Using ErasureCodeskEfficiently for Storage
In a Distributed Systent

MarcosK. Aguilera
HP Laboratories
1501 PageMill Road,Palo Alto, CA, USA
marcos.aguilera@hp.com

Abstract

Erasue codesprovide space-optimabata redundancyto protect
against data loss. A commonuse is to reliably store data in a
distributed system,wheke erasue-codeddata are kept in different
nodesto tolerate node failures without losing data. In this paper
we proposea new appioad to maintain ensue-encodeddata in a
distributed systemThe appoach allows the useof spaceeficient k-
of-n erasue codeswhere n and k are large andthe overheadn — k is
small. Concurentupdatesand accesseso dataare highly optimized:
in commoncases they require no locks, no two-phasecommits,and
no logs of old versionsof data. We evaluate our appmoach usingan
implementatiorand simulationsfor larger systems.

1. Intr oduction

Storagesystemsare quickly growing in size through the use of
moreandbiggerdisks,andthroughdistribution over a network. With
larger systems,the chanceof componentfailure also increasesso
techniguego protectdatabecomemoreimportant.Single parity used
in RAID systemao longer providessufiicient protectionin all cases
[1], and k-way replication is much too wasteful in storagespace,
even for small k. Therefore,new schemesare neededo protectdata
againstmultiple failuresin a distributed storagesystem.

Erasurecodes[2] have beenusedtraditionally in communication
systems,and more recently in storage systemsas an alternatve
to replication (e.g., [3], [4], [5], [6]). Properuse of erasurecodes
providesgreaterspaceefficiency andfine tunablelevels of protection,
at the cost of greatercompleity. An (n, k) MDS erasurecode, or
simply k-of-n code,encodesk blocks of datainto n > k blocks—
which we call a stripe—suchthat ary & blocks in the stripe can
recover the original k£ blocks. By storing eachblock in a separate
node, data are protectedagainstthe simultaneousfailure of up to
n — k nodes.

A generakhallengeof distributedstorageis to provide dataconsis-
teng/ while allowing failuresandconcurrenticcessAt the sametime,
onewould like to get reasonablgerformanceto scalewith number
of clients, and to allow expansionof storagecapacityat low cost.
These difficulties are well-recognized,understood,and reasonably
addressedor replication-basedstorage.For erasure-codedtorage,
however, differentschemesrestill beingproposede.g.,[5], [6]), as
researchersxplore new waysto dealwith the additionalcomplexity
createdby erasurecodes Roughlyspeakingthis compleity is caused

*This work is partially supportedby NSF grants CCR-0208975,CNS-
0322615,and 11S-0430224.

Ramaprabhuwanakiraman
Dept of ComputerScienceand Engineering
WashingtonUniversity
SaintLouis, MO 63130,USA
rama@cse.wustl.edu

Lihao Xu
Dept of ComputerScienceand Engineering
WashingtonUniversity
SaintLouis, MO 63130,USA
lihao@cse.wustl.edu

by aninherentcouplingof datain erasurecodesaswe explain deeper
in the paper

This paper proposesa new protocol and schemeto use erasure
codesfor distributedstorage Our schemehasthe following features:

« High concurency: It allows concurrentupdatesof blocks,includ-
ing blocks coupledby the erasurecode.

« Consistency:It ensuresa strong type of consisteng despite
concurrentupdatesand crashef both storagenodesand clients.

« Optimized for commoncases: It is highly optimized for the
common caseswhere no failures occur; in such cases,it doesnot
require use of expensve synchronization.A read requiresonly a
round-trip to a storagenode,and a write requiresonly a round-trip
to eachstoragelocation that needsto be changedaccordingto the
erasurecode;this is true even whenthereare concurrentoperations.

« Good performance with highly-eficient erasue codes: The
schemeperformswell with k-of-n Reed-Solomomrodeswherek and
n are large andn — k is small—theseare the codeswith the best
spaceefficiengy for a given fault resilieng.

« Online recovery: When failuresoccur recovery doesnot require
to suspendeadandwrite operations.

« Smallspaceoverhead:It keepsa small amountof overheaddata
at storagenodes—agoal consistentwith using erasurecodesto save
space.

« Thinserves: It useghin storagenodesthatimplementvery simple
functionality thus following the principle of moving functionality
to clients. This implies better scalability and lower coststo expand
storagecapacitywhennew senersare added.

To evaluateour approachwe built a prototypeof a distributedand
reliable storageservice.The servicecomprisesa setof storagenodes
accessibldo clientsvia a network, whereclientsreadandwrite data
usingour protocols We alsousesimulationsto studythe performance
of larger systems.

Limitations of our approach
As a trade-of for its featuresour schemehasfour limitations:

« It is tailored for linear erasurecodes,like Reed-Solomortodes,
whereredundantlocks are updatedwith commutatve operations.

« It usestheredundang of erasurecodessolely for fault tolerance,
not to improve readperformanceFor instance pur readperformance
is very similar to that of a systemwith no dataredundang This
is consistenwith our motivation of supportinghighly-efiicient codes
wheren — k < k (numberof redundantblocks no greaterthan data
blocks). Systemsthat use erasurecodeto improve readperformance
tendto have n — k >> k, and provide weak consisteng or assume
dataareimmutable.



« Thewrite throughpuf clientsdecreaseasn—k growns. However,
this canbe avoidedif broadcastsre available.

« It can tolerateat most ¢, client failures, wheret, is a chosen
failurethresholdIf therearet,+1 clientfailuresanda storagecrash,
datamay be lost. For example, considerthe following scenario:(a)
tp+ 1 clientsaresimultaneouslywriting to the samestripe .S, and(b)
a network partition, suchas causedby a switch failure, causesghose
tp + 1 clientsto be permanentlydisconnectedThis resultsin ¢, + 1
client partial writes that make the systemvulnerable:a subsequent
storagecrashin this configurationcannotbe tolerated.We mitigate
this problemby usinga monitoringmechanisnthat efficiently detects
and fixes partial writes, to restorefull recoverability and reducethe
window of vulnerability After ary numberof client failures,if this
mechanismexecutesbeforea storagecrash,dataare safeagain.

Relatedwork and protocol comparison

The closestrelated work are the distributed protocols proposed
by FAB [5] and Goodsonet al [6]. FAB uses erasurecodesin
a distributed disk array built from low-cost commodity computers.
The FAB protocol toleratescrashfailures, ensuresa strong form of
consistenyg, andallows concurrentvritesandreads Concurrentvrites
to blocksin the sameerasurecodestripereturnan exception.Seners
have non-wlatile memoryand keepa log with old versionsof data,
which is periodically garbagecollected.

Goodsonet al also proposea protocol (GWGR) for distributed
storageusingerasurecodes.The GWGR protocoltoleratesByzantine
clients and storagenodes,ensuresa strongform of consisteng, and
allows concurrentwrites and reads. GWGR keepsa log with old
versionsof datafor recovery, which is periodicallygarbagecollected.
GWGR only allows writes to modify the entire erasurecodestripe at
once;to modify individual blocks, it is necessaryto readits stripe,
and write it back. Doing so, however, has a performancecost and
doesnot ensureconsisteng of concurrentupdatesto blocks in the
samestripe.

