
Using ErasureCodesEfficiently for Storage
in a DistributedSystem

MarcosK. Aguilera
HP Laboratories

1501PageMill Road,Palo Alto, CA, USA
marcos.aguilera@hp.com

RamaprabhuJanakiraman
Dept of ComputerScienceandEngineering

WashingtonUniversity
SaintLouis, MO 63130,USA

rama@cse.wustl.edu

Lihao Xu
Dept of ComputerScienceandEngineering

WashingtonUniversity
SaintLouis, MO 63130,USA

lihao@cse.wustl.edu

Abstract

Erasure codesprovide space-optimaldata redundancyto protect
against data loss. A commonuse is to reliably store data in a
distributed system,where erasure-codeddata are kept in different
nodesto tolerate node failures without losing data. In this paper,
we proposea new approach to maintain ensure-encodeddata in a
distributedsystem.Theapproach allows the useof spaceefficient

�
-

of-� erasure codeswhere � and
�

are large andtheoverhead��� � is
small.Concurrentupdatesandaccessesto dataare highly optimized:
in commoncases,they require no locks, no two-phasecommits,and
no logs of old versionsof data. We evaluateour approach usingan
implementationand simulationsfor larger systems.

1. Intr oduction

Storagesystemsare quickly growing in size through the use of
moreandbiggerdisks,andthroughdistribution over a network. With
larger systems,the chanceof componentfailure also increases,so
techniquesto protectdatabecomemoreimportant.Singleparity used
in RAID systemsno longerprovidessufficient protectionin all cases
[1], and

�
-way replication is much too wasteful in storagespace,

even for small
�
. Therefore,new schemesareneededto protectdata

againstmultiple failuresin a distributedstoragesystem.
Erasurecodes[2] have beenusedtraditionally in communication

systems,and more recently in storagesystemsas an alternative
to replication (e.g., [3], [4], [5], [6]). Properuse of erasurecodes
providesgreaterspaceefficiency andfine tunablelevelsof protection,
at the cost of greatercomplexity. An ����� �	� MDS erasurecode,or
simply

�
-of-� code,encodes

�
blocks of datainto ��
 �

blocks—
which we call a stripe—such that any

�
blocks in the stripe can

recover the original
�

blocks. By storing eachblock in a separate
node, data are protectedagainstthe simultaneousfailure of up to
��� � nodes.

A generalchallengeof distributedstorageis to provide dataconsis-
tency while allowing failuresandconcurrentaccess.At thesametime,
onewould like to get reasonableperformance,to scalewith number
of clients, and to allow expansionof storagecapacityat low cost.
Thesedifficulties are well-recognized,understood,and reasonably
addressedfor replication-basedstorage.For erasure-codedstorage,
however, differentschemesarestill beingproposed(e.g.,[5], [6]), as
researchersexplore new waysto dealwith the additionalcomplexity
createdby erasurecodes.Roughlyspeaking,this complexity is caused

This work is partially supportedby NSF grants CCR-0208975,CNS-

0322615,and IIS-0430224.

by aninherentcouplingof datain erasurecodes,aswe explain deeper
in the paper.

This paper proposesa new protocol and schemeto use erasure
codesfor distributedstorage.Our schemehasthe following features:

� High concurrency: It allows concurrentupdatesof blocks,includ-
ing blockscoupledby the erasurecode.� Consistency:It ensuresa strong type of consistency despite
concurrentupdates,andcrashesof both storagenodesandclients.� Optimized for common cases: It is highly optimized for the
commoncaseswhere no failures occur; in such cases,it doesnot
require use of expensive synchronization.A read requiresonly a
round-trip to a storagenode,and a write requiresonly a round-trip
to eachstoragelocation that needsto be changedaccordingto the
erasurecode;this is true even whenthereareconcurrentoperations.� Good performance with highly-efficient erasure codes: The
schemeperformswell with

�
-of-� Reed-Solomoncodeswhere

�
and

� are large and ��� � is small—theseare the codeswith the best
spaceefficiency for a given fault resiliency.� Online recovery: When failuresoccur, recovery doesnot require
to suspendreadandwrite operations.� Smallspaceoverhead:It keepsa small amountof overheaddata
at storagenodes—agoal consistentwith usingerasurecodesto save
space.� Thinservers: It usesthin storagenodesthatimplementverysimple
functionality, thus following the principle of moving functionality
to clients. This implies betterscalability and lower coststo expand
storagecapacitywhennew serversareadded.

To evaluateour approach,we built a prototypeof a distributedand
reliablestorageservice.The servicecomprisesa setof storagenodes
accessibleto clientsvia a network, whereclientsreadandwrite data
usingour protocols.We alsousesimulationsto studytheperformance
of larger systems.

Limitations of our approach

As a trade-off for its features,our schemehasfour limitations:

� It is tailored for linear erasurecodes,like Reed-Solomoncodes,
whereredundantblocksareupdatedwith commutative operations.� It usesthe redundancy of erasurecodessolely for fault tolerance,
not to improve readperformance.For instance,our readperformance
is very similar to that of a systemwith no data redundancy. This
is consistentwith our motivation of supportinghighly-efficient codes
where ��� ����� (numberof redundantblocks no greaterthan data
blocks).Systemsthat useerasurecodeto improve readperformance
tend to have ��� �
�
 � , andprovide weak consistency or assume
dataare immutable.

� Thewrite throughputof clientsdecreasesas��� � grows.However,
this canbe avoidedif broadcastsareavailable.� It can tolerateat most ��� client failures, where ��� is a chosen
failurethreshold.If thereare ������� client failuresanda storagecrash,
datamay be lost. For example,considerthe following scenario:(a)
������� clientsaresimultaneouslywriting to thesamestripe , and(b)
a network partition, suchascausedby a switch failure, causesthose
� � �!� clients to be permanentlydisconnected.This resultsin � � �"�
client partial writes that make the systemvulnerable:a subsequent
storagecrashin this configurationcannotbe tolerated.We mitigate
this problemby usinga monitoringmechanismthatefficiently detects
and fixes partial writes, to restorefull recoverability and reducethe
window of vulnerability. After any numberof client failures,if this
mechanismexecutesbeforea storagecrash,dataaresafeagain.

Relatedwork and protocolcomparison
The closest related work are the distributed protocols proposed

by FAB [5] and Goodsonet al [6]. FAB uses erasurecodes in
a distributed disk array built from low-cost commodity computers.
The FAB protocol toleratescrashfailures,ensuresa strong form of
consistency, andallowsconcurrentwritesandreads.Concurrentwrites
to blocksin thesameerasurecodestripereturnanexception.Servers
have non-volatile memoryandkeepa log with old versionsof data,
which is periodicallygarbagecollected.

Goodsonet al also proposea protocol (GWGR) for distributed
storageusingerasurecodes.TheGWGRprotocoltoleratesByzantine
clientsand storagenodes,ensuresa strongform of consistency, and
allows concurrentwrites and reads.GWGR keepsa log with old
versionsof datafor recovery, which is periodicallygarbagecollected.
GWGR only allows writes to modify the entireerasurecodestripeat
once; to modify individual blocks, it is necessaryto read its stripe,
and write it back. Doing so, however, has a performancecost and
doesnot ensureconsistency of concurrentupdatesto blocks in the
samestripe.

