
On the Erasure Recoverability of MDS Codes
under Concurrent Updates*

Marcos K. Aguilera
HP Labs, 1501 Page Mill Rd.

Palo Alto, CA 94304, USA

Ramaprabhu Janakiraman
Washington University, One Brookings Dr.

Saint Louis, MO 63130, USA

Lihao Xu
Washington University, One Brookings Dr.

Saint Louis, MO 63130, USA

Abstract— We consider a fault-tolerant distributed storage sys-
tem that protects data on k disks using a systematic linear (n, k)
MDS code. In such a system, updates to data blocks require
corresponding updates to check blocks. Concurrent fault-prone
access by multiple writers can drive the system into an inconsistent
state with reduced tolerance for disk failures. We show tight bounds
on the erasure recoverability of an (n, k) MDS code in this scenario.
The bounds depend not just on the minimum distance of the code,
but also on the maximum number of concurrent faulty writers and
the manner in which they attempt to update the check blocks (one
at a time/all at once.)

I. INTRODUCTION

Erasure codes [1] are space-efficient schemes to encode
data into redundant fragments to protect against erasures of
some of the fragments. Such erasure codes have been used
traditionally in communication systems and, more recently, in
storage systems as a way to protect data against node crashes
(e.g., [2]–[5]). More precisely, an (n, k) MDS erasure code takes
as input k data blocks and produces n − k additional check
blocks, for a total of n blocks called a stripe. The erasure code
guarantees that any k blocks in the stripe can reconstruct the
original k data blocks. By storing each block in a separate node,
data are protected against the simultaneous failure of up to n−k
nodes.

Erasure codes are often used with immutable data: the blocks
are encoded once, perhaps transmitted, received, and recon-
structed in case some blocks are lost. But in this paper, we
are interested in mutable data stored in a distributed storage
system. More precisely, data blocks are encoded and stored at
different nodes; later some party, a writer, may wish to modify
one or more of the data blocks; for that, the writer needs to also
modify the check blocks to maintain consistency. But because
the system is distributed, the writer cannot modify all blocks
simultaneously. Therefore, if the writer crashes during these
modifications, blocks may be left in an undesirable inconsistent
state, from which it is impossible to recover from block erasures.
This paper is about how much inconsistency can be tolerated
without losing data. The answer depends on the number of writer
crashes and erasures, the erasure code, and how the writers
update the blocks.

More generally, consider a set of k or fewer writers that want
to update one data block each. Suppose that writer i wants to
update data block i. Mathematically, let vector v denote the
k data blocks, and w = vG denote the n blocks in a stripe,
where G = {gi,j} is the generator matrix for the erasure code in
systematic form, and arithmetic is in some finite field. Updating

∗This work was partially supported by NSF grants CCR-0208975, CNS-
0322615, and IIS-0430224.

(1) read old contents of data block i from storage node Si

(2) compute γ = new content − old content
(3) in some order

(3.0) tell Si to add γgi,i = γ to its content
(3.1) tell Sk+1 to add γgi,k+1 to its content
(3.2) tell Sk+2 to add γgi,k+2 to its content
· · ·

(3.n − k): tell Sn to add γgi,n to its content

Fig. 1. Protocol for writer i to update data block i.

the i-th data block means changing v to v
′ = v+γei for some

value γ, where ei is the i-th canonical basis vector. This requires
to change w to w

′ = w + γeiG. In other words, we need to
add γgi,j to each check block yj , for j = k + 1 to n. Figure 1
shows the sequence of steps to do that in a distributed system
where yj is stored in node Sj .

Note that steps (3.0) to (3.n − k) can be executed in any
order, or even in parallel. Also note that the whole protocol can
be executed concurrently by multiple writers that update distinct
data blocks; after they all finish execution, the check blocks will
be consistent with the erasure code. This is true regardless of
how the writers interleave their execution. For example, writer
1 (updating data block 1), and writer 2 (updating data block
2) may interleave their execution as follows: writer 1 executes
steps 1 to 3.2, then writer 2 executes steps 1 to 3.4, then writer 1
executes its remaining steps, and writer 2 execute its remaining
steps. Intuitively, this works because the updates are in terms of
“add” operations, which are all commutative.