Fig. 1 shavs a performancecomparisonbetweenour protocol
(AJX-*), FAB andGWGR. Our protocolhasat leastasgood lateng,
numberof messagesand bandwidth.With FAB and GWGR, every
write needsto contactall storagenodesin the erasurecode stripe,
and so these protocols perform poorly for random /O, especially
with highly-eficient erasurecodesthathave large k andrn, andsmall
p = n— k. Thesearethe codeswith bestspaceefficiency for a given
fault resilieng. For sequential/O, all protocolsallow pipelining of
requests;with the optimizationsof Section6, we believe that our
protocolis competitve, asshavn by theresultsof Section6. Thus,the
adwantagesf our protocolover FAB and GWGR are (1) it supports
well highly-eficient erasurecodes,(2) it doesnot keepold versions
of dataat storagenodes(lessspaceoverhead),and (3) it allows for
thin storageseners. An adwantageof FAB and GWGR is that they
can tolerateary numberof client failures by using the log of old
versionsof data’ Our protocol keepsno log and toleratesonly a
chosennumberof client crashes.

Myriad [4] proposesrasurecodesfor disastertolerance Updates
of redundantisks do not happenduring a write, but areinsteadde-
ferredanddonein batcheausingtwo-phasecommit. ZhangandLian
[7] alsoproposea generalschemeo useerasurecodesfor distributed
storage.However, this schemedoesnot handle concurrentupdates;
instead,it assumesomeexternal mechanismlike a transactionfor
eachoperation.This appeargo be expensve, but no performancalata

*In FAB, becauselient andstoragenodesare colocatedthis requiressome
fraction of the nodesto restartafter failing.

D =client node

W =storage node ;*E ;E ;AE
separated client and colocated client and
storage nodes storage nodes

3 =disk or other
storage device

Fig. 2. System with client nodes and stora ge nodes that
communicate via a network. Storage nodes may be
thin or powerful devices; client nodes are computer s
running applications. We suppor t both separated or
colocated stora ge and client nodes.

is provided. LH 5 ¢ [8] useerasurecodesto implementan expandable
and distributed data structure,where redundang increaseswith the
amountof data,to ensurea minimum availability. However, the paper
does not addressfailures of clients or recoveries concurrentwith

client updates.In somesystemserasurecoresare usedfor archial

of immutabledata(e.g.,[3]). Whendatais immutable,thereare few

concurreng issues,and so much simpler protocolsare neededthan
what we propose.

The rest of this paperis organizedas follows. In Section2 we
explain our assumptionsindgoals.Section3 explainsour designand
protocols We considetthe protocol’s failureresiliencein Section4. In
Section5 we validate our approachin two ways: An implementation
is describedin Section5.1 and simulationsof larger systemsare
describedin Section5.2. We give resultsin Section6. All protocol
correctnesgproofs are omitted due to spacelimitations; they canbe
foundin [9].

2. Assumptionsand Goals

We considera distributed systemwhereclient nodeswish to store
dataat a setof storage nodeshatarereachablehroughafastnetwork,
like a local areanetwork. A storagenodemay be a dedicatedsener
with lots of memory mary processorsanda setof oneor moredisks
or other storageconnectedo it. Or it could be a very thin passie
device with a network interface, a storageinterface, somememory
and somestorageconnectedo it (and not much more beyond that).
Storagedeviceshave a standardixedblock size(e.g.,512 bytes)used
asthe minimumquantumof datatransfer A client nodeis a computer
running applicationsthat needto read and write datastoredat the
storagenodes Client nodeshave reasonableomputationapower and
a network bandwidththat is not extremely limited. A client node
may be colocatedwith a storagenode,but the client nodemay need
to accessstoragenodesnot colocatedwith it. This might occur if
a machineis powerful enoughto hostboth applicationsand shared
storage.

Each node has a network identity, like an IP address,used to
communicatewith other nodes.We assumethat each client node
can obtain the identities of the nodesproviding the storageservice.
However, client nodesmay not know abouteachother As a result,
two or more client nodesmay issuestorageoperationsconcurrently
Most likely, thoseoperationsare on different locationsmost of the
time or always(e.qg.,[5]). However, in somerarecasestwo concurrent
operationgmay try to accesghe samedata.In thosecasesthe result
shouldnot be garbage.

Clientandstoragenodesaresubijectto fail-stopfailures[10], which
causesa nodeto halt its execution,and the nodes halted statecan
be detectedby other nodesif necessarylf a storagenode fails, it
may never recover, in which casethe datathat it storedis lost. We



| Scheme [[ AJX-par | AJX-bcast] AJX-ser | FAB | GWGR ]| notes |
min r/w granularity 1 block 1 block 1 block 1 block k blocks || k determinedby erasurecode
readlat. (roundtrips) 1 1 1 1 1
write lat. (roundtrips) 2 2 p+1 2 2
# msgsfor read 2 2 2 2k 2n
# msgsfor write 2(p+1) p+3 2(p+1) 4n 4dn p muchsmallerthann
readbandwidth B B B B nB smalleris better
write bandwidth (p+2)B 3B (r+2)B | (2n+1)B nB (B = block size)

Fig. 1. Performance comparison in most likely (failure-free)
are the protocols in this paper: -par uses parallel updates,
updates (cf Section 4).

assumethat failures are not extremely frequent,and if they occur
it is acceptabldor the systemperformanceo temporarilydegradea
little.

Our goal is to useerasurecodesto provide redundang to protect
storeddataagainstthe above failures,while keepingspaceoverhead
small.Ourgoalis notto useredundang to increaseeadthroughput—
this goal is often at odds with having small spaceoverheadand
supportingconcurrenupdateswith strongconsisteng. We would like
to supporta wide variety of k-of-n erasurecodes,especiallyhighly
efficient oneswheren and k are large, but the overheadn — k& is
small.

We also want to hide from applicationsthe intrinsics of how
erasurecodesareused.Targetapplicationsncludeoperatingsystems,
databaseglistributed file seners, or other higherlevel servicesthat
requireblock storage Theseapplicationsaccesslatathrougha block
interface that support read-block and write-block operations.We
prefer that the block size be one of the valuescommonly used;in
fact, we preferthat all peculiaritiesof erasurecodesbe hiddenfrom
applications.However, these peculiaritiesmay be known by some
low-level module running at the client nodesbelown the application
level.

3. Designand Algorithms

While designingour schemeywe choseto follow threewell-known
principles. Shift functionality to clients: Client nodesdo active work,
while storagenodesare thin, passie seners. This choice tendsto
provide better scalability simplify crashrecovery, and decreasehe
cost of adding more storagenodesto gron storage.Optimize for
commoncases simplify rare cases:We avoid expensve mechanisms
like locks or two-phasecommits,in the commoncaseswhen there
are no failures. In rare caseswhen failures do occur we simplify
the design using strong coordinationvia locks. Hide intrinsics of
medtanismbeingimplementedThe choiceof erasurecodedoesnot
affect the service interface provided to applications.For example,
larger erasure-codstripesdoesnot requireapplicationsto uselarger
block sizes.