Fig. 1 shows a performancecomparisonbetweenour protocol
(AJX-*), FAB andGWGR.Our protocolhasat leastasgoodlatency,
numberof messages,and bandwidth.With FAB and GWGR, every
write needsto contactall storagenodesin the erasurecode stripe,
and so theseprotocols perform poorly for random I/O, especially
with highly-efficient erasurecodesthathave large

�
and � , andsmall#�$ �%� � . Thesearethecodeswith bestspaceefficiency for a given

fault resiliency. For sequentialI/O, all protocolsallow pipelining of
requests;with the optimizationsof Section6, we believe that our
protocolis competitive,asshown by theresultsof Section6. Thus,the
advantagesof our protocolover FAB andGWGR are(1) it supports
well highly-efficient erasurecodes,(2) it doesnot keepold versions
of dataat storagenodes(lessspaceoverhead),and (3) it allows for
thin storageservers. An advantageof FAB and GWGR is that they
can tolerateany numberof client failures by using the log of old
versionsof data.

Our protocol keepsno log and toleratesonly a

chosennumberof client crashes.
Myriad [4] proposeserasurecodesfor disastertolerance. Updates

of redundantdisksdo not happenduring a write, but are insteadde-
ferredanddonein batchesusingtwo-phasecommit.ZhangandLian
[7] alsoproposea generalschemeto useerasurecodesfor distributed
storage.However, this schemedoesnot handleconcurrentupdates;
instead,it assumessomeexternal mechanism,like a transactionfor
eachoperation.This appearsto beexpensive, but no performancedata

In FAB, becauseclient andstoragenodesarecolocated,this requiressome

fraction of the nodesto restartafter failing.

=client node

=storage node

=disk or other
storage device separated client and

storage nodes
colocated client and

storage nodes

Fig. 2. System with client nodes and stora ge nodes that
comm unicate via a netw ork. Stora ge nodes may be
thin or powerful devices; client nodes are computer s
running applications. We suppor t both separated or
colocated stora ge and client nodes.

is provided. &(')�* [8] useerasurecodesto implementanexpandable
and distributed datastructure,where redundancy increaseswith the
amountof data,to ensurea minimumavailability. However, thepaper
does not addressfailures of clients or recoveries concurrentwith
client updates.In somesystems,erasurecoresare usedfor archival
of immutabledata(e.g.,[3]). Whendatais immutable,therearefew
concurrency issues,and so much simpler protocolsare neededthan
what we propose.

The rest of this paper is organizedas follows. In Section2 we
explain our assumptionsandgoals.Section3 explainsour designand
protocols.We considertheprotocol’s failureresiliencein Section4. In
Section5 we validateour approachin two ways:An implementation
is describedin Section 5.1 and simulationsof larger systemsare
describedin Section5.2. We give resultsin Section6. All protocol
correctnessproofs are omitted due to spacelimitations; they can be
found in [9].

2. Assumptionsand Goals

We considera distributedsystemwhereclient nodeswish to store
dataatasetof storage nodesthatarereachablethrougha fastnetwork,
like a local areanetwork. A storagenodemay be a dedicatedserver
with lots of memory, many processors,anda setof oneor moredisks
or other storageconnectedto it. Or it could be a very thin passive
device with a network interface,a storageinterface,somememory,
andsomestorageconnectedto it (and not muchmore beyond that).
Storagedeviceshave a standardfixedblock size(e.g.,512bytes)used
astheminimumquantumof datatransfer. A client nodeis a computer
running applicationsthat needto read and write data storedat the
storagenodes.Client nodeshave reasonablecomputationalpower and
a network bandwidth that is not extremely limited. A client node
may be colocatedwith a storagenode,but the client nodemay need
to accessstoragenodesnot colocatedwith it. This might occur if
a machineis powerful enoughto host both applicationsand shared
storage.

Each node has a network identity, like an IP address,used to
communicatewith other nodes.We assumethat each client node
can obtain the identitiesof the nodesproviding the storageservice.
However, client nodesmay not know abouteachother. As a result,
two or more client nodesmay issuestorageoperationsconcurrently.
Most likely, thoseoperationsare on different locationsmost of the
timeor always(e.g.,[5]). However, in somerarecases,two concurrent
operationsmay try to accessthe samedata.In thosecases,the result
shouldnot be garbage.

Client andstoragenodesaresubjectto fail-stopfailures[10], which
causesa node to halt its execution,and the node’s haltedstatecan
be detectedby other nodesif necessary. If a storagenode fails, it
may never recover, in which casethe data that it storedis lost. We

Scheme AJX-par AJX-bcast AJX-ser FAB GWGR notes

min r/w granularity 1 block 1 block 1 block 1 block + blocks + determinedby erasurecode
readlat. (roundtrips) 1 1 1 1 1
write lat. (round trips) 2 2 ,�-�. 2 2
msgsfor read 2 2 2 /0+ /01
msgsfor write /324,5-�.76 ,8-:9 /324,5-�.76 ;01 ;01 , muchsmallerthan 1
readbandwidth B B B B 1=< smalleris better
write bandwidth 2>,�-:/36>< 90< 24,8-%/36>< 2?/01@-�.764< 1=< (< = block size)

Fig. 1. Performance comparison in most likel y (failure-free) executions using
�
-of- � erasure code (#�$ �A� �). AJX-*

are the protocols in this paper: -par uses parallel updates, -bcast uses broadcast (if availab le), and -ser uses serial
updates (cf Section 4).

assumethat failures are not extremely frequent,and if they occur,
it is acceptablefor the systemperformanceto temporarilydegradea
little.

Our goal is to useerasurecodesto provide redundancy to protect
storeddataagainstthe above failures,while keepingspaceoverhead
small.Ourgoalis not to useredundancy to increasereadthroughput—
this goal is often at odds with having small spaceoverheadand
supportingconcurrentupdateswith strongconsistency. We would like
to supporta wide variety of

�
-of-� erasurecodes,especiallyhighly

efficient oneswhere � and
�

are large, but the overhead��� � is
small.

We also want to hide from applicationsthe intrinsics of how
erasurecodesareused.Targetapplicationsincludeoperatingsystems,
databases,distributed file servers, or other higher-level servicesthat
requireblock storage.Theseapplicationsaccessdatathrougha block
interface that support read-block and write-block operations.We
prefer that the block size be one of the valuescommonly used; in
fact, we prefer that all peculiaritiesof erasurecodesbe hiddenfrom
applications.However, thesepeculiaritiesmay be known by some
low-level module running at the client nodesbelow the application
level.

3. Designand Algorithms
While designingour scheme,we choseto follow threewell-known

principles.Shift functionalityto clients: Client nodesdo active work,
while storagenodesare thin, passive servers. This choice tendsto
provide betterscalability, simplify crashrecovery, and decreasethe
cost of adding more storagenodesto grow storage.Optimize for
commoncases,simplify rare cases:We avoid expensive mechanisms
like locks or two-phasecommits, in the commoncaseswhen there
are no failures. In rare caseswhen failures do occur, we simplify
the design using strong coordinationvia locks. Hide intrinsics of
mechanismbeing implemented:The choiceof erasurecodedoesnot
affect the service interface provided to applications.For example,
larger erasure-codestripesdoesnot requireapplicationsto uselarger
block sizes.

3.1. Consistency

In the presenceof concurrency and failures,we provide a reason-
ably strongconsistency guarantee—thesameasprovided by regular
registers [11] generalizedto multiple writers [12]. Roughlyspeaking,
it ensuresthat a readnever returnsa valuethat wasnever written, or
a valuethatwasoverwrittenby anotherwrite. If a write is concurrent
with a read, the read may return the value of the write or the
previously written value.If multiple writesareconcurrentwith a read,
the readmay return the value of any of the writes or the previously
written value.

3.2. Organization
Our schemeis physicallyorganizedin two parts:(1) storagenodes

are configuredto serve simple requestsfrom client nodes,and (2)
client nodes orchestratethe storagenodes to store, retrieve, and
recover data.Logically, the schemehasfour components:(1) failure
detectionandnoderemap,(2) readandwrite algorithm,(3) recovery
algorithm, and (4) garbagecollection algorithm. We cover these
componentsin later sections.