If a writer crashes after executing some but not all of its steps,
is the erasure code still useful to protect blocks against erasures?
The answer depends on the exact manner of execution of steps
(3.0) to (3.n − k). We consider three possibilities:

• SERIAL UPDATES: a writer executes these steps one after
the other in some given order. For example, first (3.0) then
(3.1), (3.2), etc. Therefore, if the writer crashes, some prefix
of these steps actually take place.

• PARALLEL UPDATES: a writer executes steps (3.0) to (3.n−
k) all concurrently. If the writer crashes, some arbitrary
subset of those steps take place.

• HYBRID UPDATES: the check blocks are divided in chunks
of equal size. The writer updates the data block and each
chunk in series, but within each chunk blocks are updated
in parallel. If the writer crashes, all blocks are updated in
all but the last modified chunk; in the last modified chunk,
some arbitrary subset of blocks are updated.

Note that the protocol is much faster with parallel updates than
with serial updates, and hybrid is in the middle.

We assume that after a writer crashes, it is possible to tell
exactly which check blocks it updated before crashing. This

can be easily determined by keeping an extra bit per writer at
each check block; this bit is set when the writer modifies the
block. This assumes that a writer only executes one update; For
multiple updates, the writer can flip the bit at each update.

With serial updates, we show that for an MDS code to tolerate
d erasures and t writer crashes, it is necessary and sufficient that
its minimum distance dmin ≥ 2 + (t + 1)(d + t/2 − 1). Note
that when no writers crash, this meets the well-known Singleton
bound. We also show that the exact order of the serial updates
does matter. In fact, we show that the near-optimal ordering is
for the data block to be updated after half of the check blocks.
Thus, with n − k check blocks, the writer should first update
(n−k)/2 check blocks, then update the data block, then update
the remaining check blocks. This increases erasure tolerance by
about t/4 erasures over the original method where the data block
is updated first.

With parallel updates, the corresponding bound is dmin ≥
2 + 2t(d + t/2 − 1), and so much more powerful codes are
needed than with serial updates. Intuitively, this is so because
when t writers crash, the check blocks may be left in one of 2t

states. And with hybrid updates, we show that with s groups of
size at most r = dn−k

s
e each, the erasure recoverability is the

same as with serial updates for sufficiently large s. Our proofs
are based on combinatorial arguments explained through balls-
in-bins games where an adversary is trying to maximize the
damage.

To summarize, in this paper we consider MDS erasure codes
in a setting where multiple parties want to update different
data blocks simultaneously, and they may fail by crashing
while doing so (and meanwhile some blocks may be erased
as well.) We consider three schemes that differ on how blocks
are updated: in series, in parallel, or hybrid. For each scheme,
we show how many erasures can be tolerated as a function of
the erasure code parameters and the number of writer crashes.
It is worth mentioning that the distributed update model in this
paper is the core of a distributed storage system that we built
[6], which allows not only allows concurrent updates, but also
online reconstruction of data and concurrent reads.

The paper is organized as follows. We first describe related
work in Section II. In Section III we describe our model and
assumptions. Our main results are given in Sections IV and
V. We conclude with some comments and open questions in
Section VI.

II. RELATED WORK

The simplest application of erasure codes to storage is for
archival storage, where some immutable data needs to be
preserved for a long time (e.g., [2]). In those cases, there is
no need to worry about data updates. Myriad [3] proposes
erasure codes for disaster tolerance. Updates of check blocks
do not happen during a write, but are instead deferred and
done in batches that are applied atomically. This ensures that
all check blocks are updated consistently, but it requires the use
of expensive two-phase commit protocols to ensure atomicity.
Zhang and Lian [7] also propose a general scheme to use erasure
codes for distributed storage. However, this scheme does not
handle concurrent updates; instead, it assumes some external
mechanism, like a transaction for each operation. This appears
to be expensive, but no performance data is provided. LH∗

RS [8]
use erasure codes to implement an expandable and distributed
data structure, where redundancy increases with the amount of

data, to ensure a minimum availability. However, the paper does
not address crashes of writers. Other storage systems that allow
concurrent updates are proposed in [4], [5]. In both of these
works, when data is updated the storage nodes keep around old
versions of data, so recovery becomes very easy. However, by
keeping many versions of data, those schemes lose the space-
optimality of erasure codes.

III. MODEL

We consider a systematic linear (n, k) MDS erasure code that
encodes k data blocks into n − k check blocks for a total of n
blocks.