3.1. Consistency

In the presenceof concurreng and failures,we provide a reason-
ably strongconsisteng guarantee—theameas provided by regular
registers [11] generalizedo multiple writers [12]. Roughly speaking,
it ensureghat a readnever returnsa value that was never written, or
avaluethatwasoverwrittenby anotherwrite. If awrite is concurrent
with a read, the read may return the value of the write or the
previously written value. If multiple writesareconcurrenwith aread,
the read may returnthe value of ary of the writes or the previously
written value.

executions using k-of-n erasure code (p = n — k). AIX-*
-bcast uses broadcast (if available), and -ser uses serial

3.2. Organization

Our schemds physicallyorganizedin two parts: (1) storagenodes
are configuredto sene simple requestsfrom client nodes,and (2)
client nodes orchestratethe storagenodesto store, retrieve, and
recover data.Logically, the schemehasfour components(1) failure
detectionand noderemap,(2) readandwrite algorithm, (3) recovery
algorithm, and (4) garbagecollection algorithm. We cover these
componentsn later sections.

3.3. Brief primer on erasure codes

Roughly speakinga k-of-n systemationaximumdistancesepara-
ble (MDS) erasurecode[2] takes k data blodks and producesn — k
redundantblodks suchthatary subsebf & blocks(dataor redundant
or mixed) canreconstructhe k datablocks.We considercodeswhere
the redundantblocks are linear combinationsof the datablocks. We
call stripe the combinationof the k& datablocksandn — k redundant
blocks.

For example,if a andb aredatablocks,thenwe could producetwo
redundanblocksa+b anda—b." Givena stripeconsistingof the four
blocks (a, b, a+b, a—b), ary subsetof two blocks canreconstructa
andb. For instancegiven a+b andb, we canobtaina by subtracting
b from a+b. Therefore,we have a 2-of-4 erasurecode, which can
toleratethe loss of ary 2 blocksin the stripe. Note how this is more
powerful than 2-way replicationwith the samespaceoverheadif we
simply replicatea and b, we get (a,b, a,b); if we later lose both
replicasof a, we cannotreconstructa.

More technically if b1,...,b, are data blocks then, in a k-
of-n code, each redundantblock bx1,...,b, is given by b; =
Zle ajib; for j = k + 1,...,n, wherea;; are carefully chosen
constantsand arithmeticis over somefinite field, usually GF(Z”).

3.4. Challengesof erasure-codeddistrib uted storage

There are two main reasonswhy known solutionsfor replicated
storagecannotbe usedwith erasurecodes:(1) erasurecodescouple
togethedifferentblocksof data,while replicatedstorageonly couples
togetherreplicas;and (2) divergenceof erasure-codedatais harder
to detectand correctthan divergenceof copiesin replicatedstorage.

To illustratethe challengessupposehat we usethe 2-of-4 codeof
Section3.3to storeblocksa andb: eachof (a,b, a+b, a—b) areeach
keptin a separatestoragenode.Now supposeclient nodec; wishes
to changea to ¢, while anotherclient node c; wishesto changeb
to d. Here,the updatesare to differentdata, but becausehe erasure
codecouplestogetherc andd, somecareis heededwvith concurreny.
The end result must be (c, d, c+d, c—d), but how do we keep ¢;
and c; from clashing?This is easyif we use locks: ¢; locks all

TTechnically in this case + and — must be taken over a field with
characteristic£ 2.



. Code for storage node S;: WRITE
Code for client p: variable:block READ WRITE
ToREAD(i)do {1<i<k} operation read)
v« S;.read) [/l RPC return blod / add add
return v operation swagv)
v
To WRITE(i,v) do {1<i<k} pretsect<— block ah ab
w « S;.swafv) /[ RPC blok — v read swap add \\‘ édd/
for j — k+1...ndo
P S, add(ays.(v—w) Il RPC Opreer;ir;‘nrz:;"; R
: : ]
return block — block+ v (A) | (B) ©) WRITE

Fig. 3. Simplified algorithm: (A) code, (B) depiction,
erasure code without any client coor dination.

four blocks,readsb, andthenoverwritesthe blocks;andc, proceeds
analogouslyBut locks arevery expensve, andwe wantto avoid using
them. Moreover, even with locks, if ¢; fails before completionthen
we canendup with (¢, b, c+b, a—b). Here,a—b is aninconsisteng. If
two storagenodedfail, this inconsisteng notonly preventsrecovery of
correctdata,but it may be undetectablef-or example,if storagenodes
2 and 3 fail, we get (¢, —, —, a—b). This configurationis completely
consistentwith ¢ — a + b being previously storedin crashednhode?,
andso it cannotbe detected.

3.5. Failuredetectionand noderemap

In our schemethefailureof astoragenodeis detectedvhenaclient
triesto accesshenode(we alsoallow to useperiodicpingsfrom some
monitoring facility). This client then startsan expensve operationto
reconstructhelostdata,whichmayneedto be placedin anew storage
node,if thefailed onehasnot recovered(andit may never recovery).
In thosecaseswe assumethat a fresh replacemenstoragenodeis
available,andthereis somemechanism—Iik a directory service—to
direct clients to this new node: clients simply accesssomelogical
node,which getsremappedon failures. The storagenode hasa flag
indicatingwhetherits datais valid, or just someuninitializedgarbage.

3.6. Simple algorithm

Fig. 3 shawvs a simplified versionof our algorithmthatshavs a core
ideafor thefull algorithm.The simplifiedalgorithmmerelykeepsdata
in n nodesconsistentwith a k-of-n erasurecode,without tolerating
failures. To read and write blocks 1,...,k in a stripe, a client p
communicatesith storagenodessSs, ..., S via remoteprocedure
calls. Storagenodes Sy, ..., Sk keepthe data blocks, while nodes
Skt1se..,5n keepredundantblocks accordingto the erasurecode.
To READblock: (i < k), p simply callsoperation‘read” on nodesS;.
To WRITEw to block i (i < k), p swapsw into S;, obtainingthe old
contentw, andthenaddsc;;.(v — w) to eachredundanblockin S;
for j = k+1,...,n, whereq;; aretheerasurecodecoeficients.The
pfor is a parallel-for whoseiterationsmay be executedin parallel;
after the pfor, the executionmeimgesback.

Whatis interestingaboutthis algorithmis thatit keepsthe erasure
codeconsistenevenif multiple clientswrite in parallel,regardlessof
how executioninterleaves,evenif bothclientsaretrying to changethe
redundanblocks simultaneously(This is not obvious; seeFig. 3 (C)
for an exampleusingthe sampleerasurecodeof Section3.3.) And it
doessowithout ary synchronizatiorvia locks or two-phasecommits.

3.7. Full algorithm: readand write

We now explain the full algorithm. Figure 4 shavs the code
for reading.In failure-free cases,it is very similar to the simple

(C) example of concurrent writes preserving consistenc y of

algorithmof Section3.6. Whena storagenodefails anda nev nodeis
remappedcf Section3.5), the nev nodestartswith opmode= INIT,
indicating its data is initialized garbage.If a client tries to read
from such a node, the read fails by returning L, and the client
invokestherecovery procedurgSection3.8)if theblockis notlocked
(Imodee {unL, ExP}). If theblockis locked,anotherclientis already
executingrecovery.