3.3. Brief primer on erasurecodes
Roughlyspeaking,a

�
-of-� systematicmaximumdistancesepara-

ble (MDS) erasurecode[2] takes
�

data blocks andproduces��� �
redundantblocks, suchthatany subsetof

�
blocks(dataor redundant

or mixed)canreconstructthe
�

datablocks.We considercodeswhere
the redundantblocksare linear combinationsof the datablocks.We
call stripe the combinationof the

�
datablocksand ��� � redundant

blocks.
For example,if B and C aredatablocks,thenwe couldproducetwo

redundantblocks BD��C and BE��C .F Givena stripeconsistingof thefour
blocks ��BG�HCI�JBD��CK�JBE��C � , any subsetof two blocks can reconstructB
and C . For instance,given BD��C and C , we canobtain B by subtracting
C from BD�LC . Therefore,we have a M -of-N erasurecode,which can
toleratethe lossof any 2 blocks in the stripe.Note how this is more
powerful than2-way replicationwith the samespaceoverhead:if we
simply replicate B and C , we get ��BG�HCI�JBE�JC � ; if we later lose both
replicasof B , we cannotreconstructB .

More technically if C3OP�PQRQRQR�JCKS are data blocks then, in a
�
-

of-� code, each redundantblock CISPT O �RQ7QRQP�JCVU is given by C0W $SX�Y OKZ W X C X for [$ � �\�K�RQPQRQ7�J� , where Z W X are carefully chosen
constants,andarithmeticis over somefinite field, usually]�^5�_MK` � .
3.4. Challengesof erasure-codeddistrib uted storage

There are two main reasonswhy known solutionsfor replicated
storagecannotbe usedwith erasurecodes:(1) erasurecodescouple
togetherdifferentblocksof data,while replicatedstorageonly couples
togetherreplicas;and (2) divergenceof erasure-codeddatais harder
to detectandcorrectthandivergenceof copiesin replicatedstorage.

To illustratethechallenges,supposethatwe usethe M -of-N codeof
Section3.3 to storeblocks B and C : eachof ��BG�aCI�JBD�LCK�JBE�bC � areeach
kept in a separatestoragenode.Now supposeclient node c O wishes
to changeB to c , while anotherclient node cId wishesto changeC
to e . Here, the updatesare to differentdata,but becausethe erasure
codecouplestogetherc and e , somecareis neededwith concurrency.
The end result must be ��cI�JeD�JcV�LeD�JcI��e � , but how do we keep c3O
and cKd from clashing?This is easy if we use locks: c3O locks all

F Technically, in this case - and f must be taken over a field with
characteristicghi/ .

Code for client , :

To jbkEl�m�2>n_6 do o�.qp�nrp�+tsu:vxw Xzy read2J6 // RPC
return u

To {@j(|P}~k�2>n�� u 6 do o�.qptn�pi+ts��v�w X�y swap2 u 6 // RPC
pfor � v +�-�. y�y�y 1 dow W y �0�0� 2>� W X�y 2 u f � 6H6 // RPC
return

Code for storage node w X :
variable:block
operation read2H6

return block

operation swap2 u 6
retsectv block
block vxu
return retsect

operation add2 u 6
block v block - u

READ WRITE

1 2
�

read swap�
add�

WRITE

add�
d-b

WRITE

a� b
�

a+b� a-b�
add�
b-dd� b

�

c� a� add�
c-a

add�
c-a

(C)
�

(B)(A)
�

Fig. 3. Simplified algorithm: (A) code , (B) depiction, (C) example of concurrent writes preser ving consistenc y of
erasure code without any client coor dination.

four blocks,readsC , andthenoverwritesthe blocks;and c d proceeds
analogously. But locksareveryexpensive, andwe wantto avoid using
them.Moreover, even with locks, if c O fails beforecompletionthen
we canendup with ��cI�zCK�JcK�LCK�JBE�bC � . Here,BE�bC is aninconsistency. If
two storagenodesfail, this inconsistency notonly preventsrecoveryof
correctdata,but it maybeundetectable.For example,if storagenodes
2 and3 fail, we get ��cI�R���R���HBG�(C � . This configurationis completely
consistentwith c8��B���C beingpreviously storedin crashednode2,
andso it cannotbe detected.

3.5. Failur edetectionand noderemap
In ourscheme,thefailureof astoragenodeis detectedwhenaclient

triesto accessthenode(wealsoallow to useperiodicpingsfrom some
monitoring facility). This client thenstartsan expensive operationto
reconstructthelostdata,whichmayneedto beplacedin anew storage
node,if the failedonehasnot recovered(andit may never recovery).
In thosecases,we assumethat a fresh replacementstoragenode is
available,andthereis somemechanism—like a directoryservice—to
direct clients to this new node: clients simply accesssomelogical
node,which getsremappedon failures.The storagenodehasa flag
indicatingwhetherits datais valid, or just someuninitializedgarbage.

3.6. Simplealgorithm
Fig. 3 shows a simplifiedversionof ouralgorithmthatshows a core

ideafor thefull algorithm.Thesimplifiedalgorithmmerelykeepsdata
in � nodesconsistentwith a

�
-of-� erasurecode,without tolerating

failures. To read and write blocks �V�RQRQRQ7� � in a stripe, a client #
communicateswith storagenodes O �7QRQRQR�R U via remoteprocedure
calls. Storagenodes O �RQRQPQR�7 S keep the data blocks, while nodes
 DSPT O �RQRQRQ7�R U keepredundantblocks accordingto the erasurecode.
To READblock � (� �\�), # simply callsoperation“read” on node X .
To WRITE � to block � (� ���), # swaps � into X , obtainingthe old
content� , andthenaddsZ W X Q?�����t� � to eachredundantblock in �W
for [$ � ���K�RQ7QRQP�J� , whereZ W X aretheerasurecodecoefficients.The
pfor is a parallel-for, whoseiterationsmay be executedin parallel;
after the pfor, the executionmergesback.

What is interestingaboutthis algorithmis that it keepsthe erasure
codeconsistenteven if multiple clientswrite in parallel,regardlessof
how executioninterleaves,evenif bothclientsaretrying to changethe
redundantblockssimultaneously. (This is not obvious; seeFig. 3 (C)
for anexampleusingthe sampleerasurecodeof Section3.3.) And it
doessowithout any synchronizationvia locksor two-phasecommits.

3.7. Full algorithm: readand write
We now explain the full algorithm. Figure 4 shows the code

for reading. In failure-free cases,it is very similar to the simple

algorithmof Section3.6.Whena storagenodefails anda new nodeis
remapped(cf Section3.5), the new nodestartswith opmode$ INIT,
indicating its data is initialized garbage.If a client tries to read
from such a node, the read fails by returning � , and the client
invokestherecovery procedure(Section3.8) if theblock is not locked
(lmode ��� UNL � EXP�). If theblock is locked,anotherclient is already
executingrecovery.

Figure 5 gives the algorithm for writing data.When thereare no
failures and no clients WRITE to the sameblock simultaneously,
the algorithm behaves like the simple algorithm of Section3.6: To
WRITE, client # first invokes swap (line 3), which returnsblk �$ � .
Then # invokes add on eachredundantstoragenode(line 10). The
adds all succeed,and so is set to ���¡� � ���K�7QRQRQP�z��� (line 11),¢(£7¤¦¥¡§

is set to ¨ (line 12), and © is set to ¨ (line 20), which causes# to finish the loops.The English commentsin the figure provide a
walk-throughof the code,and to avoid repetition,we only explain
herethehigherlevel mechanisms.Thebasicideato dealwith storage
nodefailuresis for a client to invoke a recovery procedure,andlater
retry its WRITE or READ operation.More precisely, when storage
node X fails, the remappednode (cf Section 3.5) startsout with
opmode $ INIT and lmode $ UNL. When # invokes swap on X ,
swapfails, and # startsthe recovery procedure.Recovery readsdata
from all storagenodesand usesthe erasurecodeto reconstructthe
lost data.Most of the complicationin the write algorithm is to deal
with concurrentonline recovery by anotherclient. We comeback to
thesetopics in Section3.8.