Those n blocks are kept in distinct storage nodes that are
accessible via a network. Storage nodes accept requests to
manipulate data from a number of readers and writers in the
system. The goal is to keep the blocks consistent with the erasure
code, so that if some storage nodes erase their data, data can be
recovered.

Data is mutable: there are k or fewer writers in the system
that want to update a distinct data block in the erasure code.
Writers may execute concurrently, and we assume that writer
i updates data block i, perhaps multiple times. The system
is asynchronous: some writers may execute faster than other
writers, and there are no bounds on their relative speeds.
To support concurrent updates, a writer executes the steps in
Figure 1. It is easy to show that after all writers have completed
those steps, (1) the data blocks will contain the updated values,
and (2) the check blocks will be consistent with the erasure
code. This is true regardless of how the concurrent execution
interleaves.

However, the system is subject to various failures. A writer
may fail by crashing, which causes it to stop executing its steps
(forever). As a result, the writer may execute some but not all
steps in Figure 1. Such a crash of the writer causes a fork in the
encoded data. Furthermore, a storage node may inadvertently
lose its data, and we assume that this loss is detectable (in-
stead of assuming that the data undetectably changes to some
unknown garbage). This is called a data erasure. If a data block
is erased, we consider it to be recoverable if it is possible to
retrieve either (1) its value before it was updated by a writer,
or (2) its value after it was updated by a writer W . Moreover,
if writer W does not crash, then only (2) is allowable.

IV. FORKS, ERASURES, AND ERASURE RECOVERABILITY

We now analyze in detail the dependency between the number
of forks, number of erasures, and erasure recoverability for a
given (n, k) code.

Assume that the system starts from a valid codeword. Sub-
sequently, writers update individual data blocks any number of
times. During this execution, t writers crash, and d blocks are
erased∗. Then, we observe the state of the system after this
execution completes, and try to recover the erased blocks. If
for a given t and d it is possible to recover all blocks in all
executions, we say that the (n, k) code is (t, d)-recoverable.

The goal of this section is to find values of d for a given
value of t such that an (n, k) code is (t, d)-recoverable. Clearly,

∗While executing, if a writer finds that a data block is erased in protocol step
(1), it aborts execution. If it finds that a block is erased in protocol step (3.x),
it ignores that step and continues execution.

if t = 0 then d ≤ n − k, which is the erasure correcting limit
of an (n, k) MDS code.

Our proofs consider a balls-into-bins game where each bin
represents a state indicating the outcome of each write attempt
by a crashed writer. With t crashed writers, this state can be
represented using t bits, and the ith state bit indicates whether
the last write of the ith crashed writer is discarded (bit is 0) or
recovered (bit is 1). Each ball represents the observed value of a
block at the end of execution. A ball goes into a bin if and only
if the value of the corresponding block can be correctly used
toward recovery to the state represented by the bin. Note that
such a recovery might not be possible, if there are not enough
balls in that bin.

Also, a ball can go into multiple bins if the corresponding
blocks can be used to recover to multiple states. For exam-
ple, balls corresponding to data blocks that no crashed writer
intended to modify go into all bins. In general, a data block
may go into multiple bins, while each check block goes into a
single bin. As we shall see in Section V, this difference between
data blocks and check blocks can be utilized for greater erasure
recoverability.

Starting from a valid codeword and picking a combination
of forks and erasures, an adversary can place the n balls into
bins (some of them multiple times), and then remove d distinct
balls (if a ball is in multiple bins, all instances are removed.) If,
after the adversary is done, at least one bin has k or more balls,
then the state is recoverable. If, for a given (t, d), all possible
strategies for the adversary result in recoverable states, then the
code is (t, d)-recoverable.

Lemma 1 Consider two cases where forks and erasures occur
in some combination: 1) forks happen first, followed by erasures.
2) forks and erasures can occur in any order. Recoverablity
under case 1 implies recoverability under case 2.

Proof. This is clear since the erasure of a block does not
alter the subsequent update of another block.

This property allows us to safely assume in the rest of this
section that all forks precede erasures.

Now, we can proceed to obtaining upper bounds for d. We
first consider the following two variations of the algorithm:
SERIAL UPDATE: Each writer performs the steps of Fig 1 in
serial order. If the writer crashes, an arbitrary prefix of check
blocks would have been updated.
PARALLEL UPDATE: Each writer performs the update steps in
parallel. If the writer crashes in the middle, an arbitrary subset
of check blocks could have been updated.

