (thex-axis is in logarithmic
scale). The graph on the right shows unfairness against the relative weight changes (both axes are in logarithmic scale).

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 291

plotted the unfairnessϒ(f) of SFQ(D) and C-SFQ(D) as a function of relative weight change, in the right
graph ofFig. 5. The results come from the same experiment as in the left graph. Relative weight change
in the case of two workloadsf andg is defined as:

φ�(i) = 1

2

(
|φf (i) − φf (i − 1)|

φf (i − 1)
+ |φg(i) − φg(i − 1)|

φg(i − 1)

)
. (16)

We see that the unfairness of C-SFQ(D) is approximately two orders of magnitude below that of
SFQ(D), for an average change of 10% or more, i.e.,φ�(i) ≥ 0.1. As we have seen in Section5.2, weight
changes of that magnitude are not uncommon in real systems. The unfairness of C-SFQ(D) suffers no
substantial degradation as the relative weight change increases. Thus, C-SFQ(D) can be safely used even
with aggressive controllers.

Let us now examine howD, the degree of concurrency allowed in the service, affects the unfairness of
a scheduler. The focus is on C-SFQ(D), as we have just shown that SFQ(D) is unfair irrespective ofD.
Fig. 6shows the unfairness as a function ofD. The weights during each interval are still picked randomly
using the process described previously. From the graph on the left, we can see that unfairness increases
with the value ofD, as expected fromTheorem 3. Up until D = 16, unfairness increases by less than
100% at each data point, but atD = 32 it jumps up by one order of a magnitude. This is due to the effects
of work-conservation kicking in somewhere betweenD = 16 andD = 32. That is,D is high enough that
not all flows remain backlogged constantly. When this occurs, the scheduler purposefully violates the
fairness condition in order to use the system efficiently.

On one hand, work-conservation is a desired property as it increases the total throughput of the system
and the utilization of service resources. On the other hand, it has a negative effect on the ability to control the
system. Thus, the value ofD must be chosen so that the system is operating at nearly full capacity while un-
fairness is low at the same time. The right graph ofFig. 6plots the total throughput of the system as a func-
tion of D. We can see thatD = 8 orD = 16 provide a good trade off between throughput and unfairness.
Another issue to be considered is the effects ofD on end-to-end latency, i.e., the response delay perceived
by the clients of the service. As the right graph inFig. 6shows, the median end-to-end latency goes down
asD increases, due to the parallelism inside the three-tier system. It reaches its minimum value atD ≥ 8.
This is compatible with the values forD derived from the trade-off between unfairness and throughput.

Fig. 6. Analysis of the effects of the degree of concurrencyD to C-SFQ(D). The graph on the left shows the relation between
unfairness and values ofD. The graph on the right shows the aggregate throughput and the end-to-end latency obtained from the
service for different values ofD. The dots are the median values and the error bars show the 5th and the 95th percentile of the
measurements.

292 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

Fig. 7. Demonstrating the ability of SFQ(D) and C-SFQ(D) to meet performance goals when the STR controller from Section2.2
sets the weights every 1 s. The two graphs show latency and unfairness.

5.4. SFQ(D) and C-SFQ(D) with an adaptive controller

This section demonstrates that the high unfairness of SFQ(D), when weights vary, impairs the feedback
loop’s ability to control the system in practice. We compare it against C-SFQ(D), in a closed loop system
that uses the controller from Section2.2to automatically adjust weights according to system and workload
dynamics.

Fig. 7plots the end-to-end latency and unfairness for one of four flows over a 35 s time window of the
execution. The results for the other flows are similar; they are omitted to avoid overcrowding the graphs.
There are two main observations to make. First, the actual performance is close to the latency goal with
C-SFQ(D). (The small violations of the goals are due to the nature of the controller. Typically, a controller
takes no corrective action unless there is a violation of the goal.) The performance of SFQ(D), on the
other hand, fluctuates much more widely. There are times at which it is completely off the goal. Second,
during the periods in which the performance is far from the goal for SFQ(D), the unfairness is high. The
unfairness peaks at 18, 23 and especially between 30 and 35 s. This shows that fairness is crucial for
successfully controlling the system to achieve performance goals.