Concurrent writes to the sameblock. To guaranteerecoverability,
thealgorithmensuresthat if clients # and ª WRITEto thesameblock,
they applyswapandadds in thesameorderat all storagenodes.This
orderingis ensuredasfollows: a swapoperationreturnsto the caller# an identifier otid for the previous WRITE; # then piggybacksotid
to the add operationson redundantblocks; upon receive an «K¬K¬ , a
storagenodechecksif it previously saw otid (otid � recentlist); if not,
the storagenoderejectsthe add and returnsa specialORDER status
code,which tells # to retry later. If the client executingthe previous
WRITEcrashes,then # may retry many timeswithout success.After
a certainnumberof attempts,# startsthe recovery procedure.Note
thatconcurrentwritesto thesameblock arevery rarein mostsystems
(e.g., [5]).

3.8. Recovery algorithm
The basic idea for data recovery is to read all blocks from the

storagenodes,decodethem using the erasurecode,and write back
the results.The main issuesare the following:

� Blocksmayall beinconsistentwith eachother, dueto outstanding

Codefor client , :

To jbkEl�m�2>n_6 do // .qp�nGp�+
1 u � lmode® v�w Xzy read2H6
2 while u h�¯ do
3 if lmode °�o UNL � EXPs
4 then start recovery2J6 // start recovery procedure
5 u � lmode® vxw Xzy read2J6 // retry read
6 return u

Codefor storagenode w X :
Global variables:
7 block, initially 0, after fail-remaprandom // block content
8 opmode°to NORM � RECONS� INIT s , initially NORM, after fail-remapINIT
9 // NORM: valid datain block; INIT: invalid data;RECONS: limbo
10 lmode °�o UNL � L0 � L1 � EXPs , initially UNL, after fail-remapUNL

11 // UNL: block unlocked; L0 � L1: partial or full lock; EXP: expired lock

operation read2J6
12 if opmodegh NORM or lmode gh UNL

13 then return block ±V¯�� lmode®
14 elsereturn block ± block � lmode®

Fig. 4. Full algorithm for reading data.

WRITESand failed storagenodeswith randomblocks.Mechanisms
are neededto (A) know when a group of blocks are consistent,i.e.,
they yield correctdatawhenusedfor reconstruction,and(B) ensure
that some group with at least

�
blocks is or eventually becomes

consistent,where
�

is the numberrequiredby the erasurecode.� If a client # crasheswhile executingrecovery, recovery must be
completableby anotherclient.� A WRITE concurrentwith recovery may garble the redundant
blocksafter recovery completes.

We now explain how we addressthe above issues.
Recent list. To know if a groupof blocksareconsistentwith each

other, storagenodeskeepa list with the identifiersof pastWRITES
that have modified data in the storagenode(the list is periodically
garbagecollected;seeSection3.9). More precisely, when a client #
startsa WRITE, it picks a unique identifier tid for the WRITE. The
tid is piggybacked on swap and add requestsand, when a storage
nodereceives one suchrequest,it storesthe identifier in the node’s
recentlistvariable.The recovery procedurereadsthe recentlistfrom
nodesto determinewhich blockshave beenupdatedconsistently.

The basic recovery procedure. Recovery canbe executedby any
client # , and it has three phases.In phase(1), # acquireslocks at
eachstoragenode.Thesenodesmaintainthe lock statein their local
variablelmode: lmode $ UNL allows swapandaddoperations,while
lmode $ L1 will reject them. Locks serve two purposes:(i) they
“freeze” thedatain storagenodesand(ii) they preventdifferentclients
from concurrentlyexecutingrecovery. To avoid deadlocks,locks are
acquiredin order, but other standardmechanismscan be used,like
retrying after someexponentialback-off. ²

In phase(2), # readsthe contentsand statesof all storagenodes
(line 7) andchecksif thereare

� � slack blocksconsistentwith each
other, where

�
is the numberof blocks neededby the erasurecode,

andslack is explainedbelow. If thereare not, # “weakens” the lock
on the redundantstoragenodes,by settingtheir lmode $ L0: in this
mode,a nodeallows adds to execute,but thenoderemainsotherwise
locked. The intuition here is that # wants outstandingWRITESto
completetheir adds sothatblocksbecomeconsistent.With theproper
boundson failures, # will eventually find a large enoughconsistent
setof blocks.Next # tries to changeback the lmodeof nodesto L1
(full lock mode)beforefurther adds occur (line 19).³ If # doesnot
succeed,# restartsthe searchfor consistentblocks.(Note that # will
eventuallysucceedbecauseswaps areblocked, so new WRITESwill

² Lines 4–6 in the algorithm are for storagenodesthat fail while locked,
losing their locked state.
³ The reasonis that additionaladds may causea WRITE to complete,and

so the recoveredcontentsmust include the effects of suchWRITE.

not issueadds.) Else # setsthe nodes’opmodevariableto RECONS

(explainedbelow).
In phase(3), (a) # usesthe found consistentblocks to reconstruct

datathroughthe erasurecode,(b) # writes the recovereddatato the
storagenodes,(c) # changesnodes’opmodeto NORM (normalmode),
and(d) # unlocksthe nodes.

Epochs. Roughly speaking,an epoch is the period betweentwo
recoveries.A WRITEwhoseswapexecutesin oneepochshouldnot
let its adds executein later epochsbecauserecovery alreadyleaves
all blocks consistent.Thus, (a) swaps return an epochnumber, (b)
recovery incrementsthe epochnumber, (c) # piggybacksthe swap’s
epoch into adds, and (d) storagenodesreject adds from previous
epochs.

Crashesduring recovery. If # crashesduring recovery, nodesthat
are locked (with lmode �´� L0 � L1 �) will “expire” their locks setting
lmode $ EXP (line 34). If anotherclient ª seesa node in this lock
mode, ª starts recovery. If # crashedbefore ending phase(2), the
datain storagenodeshave not beenchanged,so re-recovery by ª is
safe.Else # hassetthenodes’opmodeto RECONS; when ª seesthat,
it skips phase(2) and, in phase(3), ª doesexactly what # would
have done(ª getsthe set of consistentblocks usedby # by reading
the nodes’variablereconsset). The slack variablementionedbefore
guaranteesthat ª can still find

�
consistentblocks, despitefurther

storagenodefailures.

3.9. Garbagecollectionalgorithm

As explainedabove,storagenodeskeepa list recentlistof thetidsof
pastwrites.To garbagecollect this list, we usea two-phasealgorithm
to handleclientcrashes.In phase2, all tidswhosewrite hascompleted
are moved from list recentlist to list oldlist. In phase1, tids from
oldlist arediscarded.If theclient crashes,the recentlistandoldlist of
differentstoragenodesmay endup different.This is not a problem:
whenusingtheselists to determineif a setof blocksis consistent,the
client knows that if tid is in someoldlist of any node,thenthe write
hasoccurredat all nodes.Seefunctionfind consistentin Figure6 for
moredetails.

The mechanismto order WRITESto the sameblock needsto be
adjustedto work with garbagecollection,as follows. After # getsan
ORDER status,ratherthanretryingtheadd immediately, # first checks
if the otid hasbeengarbagecollectedat the datastoragenodeor any
of the redundantstoragenode; if otid is no longer at one or more
of thesenodes,# knows that the WRITE for which it is waiting has
completed,so # can ask the redundantstoragenodeto add without
checkingfor otid; else # retriesthe add after a while.