Theorem 1 An (n, k) code with serial-update is (t, d)-
recoverable if and only if d ≤ dSERIAL = dn−k

t+1 − t
2e.

Proof. When t writers crash under serial update, we can
order them into q ≤ t groups, where all writers crashing after
updating the same number of check blocks go into the same
group. Let x1, x2, · · · , xq of the writers crash after updating
a1, a1+a2, · · · , a1+a2+· · ·+aq check blocks, with aq+1 check
blocks untouched by any writer. Now, x1 + x2 + · · · + xq = t
and a1 + a2 + · · · + aq+1 = n − k. Let bin i represent the set
of writes by all crashed writers not in the first i − 1 groups.
Thus there are q+1 bins, which partition the set of n−k check
blocks into q + 1 sets of size a1, a2, · · · aq+1. All check blocks

in set i go into bin i. The k − t data blocks untouched by any
crashed writer go into all bins. Also, t − ∑i−1

j=0 xj of the data
blocks go into bin i (define x0 = 0), since this is the number
of data blocks useful in restoring to a state in which the writes
of all crashed writers in the previous i − 1 groups are lost.

Thus the number of balls in bin i are k+ai−
∑i−1

j=0 xj . Thus
the total number of balls is:

q+1
∑

i=1

(k + ai −
i−1
∑

j=0

xj) = (q + 1)k + n − k −
q

∑

i=1

(q − i + 1)xi

≥ (q + 1)k + n − k − q(t − q) − q(q + 1)/2

≥ (q + 1)k + n − k − t(t + 1)/2
(1)

Since there are q + 1 bins, the average number of balls per
bin is:

#balls
#bins

≥ k +
n − k − t(t + 1)/2

q + 1
. (2)

Since q ≤ t, there is ≥ 1 bin with ≥ k + dn−k
t+1 − t

2e balls.
Thus, if k + d is no greater than this value, removing d balls
from each bin would still leave at least one bin with k or more
balls, and hence the code would be (t, d)-recoverable.

This is also a tight lower bound on the number of balls in
each bin, i.e., the adversary has a strategy for placing balls in
bins such that no bin has more than k + dSERIAL balls [6].

Theorem 2 An (n, k) code under parallel-update is (t, d)-
recoverable if and only if d ≤ dPARALLEL = dn−k

2t − t
2e.

Proof. The proof is similar to the previous one: since writers
can update any subset of check blocks before crashing, there
are now 2t bins, with each bin tagged by the bit representation
a1...at, ai being 0 or 1 according to whether the ith crashed
writer’s write is lost or restored when going back to that state.

For this case, each of the k− t untouched data blocks go into
every bin. For each data block i that crashed writers intended
to update, add a ball to each bin for which the corresponding
bit ai is 0 or 1 according to whether that writer updated the
data block itself (each such block goes to half of the bins). In
addition, there are the n − k check blocks that go into distinct
bins depending on the set of writers that updated it.

Now the total number of balls is given by (k − t)2t + t
22t +

n − k = k2t − t2t−1 + n − k. From this, the ‘if’ part clearly
follows.

The bound is also tight i.e., a strategy exists for the adversary
to place balls in bins such that no bin has more than k+dPARALLEL

balls. A greedy strategy by the adversary suffices [6].

Hybrid-updates: latency versus erasure recoverability

In the previous section, we saw that with serial updates we
get much better erasure recovery capability than with parallel
updates. However, the downside is that with serial updates the
latency of each write operation can be much higher.

One compromise that suggests itself is to divide the check
blocks into s check blocks of at most r blocks each, where
r = dn−k

s
e. Blocks in a single chunk are updated in parallel,

but the chunks themselves are updated serially. This results in an
(s, r)-hybrid-update. In this section, we will derive bounds on
the erasure correcting capability of this hybrid-update scheme.

Theorem 3 An (n, k) code under (s, r)-hybrid-update is (t, d)-
recoverable if d ≤ dSERIAL when r ≤ dSERIAL.

Proof. As before, associate a bin with the bit representation of
whether each crashed writer’s write was incorporated or not.
The k − t untouched data blocks go into all bins.