Figure 5 gives the algorithm for writing data.When there are no
failures and no clients WRITE to the same block simultaneously
the algorithm behaes like the simple algorithm of Section3.6: To
WRITE client p first invokes swap (line 3), which returnsblk £ L.
Then p invokes add on eachredundantstoragenode (line 10). The
addas all succeedandso D is setto {i,k + 1,...,n} (line 11),
Retry is setto () (line 12), and T is setto @ (line 20), which causes
p to finish the loops. The English commentsin the figure provide a
walk-through of the code,and to avoid repetition, we only explain
herethe higherlevel mechanismsThe basicideato dealwith storage
nodefailuresis for a client to invoke a recovery procedureandlater
retry its WRITE or READ operation.More precisely when storage
node S; fails, the remappednode (cf Section 3.5) startsout with
opmode= INIT and Imode = uNL. When p invokes swapon S;,
swapfails, and p startsthe recorery procedure Recwery readsdata
from all storagenodesand usesthe erasurecodeto reconstructhe
lost data.Most of the complicationin the write algorithmis to deal
with concurrentonline recovery by anotherclient. We comebackto
thesetopicsin Section3.8.

Concurrent writes to the sameblock. To guarantee@ecoverability
thealgorithmensureghatif clientsp andg WRITEto the sameblock,
they apply swapandadds in the sameorderat all storagenodes.This
orderingis ensuredasfollows: a swapoperationreturnsto the caller
p an identifier otid for the previous WRITE p then piggybacksotid
to the add operationson redundantblocks; upon receve an add, a
storagenodechecksif it previously saw otid (otid € recentlis}; if not,
the storagenoderejectsthe add and returnsa special ORDER status
code,which tells p to retry later. If the client executingthe previous
WRITEcrashesthenp may retry mary timeswithout successAfter
a certainnumberof attempts,p startsthe recovery procedure Note
thatconcurrentnritesto the sameblock arevery rarein mostsystems

(e.9.,[5]).
3.8. Recovery algorithm

The basic idea for datarecovery is to read all blocks from the
storagenodes,decodethem using the erasurecode, and write back
the results.The main issuesare the following:

« Blocksmayall beinconsistentvith eachother dueto outstanding



Codefor client p:

To READ(3) do N1<i<k

1 (v,Imode — S;.read)

2 while v = 1 do

3 if Imodee {uNL, ExP} 9
4 then startrecovery() // startrecosery procedure

5 (v,Imode «— S;.read) /I retry read u
6 return v

operation read))

Codefor storagenode S;:

Global variables:

7 blod, initially 0, after fail-remaprandom // block content

8 opmodec {NORM, RECONS, INIT}, initially NORM, after fail-remapiNiT
/I NoRM: valid datain block; INIT: invalid data; RECONS: limbo

10 Imodee {UNL, LO, L1, EXP}, initially UNL, after fail-remapuNL

/I UNL: block unlocked; LO, L1: partial or full lock; Exp: expired lock

12 if opmode# NORM or Imode=# UNL
13 then return (blod : L, Imode
14 elsereturn (blod : blod, Imode

Fig. 4. Full algorithm for reading data.

WRITESand failed storagenodeswith randomblocks. Mechanisms
are neededo (A) know when a group of blocks are consistentj.e.,
they yield correctdatawhen usedfor reconstructionand (B) ensure
that some group with at least & blocks is or eventually becomes
consistentwherek is the numberrequiredby the erasurecode.

« If aclient p crashesawhile executingrecovery, recoery mustbe
completableby anotherclient.

« A WRITE concurrentwith recorery may garble the redundant
blocks after recorery completes.

We now explain how we addresghe above issues.

Recentlist. To know if a groupof blocksare consistentwith each
other storagenodeskeepa list with the identifiers of pastWRITES
that have modified datain the storagenode (the list is periodically
garbagecollected;seeSection3.9). More precisely whena client p
startsa WRITE it picks a uniqueidentifier tid for the WRITE The
tid is piggybacled on swap and add requestsand, when a storage
nodereceves one suchrequest,t storesthe identifier in the nodes
recentlistvariable. The recorery procedurereadsthe recentlistfrom
nodesto determinewhich blocks have beenupdatedconsistently

The basic recoery procedure. Recavrery canbe executedby ary
client p, and it hasthree phasesIn phase(1), p acquireslocks at
eachstoragenode.Thesenodesmaintainthe lock statein their local
variablelmode Imode= uNL allows swapandadd operationswhile
Imode = L1 will rejectthem. Locks sene two purposes:(i) they
“freeze” thedatain storagenodesand(ii) they preventdifferentclients
from concurrentlyexecutingrecovery. To avoid deadlocksjocks are
acquiredin order but other standardmechanismsan be used, like
retrying after someexponentialback-of.*

In phase(2), p readsthe contentsand statesof all storagenodes
(line 7) andchecksif thereare k + slad blocks consistenwith each
other wherek is the numberof blocks neededby the erasurecode,
andslad is explainedbelow. If therearenot, p “weakens” the lock
on the redundantstoragenodes,by settingtheir Imode= LO0: in this
mode,a nodeallows adds to execute,but the noderemainsotherwise
locked. The intuition hereis that p wants outstandingWRITESto
completetheir adds sothatblocksbecomeconsistentWith the proper
boundson failures,p will eventually find a large enoughconsistent
setof blocks.Next p tries to changeback the Imode of nodesto L1
(full lock mode)before further adds occur (line 19)# If p doesnot
succeedp restartsthe searchfor consistentblocks. (Note that p will
eventually succeedbecausesways are blocked, so nev WRITESwill

fLines 4-6 in the algorithm are for storagenodesthat fail while locked,
losing their locked state.

§The reasonis that additionaladds may causea WRITEto complete,and
so the recavered contentsmustinclude the effects of suchWRITE

not issueadds.) Else p setsthe nodes’ opmodevariableto RECONS
(explainedbelow).

In phase(3), (a) p usesthe found consistenblocksto reconstruct
datathroughthe erasurecode, (b) p writes the recovereddatato the
storagenodes|c) p changesodes’opmodeo NORM (hormalmode),
and (d) p unlocksthe nodes.

Epochs. Roughly speaking,an epod is the period betweentwo
recoveries.A WRITEwhoseswap executesin one epochshouldnot
let its adds executein later epochshecausaecovery alreadyleaves
all blocks consistent.Thus, (a) swas return an epochnumber (b)
recorery incrementsthe epochnumber (c) p piggybacksthe swaps
epochinto adds, and (d) storagenodesreject adds from previous
epochs.

Crashesduring recovery. If p crashesluring recovery, nodesthat
arelocked (with Imodee {LO,L1}) will “expire” their locks setting
Imode= exp (line 34). If anotherclient ¢ seesa nodein this lock
mode, g startsrecovery. If p crashedbefore ending phase(2), the
datain storagenodeshave not beenchangedso re-recaery by q is
safe.Elsep hassetthe nodes’opmodeto RECONS; wheng seeshat,
it skips phase(2) and, in phase(3), ¢ doesexactly what p would
have done (g getsthe setof consistentlocks usedby p by reading
the nodes’variablereconsse). The slad variablementionedbefore
guaranteeghat ¢ can still find k& consistentblocks, despitefurther
storagenodefailures.