3.10. Monitoring mechanismto trigger recovery
If clientcrasheswhile writing, or astoragenodecrashes,thesystem

is in a fragile statethat toleratesone less failure than before. It is

Codefor client , :

Global variable:seq, initially µ // sequencenumberfor uniquetransactionid (tid)
To {@j(|P}~k�2>n�� u 6 do
1 repeat
2 ntid v seq�¦n_�a,3® ; seq v seq -�. // obtainuniqueid
3 blk � epoch � otid � lmode® vxw Xzy swap2 u � ntid 6 // swap new value into datablock
4 while blk h�¯ do // error, dataunavailable
5 if lmode °�o UNL � EXP s then start recovery2H6 // nobodyrunningrecovery, so we do it
6 blk � epoch � otid � lmode® vxw X�y swap2 u � ntid 6 // try swap again
7 ¶ v o�+�-�.0� y�y�y �¦1rs // nodewherewe want to apply addoperation
8 · v o�n_s // nodesdonewith update
9 while ¶¸gh�¹ and ·�ghi¹ do // while therearenodesto update,anddonenodesarestill up
10 for each �5°�¶ do ºI» �¡¼ vxw W y add24� W X_y 2 u f blk 6J� ntid � otid � epoch 6 // performaddat nodesin ¶
11 · v ·�½�o���°�¶"±PºI» �¡¼ y statush OK s // successfulnodes
12 Retry v o��5°�¶!±PºI» �¡¼ y statush ORDER or ºI» ��¼ y lmode g°�o UNL � L0 s7s // nodesto retry due to orderingor lock problems
13 if ¾¡��°�¶!±RºI» �¡¼ y lmode h EXP or // if somenodehasexpired lock or24ºK» �¡¼ y opmodegh NORM and ºI» �¡¼ y lmode h UNL 6 or // it is not in normalmodeandunlocked or24ºK» �¡¼ y status h ORDER andtired of looping6 // it hasreturnedORDER for too long
14 then start recovery2H6 // thenstart recovery
15 if ¾¡��°�¶!±RºI» �¡¼ y statush ORDER then // somenodecomplainedaboutordering
16 pfor each �5°�· do
17 ¿K» �¡¼ vxw W y checktid 2 ntid � otid 6 // checkif otid hasbeengarbagecollected
18 if ¾P��°�·À±P¿K» ��¼~h GC then otid v ¯ // yes,no needto checkorderingany more
19 · v ·\f�o���°�·À±P¿V» �¡¼~h INIT s // remove crashednodesfrom successfullist
20 ¶ v Retry
21 for each �5°�· do gc» �¡¼ v gc» �¡¼I½:o ntid s // for garbagecollection
22 until ·xh�o�n���+�-�.0� y�y�y ��1Gs // repeatuntil all blockshave beenupdated

Codefor storagenode w X :
Global variables:
23 epoch °@Á , initially 0, after fail-remap0 // epochnumber
24 recentlist ° set of tid � time® , initially ¹ , after fail-remap¹ // recentwrite list
25 oldlist ° setof tid � time® , initially ¹ , after fail-remap¹ // old write list
26 time, initially µ , after fail-remapµ // local time, auto incrementedat somerate

operation swap2 u � ntid 6
27 if opmodegh NORM or lmode gh UNL // if not normalopmodeor locked
28 then return block ±V¯�� epoch ��¯�� lmode® // returnerror
29 retblk v block // do swap
30 block vxu
31 if recentlist ht¹ then otid v ¯ // no previous write
32 elseotid v tid in recentlistwith largesttime // find tid of previous write
33 recentlist v recentlist½�o7 ntid � time®Js // recordtid of this write
34 return block ± retblk� epoch � otid � lmode®
function tids2 tidtime list 6
35 return tid of entriesin tidtime list // return tids in a list

operation add2 u � ntid � otid ��ÂK6
36 if opmodegh NORM or lmode g°to UNL � L0 s or Â�Ã epoch // if not normalopmodeor locked or old epoch
37 then return status ±K¯�� opmode� lmode® // returnerror
38 if otid gh´¯ andotid g° tids2 recentlist½ oldlist 6 // if previous write did not occuryet
39 then return status ± ORDER � opmode� lmode® // tell client
40 block v block - u // performadd
41 recentlist v recentlist½�o7 ntid � time®Js // recordtid of this add
42 return status ± OK � opmode� lmode®
operation checktid 2 ntid � otid 6
43 if ntid g° tids2 recentlist6 then return INIT // only occursif nodecrashes
44 elseif otid g° tids2 recentlist6 then return GC // previous write not yet performed
45 elsereturn NOCHANGE // all is fine

Fig. 5. Algorithm for writing data.

thusdesirableto restorethe system’s resiliency by startingrecovery.
Clients do so upon stumblingon a problem,but that only happens
if they try to read or write. Thus, it might be useful to have a
monitoringmechanismexecutedperiodicallyby someclient to probe
the systemfor failures,and trigger recovery if necessary. This can
be donevery efficiently: for eachstoragenode X , the client simply
checksif (1) X ’s recentlisthassomeold tid, indicatinga startedbut

unfinishedwrite, or (2) X ’s opmodeis INIT, indicating initialization
after recovery. In thosecases,theclient startsthe recovery algorithm,
which restoresfull recoverability of thesystem.This mechanismeven
works if the threshold� � of client failureswas exceeded,as long as
no storagenodeshave crashed.

Codefor client , :

Global variables:data» nÄ¼ for n�hÅ.0� y�y�y ��1
procedure start recovery2J6
1 if recover not yet running locally then fork recover2J6 // if/then executedatomically

procedure recover2J6
2 for � v . y�y�y 1 do // phase1 starts:try to lock all blocks
3 ºI» �¡¼ vxw W y trylock 2 L1 6
4 if ºI» ��¼ y statush�¯ then // somebodyelselocked
5 pfor each ÆLp�� suchthat ºI» Æz¼ y statush OK do wDÇ y setlock 24ºI» ÆJ¼ y oldlmode6 // releaselock
6 return

// phase2 starts:now we are runningsolo
7 for � v . y�y�y 1 do data» �¡¼ vxw W y get state2H6 // readstatefrom all storagenodes
8 if for some È , data» ÈI¼ y opmodeh RECONS then // anotherclient previously crashedduring recovery?
9 cset v data» È	¼ y reconssetfqo��5± data» ��¼ y opmodeh INIT s // yes,pick up their recovery
10 else
11 cset v find consistent2H6 // find consistentsetof blocks
12 slack vxÉ�Ê f�Ë?o��5± data» ��¼ y opmodeh INIT s7Ë // É�Ê is the max numberof storagenodefailures(cf Section4)
13 while Ë csetË	Ã�+�- slack do // while consistentsetnot large enough
14 pfor � v +�-�. y�y�y 1 do w W y setlock 2 L0 6 // partially releaselocks to allow addoperations
15 while Ë csetËIÃi+�- slack do // while consistentsetnot large enough
16 pfor � v +�-�. y¡y�y 1 do data» ��¼ vxw W y get state2H6 // get new state
17 cset v find consistent2J6 // find consistentblocks
18 slack vxÉ Ê f�Ë?o���± data» �¡¼ y opmodeh INIT s7Ë
19 pfor � v +�-�. y�y�y 1 do list » �¡¼ vxw W y getrecent2 L1 6 // try to lock blocksbeforenew addsoccur
20 cset v cset f�o��5± list » ��¼~gh data» �¡¼ y recentlists