6. Related work

The possibility of using feedback from the system to dynamically control a scheduling mechanism and
meet performance goals has been discussed in the literature[9,10]. In one case, flows are assigned fixed
reservations, which are enforced using resource-specific schedulers for CPU and disk. Feedback about
the actual performance each flow receives is used to decide how to share any unused resource capacity
among active flows[9]. In another case, a learning heuristic is used to adjust flow reservations, so as to
maximize the number of flows that meet their response latency goals[10]. Existing research has neither
identified the desirable properties of schedulers to be used with such feedback loops, nor analyzed the
effectiveness of existing schedulers in that context. Our work is applicable to the design of any such
feedback-based resource control approach.

Extensive research in scheduling for packet switching networks has yielded a group of Weighted Fair
Queuing variants for link sharing in communication networks, including WFQ[20], SCFQ[17], and SFQ
[18]. Fair queuing has been adapted to other contexts such as disk scheduling[6], CPU scheduling[21],
and server resource management[7].

M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294 293

7. Conclusions

In this paper, we are concerned with the problem of enforcing application-level performance goals in
shared computing infrastructures. We proposed doing this by varying the parameters of proportional share
schedulers using adaptive feedback-based control. Proportional share schedulers are most commonly
implemented using variants of Weighted Fair Queuing (WFQ). We proved that existing WFQ schedulers
are unfair and unpredictable when the flow weights vary. That makes them ineffective in the presence
of dynamic control. We defined controllable fairness, a stronger notion of fairness for this case, we
proposed a tag adjustment algorithm that ensures that WFQ schedulers are controllable-fair, and proved
the properties of the resulting schedulers.

To validate the analytical results, we performed an experimental evaluation using a three-tier Web
service. We confirmed that a typical concurrency-controlled WFQ scheduler, SFQ(D), exhibits poor
fairness when flow weights vary by as little as 1%. On the other hand, a controllable-fair WFQ variant,
C-SFQ(D), is shown to exhibit fairness that is in average two orders of magnitude better. We perform a
sensitivity analysis of the controllable fairness of C-SFQ(D) against the values and deltas of flow weights
and the degree of concurrency, which shows that C-SFQ(D) can be used even with aggressive controllers.
Finally, we demonstrate that, due to its good controllable fairness, C-SFQ(D) can indeed be used with an
adaptive feedback controller to enforce performance goals in shared services.

References

[1] A. Kamra, V. Misra, E. Nahum, Yaksha: a self-tuning controller for managing the performance of three-tiered web sites,
in: Proceedings of the International Workshop on Quality of Service (IWQoS), Montreal, Canada, 2004, pp. 47–56.

[2] M. Karlsson, C. Karamanolis, X. Zhu, Triage: performance isolation and differentiation for storage systems, in: Proceedings
of the International Workshop on Quality of Service (IWQoS), Montreal, Canada, 2004, pp. 67–74.

[3] P. Goyal, X. Guo, H.M. Vin, A hierarchical CPU scheduler for multimedia operating systems, in: Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI), Seattle, WA, 1996, pp. 107–121.

[4] W. Jin, J. Chase, J. Kaur, Interposed proportional sharing for a storage service utility, in: Proceedings of the International
Conference on Measurement and Modelling of Computer Systems (SIGMETRICS), New York, NY, USA, 2004, pp. 37–48.

[5] M. Karlsson, X. Zhu, C. Karamanolis, An adaptive optimal controller for non-intrusive performance differentiation in
computing services, in: Proceedings of the IEEE Conference on Control and Automation (ICCA), Budapest, Hungary,
2005.

[6] P. Shenoy, H. Vin, Cello: a disk scheduling framework for next generation operating systems, in: Proceedings of the
International Conference on Measurement and Modelling of Computer Systems (SIGMETRICS), Madison, WI, 1998, pp.
44–55.

[7] B. Urgaonkar, P. Shenoy, T. Roscoe, Resource overbooking and application profiling in shared hosting platforms, in:
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), Boston, MA, 2002,
pp. 239–254.

[8] T. Abdelzaher, K.G. Shin, N. Bhatti, User-level QoS-adaptive resource management in server end-systems, IEEE Trans.
Comput. 52 (5) (2003).