3.9. Garbagecollectionalgorithm

As explainedabove, storagenodeskeepa list recentlistof thetids of
pastwrites. To garbagecollectthis list, we usea two-phasealgorithm
to handleclientcrashesln phase2, all tids whosewrite hascompleted
are moved from list recentlistto list oldlist. In phasel, tids from
oldlist arediscardedIf the client crashesthe recentlistandoldlist of
different storagenodesmay end up different. This is not a problem:
whenusingthesélists to determinef a setof blocksis consistentthe
client knows thatif tid is in someoldlist of ary node,thenthe write
hasoccurredat all nodes.Seefunction find_consistenin Figure6 for
more details.

The mechanismo order WRITESto the sameblock needsto be
adjustedto work with garbagecollection,asfollows. After p getsan
ORDER statusratherthanretryingthe add immediately p first checks
if the otid hasbeengarbagecollectedat the datastoragenodeor ary
of the redundantstoragenode;if otid is no longer at one or more
of thesenodes,p knows that the WRITEfor which it is waiting has
completed,so p canask the redundantstoragenodeto add without
checkingfor otid; elsep retriesthe add after a while.

3.10. Monitoring mechanismto trigger recovery

If clientcrashesvhile writing, or a storagenodecrashesthesystem
is in a fragile statethat toleratesone lessfailure than before. It is



Codefor client p:

Global variable:seq initially 0
To WRITE(i,v) do
1 repeat
2 ntid — (seqi,p); seq— seq+ 1
(blk, epod, otid, Imode — S;.swagv, ntid)
while blk = L do
if Imodee {UNL, EXP} then startrecosery()
(blk, epod, otid, Imode — S;.swag(v, ntid)
T—{k+1,...,n}
D — {i}
while T # (0 and D # 0 do

© © N o U b W

10 for eachj € T" do r[j] < Sj.add(a;;.(v—blk), ntid, otid, epodr)

1 D — DU{j €T :r[j].status= OK}

/I sequencenumberfor uniquetransactiond (tid)

/I obtainuniqueid

/I swap new value into datablock

/I error, dataunavailable

/I nobodyrunningrecovery, sowe do it

I try swap again

/I nodewherewe wantto apply add operation

/I nodesdonewith update

/I while thereare nodesto update,and donenodesare still up
/I performadd at nodesin 7'

/I successfuhodes

12 Retry«— {j € T : r[j].status= ORDER or r[j].Imode¢ {uNL, L0} }// nodesto retry dueto orderingor lock problems

13 if 3j € T : r[j].lmode= ExP or
(r[j]-opmode# NORM andr[j].Imode= UNL) or
(r[j]-status= ORDER andtired of looping)

14 then startrecovery()

15 if 3j € T : r[j].status= ORDER then
16 pfor eachj € D do

17 s[j] < S;.chedtid(ntid, otid)

18 if 3j € D : s[j] = 6c then otid — L
19 D —D—{jeD:s[j]=INT}

20 T «— Retry
2 for eachj € D do gcfj] < gcfj] U {ntid}
2untl D={i,k+1,...,n}

/' if somenodehasexpired lock or
/I it is not in normal modeand unloclked or
/I it hasreturnedoRDER for too long

/I thenstartrecovery

/I somenode complainedaboutordering

/I checkif otid hasbeengarbagecollected
/I yes,no needto checkorderingary more
/I remove crashedhodesfrom successfulist

/I for garbagecollection
/I repeatuntil all blocks have beenupdated

Codefor storagenode S;:

Global variables:

23 epod € N, initially 0, after fail-remap0

24 recentliste setof (tid, time), initially @, after fail-remap®
25 oldlist € setof (tid, time), initially 0, after fail-remap®
26 time initially 0, after fail-remap0

operation swag(v, ntid)

27 if opmode# NORM or Imodes# UNL

28 then return (blod : L, epod, L, Imode

29 retblk — blodk

30 blok «— v

a1 if recentlist= () then otid — L

32 elseotid « tid in recentlistwith largesttime
33 recentlist— recentlistU {(ntid, time) }

34 return (blod : retblk epod, otid, Imode

function tids(tidtime.list)
35 return tid of entriesin tidtime.list

operation add(v, ntid, otid, ¢)

3 if opmodes# NORM or Imode¢ {uUNL, LO} or e < epot
37 then return (status: L, opmodelmode

38 if otid # L andotid ¢ tids(recentlistU oldlist)

s then return (status: ORDER, opmodelmode

20  blok < blok + v

41 recentlist— recentlistU {(ntid, time) }

42 return (status: ok, opmodelmode

operation chedtid(ntid, otid)

43 if ntid ¢ tids(recentlisy then return INIT

4 elseif otid ¢ tids(recentlisy then return Gc
45 elsereturn NOCHANGE

/I epochnumber

/I recentwrite list

/I old write list

/' local time, autoincrementedat somerate

/I'if not normal opmodeor locked
/I returnerror
/I do swap

/I no previous write
/I find tid of previous write
/I recordtid of this write

/I returntids in a list

/I'if not normal opmodeor locked or old epoch
/I returnerror

/I if previous write did not occuryet

/1 tell client

/I performadd

/I recordtid of this add

/I only occursif nodecrashes
/I previous write not yet performed
/I all is fine

Fig. 5. Algorithm for writing data.

thus desirableto restorethe systems resilieng by startingrecovery.
Clients do so upon stumblingon a problem, but that only happens
if they try to read or write. Thus, it might be useful to have a
monitoringmechanismexecutedperiodically by someclient to probe

the systemfor failures, and trigger recovery if necessaryThis can no storagenodeshave crashed.
be donevery efficiently: for eachstoragenode S;, the client simply
checksif (1) S;’s recentlisthassomeold tid, indicatinga startedbut

unfinishedwrite, or (2) S;’s opmodeis INIT, indicatinginitialization
afterrecovery. In thosecasesthe client startsthe recovery algorithm,
which restoredull recoverability of the system.This mechanisneven
works if the thresholdt, of client failureswas exceededaslong as



Codefor client p:

Global variables:datd[s] for i = 1,...,n
procedure startrecorery()
1 if recover not yet runninglocally then fork recover() /I ifthen executedatomically
procedure recover()
2 forj«1...ndo /I phasel starts:try to lock all blocks
3 r[j] < Sj.trylock(L1)
4 if r[j].status= L then /I somebodyelselocked
5 pfor each ¢ < j suchthatr[¢].status= ok do S,.setlo&(r[¢].oldimodg // releaselock
6 return

/I phase2 starts:now we are running solo
7 for j < 1...n do datdj] < S;.getstatg) /I readstatefrom all storagenodes
g if for someh, datgh].opmode= RECONS then /I anotherclient previously crashedduring recovery?
9 cset«— datgh].reconsset-{;j : datgj].opmode= INIT} /I yes, pick up their recovery
10 else
u  cset— find.consistent) /I find consistentsetof blocks
12 slak — tg — |{j : data[j].opmode= INIT}| Il tq is the max numberof storagenodefailures(cf Section4)
13 while |cset < k + slak do /I while consistenisetnot large enough
14 pfor j — k+1...n do S;.setlok(L0) /I partially releaselocks to allow add operations
15 while |cset < k + sladk do /I while consistenisetnot large enough
16 pfor j < k4 1...n do dataj] — S;.getstatg) /I getnew state
7 cset«+ find.consistent) /I find consistentblocks
18 slak «— t4 — |{j : datg[j].opmode= INIT}|
19 pfor j < k4 1...n dolist[j] < S;.getrecen{L1) /I try to lock blocks beforenen addsoccur
20 cset— cset— {j : list[j] # datd[j].recentlis}