// phase3 starts:now nodeshave lmode h L1 andopmodeh RECONS, anddata» �¡¼ y block hasdatafor all nodes��° cset
21 blocks v erasure decode2 data»?Ìz¼ y block � cset6 // decodeblocks to retrieve data
22 pfor � v . y¡y�y 1 do epoch » �¡¼ vxw W y reconstruct2 cset� blocks» ��¼H6 // write recovereddata
23 pfor � v . y¡y�y 1 do w W y finalize2?Í�Î7ÏÑÐVo epoch » ÒÓ¼HsÔ-�.76 // bump epoch,releaselocks, changeto normalopmode

function find consistent2H6 // finds a set of blocksconsistentwith erasurecode
24 return a maximalset w suchthat

(1) ÕIn�° w ± data» nÄ¼ y opmodeh NORM, // only non-crashedblocks
(2) Õ redundantblocks ºÓ��¿�° w ±LÖ× * 2>ºI6DhØÖ× * 2>¿K6 , and
(3) Õ redundantblocks º�° w , Õ datablocks �5° w ±8ÖÙ * 24ºÓ���V6EhØÖ× * 24�V6

where ÖÙ * 24n_�a�V6Eh´o�Ú�° Ö× * 2>n_6 suchthat Ú%h�JÌ0�¦�0��Ì7®Ôs , // tids in Ö× * 2>n_6 originatedby �
Ö× * 24n_6E±?h tids2 data» nÄ¼ y recentlist6=f ÖÛ * , // tids in w X ’s recentlistminus ÖÛ *
ÖÛ * ±?hÅ½ X¦Ü * tids2 data» nÄ¼ y oldlist6 , // tids in someoldlist

tids2 list 6 is the setof tids of items in list.

Codefor storagenode w X :
Global variables:lid , initially ¯ , after fail-remap ¯ // identity of client locking block

reconsset ° setof integers // saved set of consistentblocks for recovery
operation trylock 2 lm 6 // try to lock if not locked yet
25 if lmode °�o L0 � L1 s then return status ±V¯�� lmode® // alreadylocked
26 oldlmode v lmode; lmode� lid ® v lm � caller ® ; return status ± OK � oldlmode® // updatelock modeandreturnold mode
operation setlock 2 lm 6Ý lmode� lid ® v lm � caller ® // set lock mode
operation get state2J6 // get node’s statefor recovery
27 if opmodeh NORM then blk v block elseblk v ¯ // if opmodegh NORM thenblock hasgarbage
28 return opmode� reconsset� oldlist � recentlist� blk ® returnstatefor recovery
operation getrecent(lm) lmode� lid ® v lm � caller ® ; return recentlist // changelock modeandreturn recentlist
operation reconstruct2 set� blk 6 // recover block
29 opmode� reconsset® v RECONS� set® // remembersetof blocksusedfor reconstruction
30 block v blk; return epoch // write block
operation finalize2 ep6 // finish recovery
31 epoch v ep; recentlist� oldlist ® v ?¹=��¹3® // advanceepochandcleanlists of tids
32 if opmodeh RECONS then opmodev NORM // back to normalmode
33 lmode v UNL // andunlock storagenode
upon failure of lid when lmode °�o L0 � L1 s do // lid is the client locking block
34 lmode v EXP // expire lock

Fig. 6. Algorithm for reco very.

3.11. Optimizations for sequentialI/O and thr oughput

To optimize sequentialI/O, consecutive blocks are mappedto
differentstoragenodesanddifferentstripes,andtheredundantblocks
rotatewith eachstripe,thusavoiding bottlenecks.In this way, clients
can pipeline sequentialI/O and get great bandwidth.As sequential

writes occur, a redundantblock Þ of a storagenode is updated
multiple times. When using disks to store data, the storagenode
can postponewriting Þ to disk until after the nodeknows that the
sequentialwrites will no longer affect Þ . This can be determined
when the node seesa write for large enoughlogical block ß . For

Codefor client , :

task collect garbage
1 repeat periodically while not executingWRITEor READ
2 pfor � v . y�y�y 1 do
3 repeat ºK» �¡¼ v�w W y gc old 2 old » �¡¼H6
4 until ºI» �¡¼�h OK
5 pfor � v . y�y�y 1 do
6 repeat ºK» �¡¼ v�w W y gc recent2 gc» ��¼H6
7 until ºI» �¡¼�h OK

8 old » �¡¼ v gc» �¡¼ ; gc» �¡¼ v ¹

Codefor storagenode w X :
operation gc old 2 list 6

if opmodegh NORM or lmode gh UNL then return ¯
remove entriesin oldlist with tid in list
return OK

operation gc recent2 list 6
if opmodegh NORM or lmode gh UNL then return ¯
for each É ° list do

if exists entry in recentlistwith tid É then
move entry from recentlistto oldlist

return OK

Fig. 7. Algorithm for garba ge collection.

extra performance,Þ canbe laid out on disk so that it is closeto ß .
Anotheroptimizationwhenwriting is to usebroadcastto sendadd

to updatetheredundantblocks,thussaving client bandwidth.For this
to work, the storagenodes,not the client, mustdo the multiplication
by Z W X in line 10 of Fig. 5; clientssimply broadcastthe new content
subtractedby old content—thesamedatafor all storagenodes.

4. Corr ectnessand Maximum Number of Failur es
For correctness,we assumethat

��à M (more than one storage
node), and ��� ���á�

(redundantblocks do not outnumberdata
blocks).Let � � and � Ê be the maximumnumberof client andstorage
nodefailures.

Theorem1: The algorithms of Section 3 are correct if � Ê �
e SERIAL

$Øâ U	ã SäÄå T O �
äÄå
dGæ .

Thealgorithmin Figure5 updatesto redundantblocksin series(for
loop in lines 10–11).For betterperformance,we can parallelizethe
updateby replacingfor with a parallel-for (pfor). Then,a common-
caseWRITEtakesonly oneswapandonebatchof paralleladds. The
tradeoff is reducedfault resiliency, asstatedbelow:

Theorem2: With parallel adds, the algorithms of Section 3 are
correctif � Ê � e PARALLEL

$çâ U3ã Sd�è å �
ä å
dEæ .

Corollary 1: To tolerate ��� client failures and � Ê storagenode
failures,we needé redundantstoragenodeswhere:

é $ �t�ê�������ê� � ��� Ê �\���KëìMt�ê� � (original algorithm), or
é $ ���"M äÄå ��� Ê ��� � ëÓM5�!� � (paralleladds).

The latency í for commonWRITESis í $ �r�@é (original algorithm)
or í $ M (paralleladds).

Dueto spacelimitations,proofsareomitted.They aregiven in [9].
A hybrid scheme.By corollary 1, the parallelschemehassmaller

latency for common WRITESbut much lower tolerancefor client
or storagenode failures.As a compromise,we can definea hybrid
parallel-serialscheme,wherewepartitionthesetof redundantstorage
nodesinto î groups ï O �RQRQ7QR�Rï�ð , of sizeat most ñ $òâ U	ã Sð æ , where
adds within a groupare in parallel,but groupsareupdatedin series.
That is, we replacethe for in line 10 in Fig. 5 with

for È v . y�y�y ¿ do
pfor each �5° Û `�ó5ô doºK» �¡¼ vxw W y add2>� W X�y 2 u f blk6z� ntid � otid � epoch 6

Theorem3: With parallel-serialupdates,the algorithms of Sec-
tion 3 arecorrectif � Ê � e SERIAL and ñ � e SERIAL .
For the parallel-serialschemeto tolerate ��� client failures and � Ê
storagenode failures,we needthe same é $ �����������\� � ��� Ê �
���KëÓM5�!� � storagenodesas in the serialupdatecase,but the latency
í for commonWRITESis í $ �8� â éÑë�e SERIAL æ , potentially much
lower for smallvaluesof � � (when � � $´õ , e SERIAL

$ é and í $ M).