[9] M. Aron, Differentiated and Predictable Quality of Service in Web Server Systems, Ph.D. Thesis, Computer Science
Department, Rice University, 2000.

[10] V. Sundaram, P. Shenoy, A practical learning-based approach for dynamic storage bandwidth allocation, in: Proceedings
of the International Workshop on Quality of Service (IWQoS), Monterey, CA, 2003, pp. 479–497.

[11] D. Chambliss, G. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, T. Lee, Performance virtualization for large-scale storage
systems, in: Proceedings of the Symposium on Reliable Distributed Systems (SRDS), Florence, Italy, 2003, pp. 109–118.

294 M. Karlsson et al. / Performance Evaluation 62 (2005) 278–294

[12] J. Chase, D. Anderson, P. Thakar, A. Vahdat, R. Doyle, Managing energy and server resources in hosting centres, in:
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), Banff, Canada, 2001, pp. 103–116.

[13] K. Shen, H. Tang, T. Yang, L. Chu, Integrated resource management for cluster-based internet services, in: Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation (OSDI), Boston, MA, 2002, pp. 225–238.

[14] Y. Lu, T. Abdelzaher, C. Lu, G. Tao, An adaptive control framework for QoS guarantees and its application to differentiated
caching services, in: Proceedings of the International Workshop on Quality of Service (IWQoS), Miami Beach, FL, 2002,
pp. 23–32.

[15] K.J. Åström, B. Wittenmark, Adaptive control, Electrical Engineering: Control Engineering, 2nd ed., Addison-Wesley
Publishing Company, 1995, ISBN 0-201-55866-1.

[16] C. Karamanolis, M. Karlsson, X. Zhu, Designing controllable computer systems, in: Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), Santa Fe, NM, 2005.

[17] J. Davin, A. Heybey, A simulation study of fair queuing and policy enforcement, Comput. Commun. Rev. 20 5 (1990)
23–29.

[18] P. Goyal, H.M. Vin, H. Cheng, Start-time fair queueing: a scheduling algorithm for integrated services packet switching
networks, IEEE/ACM Trans. Networks 5 (5) (1997) 690–704.

[19] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J. Chase, Correlating instrumentation data to systems states: a building
block for automated diagnosis and control, in: Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), San Francisco, CA, 2004, pp. 231–244.

[20] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queuing algorithm, in: Proceedings of the ACM
Conference of the Special Interest Group on Data Communication (SIGCOMM), Austin, TX, 1989, pp. 1–12.

[21] P. Goyal, X. Guo, H. Vin, A hierarchical cpu scheduler for multimedia operating systems, in: Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Seattle, WA, 1996, pp. 107–121.

Magnus Karlsson is a senior researcher at HP Labs, Palo Alto, California. His research interests include
general design methods for the management of computer systems, adaptive and nonlinear control theory,
estimation theory, and QoS. Magnus received his PhD in Computer Engineering at Chalmers University
of Technology in Gothenburg, Sweden in 1999.

Christos Karamanolis is a senior researcher at HP Labs, Palo Alto, California. His research interests
include the design and management of distributed systems and in particular enterprise storage systems.
He received a Diploma in Computer Engineering from the University of Patras, Greece and a PhD in
Distributed Computing from Imperial College, University of London, UK.

Jeffrey S. Chase is an Associate Professor of Computer Science at Duke University in Durham, NC.
His research with Duke’s Internet Systems and Storage Group deals with efficient and reliable sharing of
information and resources in computer networks ranging from clusters to the global Internet. Dr. Chase
is an alumnus of Dartmouth College. He received his PhD in Computer Science from the University of
Washington in 1995.

	Controllable fair queuing for meeting performance goals
	Introduction
	Overview
	Resource control
	Dynamic control

	Weighted fair queuing
	WFQ is not controllable

	Controllable WFQ
	Experimental evaluation
	Experimental platform
	Weights and concurrency degree need to vary continuously
	Fairness of SFQ(D) and C-SFQ(D)
	SFQ(D) and C-SFQ(D) with an adaptive controller

	Related work
	Conclusions
	References