/I phase3 starts:now nodeshave Imode= L1 andopmode= RECONS, and dataj].blodk hasdatafor all nodes; € cset
21 blods «— erasure_decodédata]x].blod, cse) /I decodeblocksto retrieve data
2 pfor j — 1...n do epodj] «— S;.reconstructcset blocks|;]) /I write recovereddata
23 pfor j < 1...n do S; finalizgmax, {epot[a]} + 1) /I bump epoch,releaseocks, changeto normal opmode
function find_consistent) /I finds a setof blocks consistentwith erasurecode
24 return a maximalsetS suchthat

(1) Vi € S : datg[i].opmode= NORM, /I only non-crashedlocks

(2) V redundantolocksr, s € S : fg(r) = fs(s), and
(3) V redundantlocksr € S, V datablocksj € S : Hg(r,j) = fs(j)

where Hg(i,j) = {= € fs(i) suchthatz = (x, j,*) }, I/ tids in fg(i) originatedby j
fs(i) := tids(datdi].recentlis} — G, // tids in S;’s recentlistminus G g
G = U stids(datali] .oldlist), /I tids in someoldlist

tids(list) is the setof tids of itemsin list.

Codefor storagenode S;:

Global variablestid, initially L, after fail-remap_L /I identity of client locking block
reconssete setof integers /I saved setof consistenblocks for recovery
operation trylock(Im) /I try to lock if not locked yet
25 if Imodee {LO, L1} then return (status: L, Imode /I alreadylocked
26 oldimode<— Imode (Imode lid) < (Im, caller); return (status: ok,oldimode // updatelock modeandreturnold mode
operation setlo&(lIm)  (Imode lid) < (Im, caller) /I setlock mode
operation getstate) /I get nodes statefor recorery
27 if opmode= NORM then blk < blodk elseblk «+— L /I'if opmode# NORM thenblodk hasgarbage
28 return (opmodereconsset oldlist, recentlist blk) return statefor recovery
operation getrecent(Im) (Imode lid) « (Im, caller); return recentlist /I changelock modeand returnrecentlist
operation reconstructset blk) /I recover block
29 (opmodereconsse) < (RECONS, seb /I remembersetof blocks usedfor reconstruction
30 blodk + blk; return epod /I write block
operation finalizeep) /I finish recavery
a1 epot «+ ep (recentlistoldlist) < (@, 0) /I advanceepochand cleanlists of tids
32 if opmode= RECONS then opmode— NORM /I backto normalmode
33 Imode« UNL /I and unlock storagenode
upon failure of lid whenlmodee {L0, L1} do /1 lid is the client locking block
34 Imode«— ExP /I expire lock

Fig. 6. Algorithm for recovery.

3.11. Optimizations for sequentiall/O and thr oughput writes occur a redundantblock R of a storagenode is updated
multiple times. When using disks to store data, the storagenode
can postponewriting R to disk until after the node knows that the
sequentialwrites will no longer affect R. This can be determined
when the node seesa write for large enoughlogical block C'. For

To optimize sequentiall/O, consecutie blocks are mappedto
differentstoragenodesanddifferentstripes,andthe redundanblocks
rotatewith eachstripe,thusavoiding bottlenecksIn this way; clients
can pipeline sequentiall/O and get greatbandwidth.As sequential



Codefor client p:

task collectgarbage
repeat periodically while not executingWRITEor READ
pfor j «— 1...n do
repeatr(j] — Sj.gc.old(old[5])
until r[j] = ok
pfor j «— 1...n do
repeatr(j] — Sj.gcrecentgcj])
until r[j] = ok
old[j] + gcls]; gelj] « 0

1
2
3
4
5
6
7
8

Codefor storagenode S;:

operation gcold(list)
if opmode# NORM or Imode## UNL then return L
remove entriesin oldlist with tid in list
return oK

operation gc.recentlist)
if opmode# NORM or Imode## UNL then return L
for eacht € list do
if exists entry in recentlistwith tid ¢ then
move entry from recentlistto oldlist

return oK

Fig. 7. Algorithm for garbage collection.

extra performance R canbe laid out on disk so thatit is closeto C.
Anotheroptimizationwhenwriting is to usebroadcasto sendadd
to updatethe redundanblocks,thussaving client bandwidth.For this
to work, the storagenodes,not the client, mustdo the multiplication
by a;; in line 10 of Fig. 5; clientssimply broadcasthe new content
subtractedy old content—thesamedatafor all storagenodes.

4. Correctnessand Maximum Number of Failur es

For correctnesswe assumethat £ > 2 (more than one storage
node),and n — k < k (redundantblocks do not outnumberdata
blocks).Let t, andt, be the maximumnumberof client and storage
nodefailures.

Theoem1: The algorithms of Section 3 are correct if t4 <
dseriAL = [ — 2.

Thealgorithmin Figure5 updatego redundanblocksin series(for
loop in lines 10-11).For betterperformancewe can parallelizethe
updateby replacingfor with a parallel-for (pfor). Then,a common-
caseWRITEtakesonly oneswapandonebatchof paralleladds. The
tradeof is reducedfault resilieng, as statedbelow:

Theoem2: With parallel adds,the algorithms of Section3 are
correctif tq4 < dpaRaLLEL = [ 2 _pk — %’W

Corollary 1: To tolerate t, cllent failures and t4 storagenode
failures,we needé redundanstoragenodeswhere:

0 = 14 (tp + 1)(ta + tp/2 — 1) (original algorithm), or
§=1+4+2%(ts+1t,/2—1) (paralleladds).

Thelateny p for commonWRITESs p = 1+ 6 (original algorithm)
or p = 2 (paralleladds).

Dueto spacdimitations, proofsareomitted. They aregivenin [9].

A hybrid scheme By corollary 1, the parallelschemehassmaller
lateny for common WRITEShut much lower tolerancefor client
or storagenode failures. As a compromisewe can define a hybrid
parallel-serial schemewherewe partitionthe setof redundanstorage
nodesinto s groupsGh, ..., Gs, of sizeat mostr = [”%’ﬂ, where
adds within a grouparein parallel, but groupsare updatedin series.
Thatis, we replacethe for in line 10 in Fig. 5 with

for h+—1...sdo
pfor eachj € G, N M do
r[j] « Sj.add(e ;. (v—blK), ntid, otid, epod)

Theoem 3: With parallel-serialupdates,the algorithms of Sec-
tion 3 arecorrectif t4 < dsgriaL andr < dsgriaL-
For the parallel-serialschemeto toleratet, client failuresand ¢4
storagenode failures,we needthe samed = 1+ (tp + 1)(tq +
tp/2 — 1) storagenodesasin the serialupdatecase,but the lateny
p for commonWRITESis p = 1 + [§/dseriaL ], potentially much
lower for smallvaluesof ¢, (whent, = 0, dsgriaL = 0 andp = 2).

Resetting the number of failur es. After recovery completes,if
no additionalprocessesr storagenodesfail during the recovery then
the systemis in a “clean” state,whereit can tolerateadditional ¢,
processcrashesand ¢, storagenodefailures.