Resetting the number of failur es. After recovery completes,if
no additionalprocessesor storagenodesfail during therecovery then
the systemis in a “clean” state,where it can tolerateadditional � �
processcrashesand � Ê storagenodefailures.

5. Validation
For validation,we have implementedour protocolandinstantiated

a small systemwith 8 hosts,wherewe varied the role of a host per
experimentbetweenclient andstoragenode.We alsousedsimulation
to study the behavior of larger systems.

5.1. Implementation
Weimplementedourprotocolin C usingRPCin usermoderunning

over TCP. Storageandclientsnodesaremulti-threaded.The number
of threadsat theserver limit thenumberof RPCcalls that areserved
simultaneously;at theclient, it limits thenumberof outstandingcalls.
We implementedReed-Solomoncodesusinghandoptimizedcodefor
field arithmetic.

We instantiatedour implementationin a systemwith 8 nodesfor
varyingnumberof clientsandnodes,andvariouslevelsof redundancy.
Nodeswere2.4GHz-2.8GHzPentium3 or 4 machineswith 256MB-
1024MB of memoryanda low-endgigabit ethernetcard(no jumbo-
framesupport).Inter-nodelatency is 50 ö s as reportedby ping, and
inter-nodenetwork bandwidthis 500Mbits/sasreportedby Netperf.

To separatedisk performancefrom our results, we used RAM
memoryasthestoragemediumfor datain all experiments.Our results
for latency andthroughputcorrespondto a systemwith disksin cases
wheredatais cachedor the I/O is sequentialwith prefetching.

5.2. Simulation
We study larger systemsthrough simulation. In the simulation,

nodeshave limited bandwidthandcomputingpower, andthenetwork
alsohaslimited bandwidth.Eachclient hasmultiple threads,onefor
eachoutstandingRPC call; thereis a processorto serve all threads.
In each thread,each phaseof the protocol allocatesthe processor
and the node’s network adapterfor some time for an RPC call,
thus causinglatency and consumingnodebandwidth.Oncean RPC
messageis placedon the network, the messageincurs latency and
consumesnetwork bandwidth.WhenanRPCcall arrivesat thestorage
nodes,it allocatesthereceiving node’s network adapterfor sometime,
incurring extra latency and consumingnodebandwidth.To serve an
RPCcall, the storagenodeincurssomevariablelatency thatdepends
on the RPC call. Returning from an RPC is similar to issuing an
RPC. The simulator reportsper-node and aggregate throughputfor
readsandwrites.

We tunedour simulatorusing the real systemto determinevalues
for the delays to encodeand decodeblocks for the erasurecode,

latenciesfor variousoperationson the storagenode,network latency,
andbandwidthof eachnode.

6. Results
Our goalis to answerthefollowing questions:(1) Are

�
-of-� Reed-

Solomonerasurecodesfastenoughfor storage,including with large�
and � ? (2) What are the latency and throughputnumbersfor our

system,andhow do they vary with � ,
�
, and the numberof clients?

(3) Whatis theimpactof failureson thesystem?(4) How complicated
arestoragenodes,andhow muchmemorydoesour protocoluse?

6.1. Erasurecodechoiceand performance
Fig. 8(a) shows the

�
-of-� Reed-Solomoncodesthat we chosefor

real (non-simulated)runswith 4-7 storagenodes,togetherwith their
failure resiliency and computationtime. Failure resiliency indicates
the maximumtoleratednumberof client and storagenode failures,
e.g.,“1c1s,0c2s”meansit tolerateseither1 client crashand1 storage
crashor 0 client and2 storagecrashes.For computationtime, Delta
is the time for finite-field subtractionfollowed by multiplication of
a 1KB block (at the client node), and Add is the time for finite-
field additionof a 1KB block (at the storagenode).Full encodeand
full decodeare the time to encodeand decodea full stripe, usedin
recovery. All times are very small, as we wrote carefully optimized
erasurecode functions that runs 10-20 times faster than textbook
implementations.

Fig. 8(b) shows thecomputationtime for erasurecodeswith larger
� and

�
usedin our simulationsfor a 1KB block. The full-encoding

and -decodingtimes are close, so the graph only shows encoding.
Times for Delta and Add are combined. With large

�
, the full

de/encodingtime becomessignificant,but in the commonexecutions
our schemeonly usesDeltas and Add computations,whose times
remainapproximatelyconstanteven for large

�
.

Fig. 8(c) shows how many client andstoragenodecrasheswe can
tolerate with the

�
-of-� erasurecodesused in our simulations; it

dependsonly on ��� � , not on � or
�

individually.

6.2. Thr oughput
Fig. 9(a) shows aggregatewrite throughputaswe vary the number

of outstandingrequestsof size1KB each,with 2 clients.Notethat (1)
thecurvesstartto flattenafter64 simultaneousrequestsperclient,and
(2) increasingthe number

�
of datastoragenodesdoesnot improve

performancemuch. This is becausethe client network bandwidth
saturates.The numbersfor readthroughput(not shown) aretypically
4-5 timeshigher thanwrite throughput,but areotherwisesimilar.

Fig. 9(b) shows how write aggregate throughput increaseswith
numberof clients; readthroughputis similar and thus omitted.The
graph does not have all combinationsof erasurecode and clients
becausewe arelimited by 8 nodes.Theslopeof thecurvesdecreases
after 3 clientsas the storagenodes’bandwidthstartsto saturate.For�

-of-� erasurecodeswith larger
�
, thesloperis higherbecausethere

is moreaggregatestoragenodebandwidth.
Fig. 9(c) shows how write throughputdecreaseswith the redun-

dancy of theerasurecode(��� �). Thedecreasehappensbecausemore
redundancy meansmoredatafor a client to send,which consumesits
bandwidthfaster. The decreaseis gentlerwhen

�
is larger—which is

consistentwith our goal to supporthigh-efficient erasurecodeswith
large � and

�
, andsmall ��� � .

Fig. 9(d) shows an experimentwheretwo clients are readingand
writing randomblocksusinga ÷ -of- ø erasurecode.After 28 minutes,
one of the storagenodescrash,causingthroughputto drop to 1/3
for both clients. As clients accessunavailable blocks, they recover

thoseblocks and throughputgradually increasesuntil all blocks are
recovered. In another experiment (not depicted), three clients are
recovering the blocks of a crashedstoragenode sequentially. The
aggregate recovery throughput is around 17 MB/s, and latency is
around22msfor a requestwith 16 blocks.

6.3. Latency
Computation,includingfinite-field arithmeticfor theerasurecodes,

contributed to lessthan 5% of the latency for writes or reads;95%
of latency is dueto communicationdelays,includingnetwork delays,
and TCP and RPC overheads.The total latency for a 4-block write
was less than ÷ ms for a 3-of-5 code.Note that the storagemedium
is memory, andso thereis no disk latency. Had we beenusingdisks
with a latency of � õ ms, it would dominate.

6.4. Protocolcomplexity
Theimplementationhasaround5,500linesof C code:1,200for the

erasurecode library, 2,000 for clients, 2,000 for storagenodes,and
250 for common threadcontrol. The storagenode’s code consists
of independentremoteproceduresinvoked by the client, which we
considersimplebecausethereis little codeinterdependency.

6.5. Spaceoverheadat storagenodes
The memoryusedby our protocolat the storagenodesis 10 bytes

perblock—a1% overheadfor 1KB blocks.We couldreducethis to 6
bytesperblock; by increasingtheblock sizeto 16KB, it would result
in a 0.04% overhead.Thus, the spaceoverheadbeyond the erasure
coderedundancy is very small.

6.6. Resultsfr om simulation
We used simulation to study throughputfor systemswith more

hosts than we have. We checked accuracy by simulating our real
system,and found an error of at most20%.

We consideredmany combinationsof erasurecodeswith � $
N�QRQRQR÷ìM and

� $ M(QRQRQR�Vù , and had �(QRQRQPù�N clients executingopera-
tions simultaneously. Figs.10(a)and10(b) show aggregatewrite and
readthroughput,respectively, asthenumberof clientsvary. For write
throughput,the slopeof the curve decreaseswith higher redundancy
�L� � , andthemaximumdecreasesas� decreasesand�L� � decreases,
asalsoshown in Fig. 10(c).For reads,thethroughputdoesnot depend
on
�
, only on � , becausereadsdo not involve the redundantnodes.

Fig. 10(d) shows the write performanceof a modified protocol
that usesbroadcastoptimizationto updateeachredundantblock, as
describedin Section3.11. With this optimization,the throughputof
1 client runningalonedoesnot decreaseas ��� � increases.With 64
clients running simultaneously, the aggregate throughputdecreases
with ��� � as the storagenodes’bandwidthsaturates.

6.7. Evaluation summary
Our approachperformsfairly well and offers many performance

and resiliency modes.Failures disrupt a running system,but not
to an extreme.Without broadcasts,a client’s bandwidthbecomesa
bottleneckfor write throughputif �Å� � is large. Storagenodeare
simpleandkeeplittle control data.

7. Conclusion
Erasurecodesarepowerful alternativesto replicationfor storage,as

they provide betterspaceefficiency andfiner control over the redun-
dancy level. However, they createcomplicationsdue to complexity
andcohesionof data,especiallywith concurrentupdatesandfailures.
Here,we proposea new protocolto addressthesecomplications.The
protocolhasfeaturesto make it broadlyapplicable,andits efficiency
is reasonableas demonstratedby experiments.Our protocol allows
the useof highly-efficient erasurecodes,i.e., codeswith large � and

Erasure Failure Delta Full Full
Code Resiliency +Add Encode Decode

(c=client, (úIû) (úIû) (úIû)
s=storage)

2-of-4 1c1s,0c2s 5 8 8
3-of-5 1c1s,0c2s 4 8 8
3-of-6 1c1s,0c3s 4 11 12
4-of-6 1c1s,0c2s 5 14 15
4-of-7 1c1s,0c3s 4 15 15
5-of-7 1c1s,0c2s 4 12 13

(a) Codesusedin real runs

10

1

.1

.01

 1 2 4 8 16 32 64 128

T
im

e
(m

s)

k (# of data blocks)

n-k=2,full encode
n-k=8,full encode
n-k=2,delta+add
n-k=8,delta+add

(b) Codesusedin simulations

 0

 1

 2

 3

 4

 2 4 6 8 10 12 14 16

C
lie

nt
 fa

ilu
re

s

ü

Storage node failures

n - k = 16
n - k = 8
n - k = 4
n - k = 2

(c) Failureresiliency in simulations

Fig. 8. Performance and Fault-resilience of erasure codes

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120A
gg

. t
hr

ou
gh

pu
t (

M
B

/s
)

Simultaneous reqs/client

2-of-4
3-of-5
4-of-6

(a) Write TP vs. #reqs

 1

 2

 3

 4

 1 2 3 4

F
ac

to
rý

Clients

2-of-4
3-of-5
4-of-6

(b) Write TP vs. #clients

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3

F
ac

to
rý

Redundant blocks (n-k)

k=3,1 client
k=3,2 clients
k=4,1 client

(c) Write TP vs. redundancy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90

F
ac

to
rý

Time (minutes)

Reads
Writes

(d) TP whenstoragenodecrashes

Fig. 9. Results from real runs

 0

 100

 200

 300

 400

 500

 0 20 40 60

A
gg

. t
hr

ou
gh

pu
t (

M
B

/s
)

Clients

n=32,n-k=8
n=16,n-k=2
n=16,n-k=4
n=8,n-k=4

(a) Write TP vs. #clients

 0

 400

 800

 1200

 1600

 2000

 0 20 40 60

A
gg

. t
hr

ou
gh

pu
t (

M
B

/s
)

Clients

n=32
n=16
n=8
n=4

(b) ReadTP vs. #clients

 0

 200

 400

 600

 0 4 8 12 16

A
gg

. t
hr

ou
gh

pu
t (

M
B

/s
)

Redundant blocks (n-k)

n=32
n=16

n=8
n=4

(c) Write TP vs. redundancy

 0

 200

 400

 600

 0 4 8 12 16
A

gg
. t

hr
ou

gh
pu

t (
M

B
/s

)
Redundant blocks (n-k)

64 clients,n=32
1 client,n=32

(d) Write TP usingbroadcast

Fig. 10. Results from sim ulations

þ
, and small ÿ�� þ . We envision a systemthat usesour protocol to

build an industrial-strengthdistributeddisk arraywith cheapadapters
to connectdisksto a network, powerful machinesto serve asthearray
nodes,andhighly-efficient erasurecodesto toleratemultiple disk and
array nodecrashes.Externalpartiessendrequestsfor logical blocks
to the arraynodes;arraynodesactas“clients” in our protocol,while
the cheapadaptersact as “storagenodes”.

Acknowledgements.We are grateful to our shepherdYair Amir,
andto Mark Lillibridge, JanetWienerandJohnWilkesfor suggestions
that improved the paper. We thankChengHuangandSinchanMitra
for providing computingresources.

References

[1] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven
Kleiman, JamesLeong, and SunithaSankar, “Row-diagonalparity for
doubledisk failure correction,” in Proceedingsof FAST, 2004.

[2] V. Pless,Introductionto the Theoryof Error-CorrectingCodes, Wiley-
Interscience,1998.

[3] JohnKubiatowicz et al., “Oceanstore:An architecturefor global-scale
persistentstorage,” in Proceedingsof ASPLOS, 2000.

[4] F. Chang et al., “Myriad: Cost-effective Disaster Tolerance,” in
Proceedingsof FAST, 2002.

[5] S. Frolund, A. Merchant, Y. Saito, S. Spence,and A. Veitch, “A
decentralizedalgorithmfor erasure-codedvirtual disks,” in Proceedings
of DSN, 2004.

[6] G. R. Goodson,J. J. Wylie, G. R. Ganger, andM. K. Reiter, “Efficient
byzantine-toleranterasure-codedstorage,” in Proceedingsof DSN, 2004.

[7] ZhengZhangand Qiao Lian, “Reperasure:Replicationprotocol using
erasure-codein peer-to-peerstorage,” in Proceedingsof SRDS, 2002.

[8] Witold Litwin and ThomasSchwarz, “LH* RS : A high-availability
scalable distributed data structure using reed solomon codes,” in
Proceedingsof SIGMOD, 2000.

[9] M. K. Aguilera, R. Janakiraman,and L. Xu, “Efficient fault-
tolerant distributed storage using erasure codes,” Tech. Rep.,
Washington University in St. Louis, Feb 2004, Available at
http://www.nisl.wustl.edu/Papers/Tech/aguilera04efficient.pdf.

[10] F. Schneider, “Byzantine generalsin actions: implementingfail-stop
processors,” ACM Transactionson ComputerSystems, vol. 2, no. 2,
pp. 145–154,May 1984.

[11] L. Lamport, “On interprocesscommunication,” Distributed computing,
vol. 1, no. 1, pp. 77–101,1986.

[12] Cheng Shao, Evelyn Pierce, and Jennifer L. Welch, “Multi-writer
consistency conditionsfor sharedmemoryobjects,” in Proceedingsof

ICDCS, October2003,pp. 106–120.