5. Validation

For validation,we have implementedour protocolandinstantiated
a small systemwith 8 hosts,wherewe varied the role of a hostper
experimentbetweenrclient and storagenode.We alsousedsimulation
to studythe behaior of larger systems.

5.1. Implementation

We implementedur protocolin C usingRPCin usermoderunning
over TCP. Storageand clients nodesare multi-threaded The number
of threadsat the sener limit the numberof RPC calls thataresened
simultaneouslyat the client, it limits the numberof outstandingcalls.
We implementedReed-Solomorodesusinghandoptimizedcodefor
field arithmetic.

We instantiatedour implementationin a systemwith 8 nodesfor
varyingnumberof clientsandnodesandvariouslevelsof redundang
Nodeswere 2.4GHz-2.8GHZPentium3 or 4 machineswith 256MB-
1024MB of memoryand a low-end gigabit ethernetcard (no jumbo-
frame support).Inter-nodelateny is 50 us asreportedby ping, and
inter-nodenetwork bandwidthis 500Mbits/sas reportedby Netperf.

To separatedisk performancefrom our results, we used RAM
memoryasthe storagemediumfor datain all experimentsOur results
for lateny andthroughputcorrespondo a systemwith disksin cases
wheredatais cachedor the I/O is sequentialwith prefetching.

5.2. Simulation

We study larger systemsthrough simulation. In the simulation,
nodeshave limited bandwidthand computingpower, andthe network
alsohaslimited bandwidth.Eachclient hasmultiple threads,one for
eachoutstandingRPC call; thereis a processoito sene all threads.
In eachthread, each phaseof the protocol allocatesthe processor
and the nodes network adapterfor some time for an RPC call,
thus causinglateny and consumingnode bandwidth.Oncean RPC
messagds placedon the network, the messagencurs lateny and
consumesietwork bandwidth WhenanRPCcall arrivesatthestorage
nodesijt allocateghereceving nodes network adapterfor sometime,
incurring extra lateny and consumingnode bandwidth.To sene an
RPCcall, the storagenodeincurssomevariablelateng thatdepends
on the RPC call. Returningfrom an RPC is similar to issuing an
RPC. The simulator reports pernode and aggreate throughputfor
readsandwrites.

We tunedour simulatorusing the real systemto determinevalues
for the delaysto encodeand decodeblocks for the erasurecode,



latenciesfor variousoperationson the storagenode,network lateng,
and bandwidthof eachnode.

6. Results

Ourgoalis to answerthefollowing questions(1) Are k-of-n Reed-
Solomonerasurecodesfast enoughfor storage including with large
k andn? (2) What are the lateny and throughputnumbersfor our
system,and how do they vary with n, k, andthe numberof clients?
(3) Whatis theimpactof failureson the system®4) How complicated
are storagenodes,and hov much memorydoesour protocoluse?

6.1. Erasure codechoiceand performance

Fig. 8(a) shaws the k-of-n Reed-Solomortodesthat we chosefor
real (non-simulatedyunswith 4-7 storagenodes,togetherwith their
failure resilienyy and computationtime. Failure resiliengy indicates
the maximumtoleratednumberof client and storagenode failures,
e.g.,"1cls,0c2s” meanst tolerateseitherl client crashand1 storage
crashor 0 client and 2 storagecrashesFor computationtime, Delta
is the time for finite-field subtractionfollowed by multiplication of
a 1KB block (at the client node), and Add is the time for finite-
field addition of a 1KB block (at the storagenode).Full encodeand
full decodeare the time to encodeand decodea full stripe, usedin
recovery. All times are very small, as we wrote carefully optimized
erasurecode functions that runs 10-20 times faster than textbook
implementations.

Fig. 8(b) shavs the computationtime for erasurecodeswith larger
n and k usedin our simulationsfor a 1KB block. The full-encoding
and -decodingtimes are close, so the graph only shavs encoding.
Times for Delta and Add are combined. With large &, the full
de/encodingime becomessignificant,but in the commonexecutions
our schemeonly usesDeltas and Add computations,whosetimes
remainapproximatelyconstanteven for large k.

Fig. 8(c) shavs how mary client and storagenodecrasheswve can
tolerate with the k-of-n erasurecodesusedin our simulations;it
dependsnly on n — k, noton n or k individually.

6.2. Throughput

Fig. 9(a) shavs aggreatewrite throughputaswe vary the number
of outstandingequestof size1KB each,with 2 clients.Notethat (1)
the curwesstartto flattenafter 64 simultaneousequestperclient, and
(2) increasingthe numberk of datastoragenodesdoesnot improve
performancemuch. This is becausethe client network bandwidth
saturatesThe numbersfor readthroughput(not shavn) aretypically
4-5 times higherthanwrite throughput,but are otherwisesimilar.

Fig. 9(b) shavs howv write aggregate throughputincreaseswith
numberof clients; readthroughputis similar and thus omitted. The
graph does not have all combinationsof erasurecode and clients
becauseve arelimited by 8 nodes.The slopeof the curvesdecreases
after 3 clients asthe storagenodes’bandwidthstartsto saturate For
k-of-n erasurecodeswith larger k, the sloperis higherbecausehere
is more aggregate storagenode bandwidth.

Fig. 9(c) shawvs how write throughputdecreasesvith the redun-
dangy of theerasurecode(n—k). Thedecreaséappendecausenore
redundang meansmoredatafor a clientto send,which consumests
bandwidthfaster The decreases gentlerwhenk is large—which is
consistentwith our goal to supporthigh-eficient erasurecodeswith
largen andk, andsmalln — k.

Fig. 9(d) shavs an experimentwheretwo clients are readingand
writing randomblocksusinga 3-of-5 erasurecode.After 28 minutes,
one of the storagenodescrash,causingthroughputto drop to 1/3
for both clients. As clients accessunavailable blocks, they recover

thoseblocks and throughputgradually increaseauntil all blocks are
recosered. In another experiment (not depicted), three clients are
recovering the blocks of a crashedstoragenode sequentially The
aggr@ate recovery throughputis around 17 MB/s, and lateny is
around22msfor a requestwith 16 blocks.

6.3. Latency

Computationjncludingfinite-field arithmeticfor the erasurecodes,
contributed to lessthan 5% of the latengy for writes or reads;95%
of lateng is dueto communicatiordelays,including network delays,
and TCP and RPC overheadsThe total lateng for a 4-block write
was lessthan 3ms for a 3-of-5 code. Note that the storagemedium
is memory andso thereis no disk lateng. Had we beenusing disks
with a lateng of 10ms, it would dominate.

6.4. Protocol complexity

Theimplementatiorhasaround5,500linesof C code:1,200for the
erasurecode library, 2,000for clients, 2,000 for storagenodes,and
250 for commonthread control. The storagenodes code consists
of independentemote proceduresnvoked by the client, which we
considersimple becauseahereis little codeinterdependenc

6.5. Spaceoverheadat storagenodes

The memoryusedby our protocolat the storagenodesis 10 bytes
perblock—a1% overheadfor 1KB blocks.We couldreducethisto 6
bytesperblock; by increasinghe block sizeto 16KB, it would result
in a 0.04% overhead.Thus, the spaceoverheadbeyond the erasure
coderedundang is very small.

6.6. Resultsfrom simulation

We used simulation to study throughputfor systemswith more
hoststhan we have. We checled accurag by simulating our real
system,and found an error of at most20%.

We consideredmary combinationsof erasurecodeswith n =
4...32 andk = 2...16, andhad1...64 clients executingopera-
tions simultaneouslyFigs. 10(a) and 10(b) shav aggrgyatewrite and
readthroughputrespectiely, asthe numberof clientsvary. For write
throughput,the slope of the curve decreasesvith higherredundang
n—k, andthemaximumdecreaseasn decreaseandn—k decreases,
asalsoshawvn in Fig. 10(c).For readsthethroughputdoesnot depend
on k, only on n, becausaeadsdo not involve the redundaninodes.

Fig. 10(d) shaws the write performanceof a modified protocol
that usesbroadcasbptimizationto updateeachredundantblock, as
describedin Section3.11. With this optimization,the throughputof
1 client runningalonedoesnot decreas@sn — k increasesWith 64
clients running simultaneously the aggregate throughputdecreases
with n — k asthe storagenodes’bandwidthsaturates.

6.7. Evaluation summary

Our approachperformsfairly well and offers mary performance
and resilieny modes. Failures disrupt a running system, but not
to an extreme. Without broadcastsa client’s bandwidthbecomesa
bottleneckfor write throughputif » — & is large. Storagenode are
simple and keeplittle control data.

7. Conclusion

Erasurecodesarepowerful alternatvesto replicationfor storageas
they provide betterspaceefficiency andfiner control over the redun-
dang level. However, they createcomplicationsdue to complexity
andcohesionof data,especiallywith concurrentupdatesandfailures.
Here,we proposea new protocolto addresghesecomplicationsThe
protocol hasfeaturesto male it broadly applicable andits efficiency
is reasonableas demonstratedy experiments.Our protocol allows
the useof highly-eficient erasurecodes,i.e., codeswith large n and



Client failures

(a) Codesusedin real runs

Erasure Failure Delta Full Full -

Code Resilieny | +Add | Encode | Decode S n
(c=client, | (us) (1s) (1s) - 10 %
s=storage) g 1 n

2-of-4 1c1s,0c2s 5 8 8 [

3-0f-5 | 1cls,0c2s 4 8 8 E ¢

3-o0f-6 1c1s,0c3s 4 11 12 o1

4-0f-6 1c1s,0c2s 5 14 15

4-of-7 1c1s,0c3s 4 15 15

5-0f-7 | 1cls,0c2s 4 12 13 !

k (# of data blocks)

4

(b) Codesusedin simulations

2 4 6 8 10 12 14 16
Storage node failures

8 16 32 64 128

(c) Failureresilieny in simulations

Fig. 8. Performance and Fault-resilience of erasure codes

Q
= 30 4
a 1
225 o8 PP .
3% 53 5 5
g 15 *g *g . g 0.6 ;
>
210 2-0f-4 —m— *2 2-0f-4 —m— €04 k=31 client —=— L 04 /
S 5 3-0f-5 —A— 3-0f-5 —&— 0.2 k=3,2 clients —&— 0.2 Reads
) 4-0f-6 —6— -0f-6 —6— k=4,1 client —&— Writ
2 0 14 0 0 ites
< 0 20 40 60 80 100120 1 2 3 4 1 2 3 0 30 60 90
Simultaneous regs/client Clients Redundant blocks (n-k) Time (minutes)
(a) Write TP vs. #reqs (b) Write TP vs. #clients (c) Write TP vs. redundang (d) TP whenstoragenodecrashes
Fig. 9. Results from real runs
S 400 n=16,n-k=2 —x— S 1600 s s 1 client,n=32 —&—
1 n=16.nk=4 1 = 400 5 400
3 300 n=8.n-k=4 —S— 3 1200 3 3
2 0 2 2
o 8 200 8 200
° ° z
= 400 = =
[=2] [=2] [=2]
(2] (2] (2] AA A A A
< 0 < 0 < 0
0 20 40 60 4 8 12 16 0 4 8 12 16
Clients Clients Redundant blocks (n-k) Redundant blocks (n-k)

(a) Write TP vs. #clients (b) ReadTP vs. #clients

Fig. 10. Results

(c) Write TP vs. redundang

(d) Write TP using broadcast

from simulations

k, andsmall n — k. We ervision a systemthat usesour protocol to

build anindustrial-strengthdistributed disk arraywith cheapadapters
to connectdisksto a network, powerful machinego sene asthearray
nodesandhighly-eficient erasurecodesto toleratemultiple disk and

array node crashesExternal partiessendrequestgor logical blocks
to the arraynodes;arraynodesactas“clients” in our protocol,while

the cheapadaptersact as “storagenodes”.

Acknowledgements.We are grateful to our shepherdyair Amir,
andto Mark Lillibridge, JaneWienerandJohnWilk esfor suggestions
that improved the paper We thank ChengHuangand SinchanMitra
for providing computingresources.

References

[1] Peter Corbett, Bob English, Atul Goel, Tomislavy Grcanac, Steven
Kleiman, JamesLeong, and SunithaSankar “Row-diagonal parity for
doubledisk failure correctiori, in Proceedingof FAST, 2004.

[2] V. Pless,Introductionto the Theoryof Error-Correcting Codes Wiley-
Interscience 1998.

[3] JohnKubiatavicz et al., “OceanstoreAn architecturefor global-scale
persistentstoragé, in Proceedingf ASPLOS2000.

[20]

[11]

[12] Cheng Shao, Evelyn Pierce, and Jennifer L. Welch,

(4]
(5]

(6]
(7]
(8]

El

F. Chang et al., “Myriad: Cost-efective Disaster Tolerancé, in
Proceedingf FAST, 2002.
S. Frolund, A. Merchant, Y. Saito, S. Spence,and A. Veitch, “A

decentralizedalgorithmfor erasure-codedirtual disks; in Proceedings
of DSN 2004.

G. R. GoodsonJ. J. Wylie, G. R. Ganger and M. K. Reiter “Efficient
byzantine-toleranérasure-codedtoragé, in Proceedingof DSN 2004.
ZhengZhang and Qiao Lian, “ReperasureReplicationprotocol using
erasure-codén peerto-peerstorage, in Proceedingsof SRDS 2002.
Witold Litwin and ThomasSchwarz, “LH* RS : A high-availability
scalable distributed data structure using reed solomon codes, in
Proceedingf SIGMOD, 2000.

M. K. Aguilera, R. Janakiraman,and L. Xu,
tolerant distributed storage using erasure codes, Tech. Rep.,
Washington University in St. Louis, Feb 2004, Available at
http://wwwnisl.wustl.edu/Bpers/€d/aguilera4efiicient pdf.

F. Schneider “Byzantine generalsin actions: implementingfail-stop
processors, ACM Transactionson Computer Systemsvol. 2, no. 2,
pp. 145-154,May 1984.

L. Lamport, “On interprocescommunicatiori, Distributed computing
vol. 1, no. 1, pp. 77-101,1986.

“Efficient fault-

“Multi-writer
consisteng conditionsfor sharedmemory objects, in Proceedingsof



ICDCS October2003, pp. 106-120.