Let C1, . . . , Cq be the chunks where some writer crashed
while trying to update, ordered by update order of the protocol
(i.e., C1 is updated before C2, etc). Note that q ≤ s. For
i = 1 . . . q, let Xi be the set of writers that crashed while trying
to update Ci, and let xi = |Xi| 6= 0. Define X0 = ∅. For
i = 1 . . . q, let Ai be the set of check blocks updated by all
processes in Xi and no processes in Xi−1, and let ai = |Ai|.
For convenience, also define Aq+1 to be the set of check blocks
updated by no crashed writer. Let Bi be the set of check blocks
updated by some but not all processes in Xi, and let bi = |Bi|.

Note that (I) a block in Ai was updated by all processes in
∪j≥iXj and by no processes in ∪j<iXj , because chunks are
updated in series, and (II) Ai’s and Bi’s together partition the
set of all check blocks. Each block in Ai or Bi goes in exactly
one bin, because it is a check block. Moreover, the set of all
blocks in Bi go in at most 2xi −2 bins, and the set of all blocks
in Ai go in at most 1 bin. Therefore, the set of all blocks in
∪q+1

i=1 Ai go in at most q + 1 bins.
Let λ be the number of Xi’s with more than one crashed

writer. Since (*) every Xi has at least one crashed writer and
there are q Xi’s and (**) t is the total number of crashed writers,
we have q + λ ≤ t. Thus, q ≤ t − λ. Also, bi = 0 whenever
xi < 2, and bi ≤ r for all i, hence (III)

∑q
i=1 bi ≤ λr. By (II)

and (III) we have
∑q+1

i=1 ai = n − k − ∑q
i=1 bi ≥ n − k − λr.

Let d(λ) be a lower bound on the number of balls in any bin
for given λ, i.e., no strategy exists for the adversary to place
balls in bins such that all bins contain fewer than d(λ) balls.
Then, by counting the balls of blocks in all A′

is, as in (1) but
with the additional constraint that at least λ of the xi are > 1,

#balls = (q + 1)k + n − k −
q

∑

i=1

bi −
q

∑

i=1

(q − i + 1)xi

≥ (q + 1)k + n − k − λr −
q

∑

i=1

(q − i + 1)xi

≥ (q + 1)k + n − k − λr − q(t − q) − q(q + 1)

2
+

λ(λ − 1)

2

≥ (q + 1)k + n − k − λr − t(t + 1)

2
+ λ2 {q ≤ t − λ}

(3)
Since there are at most q+1 bins to put these balls, and q ≤ t−λ,

d(λ) ≥ k + dn − k − λr − t(t+1)
2 + λ2

t − λ + 1
e (4)

Now consider λ = 0, i.e., xi = 1 for all i so that writers
always crash singly in distinct chunks. In this case, there exists
a tight bound d(0) = k + dSERIAL. Now we prove d(λ) ≥ d(0)
for λ ≥ 0 when r ≤ dSERIAL:

Let 0 ≤ ε = dSERIAL −
(n − k

t + 1
− t

2

)

< 1

d(λ) − d(0) ≥ dn − k − λr − t(t+1)
2 + λ2

t − λ + 1
e − dSERIAL

≥ n − k − λr − t(t+1)
2 + λ2

t − λ + 1
− n − k − t(t+1)

2

t + 1
− ε

=

{

n − k

t + 1
− t

2
− r + λ

}{

λ

t − λ + 1

}

− ε

≥ 0, for r ≤ dSERIAL, λ ≥ 0, ε < 1 and integer d(λ).

(5)

Thus d(λ) ≥ d(0) for λ ≥ 0. In other words, the strategy
of making each writer crash on a distinct chunk is optimal for
the adversary. Hence, for r ≤ dSERIAL, d(0) is a lower bound on
minimal number of balls in any bin. In this case, up to dSERIAL =
dn−k

t+1 − t
2e erasures can be tolerated. Hence, when r ≤ dSERIAL

and d ≤ dSERIAL, the code is (t, d)-recoverable.
We note that with enough chunks, i.e., when r ≤ dSERIAL,

the hybrid-update scheme has as good erasure tolerance as the
serial-update scheme, but with lower update latency. How about
when r > dSERIAL? In this case, the analysis is more difficult, and
we have yet to obtain a tight bound, but have devised a dynamic
programming solution that computes erasure recoverability in
O(t(n − k)2) time.

Here is an interesting application of the above results. Assume
that we are given t ≥ 0 and d > 0, and we want to estimate (1)
how many check blocks δ are needed to make the code (t, d)-
recoverable, and (2) the write latency ρ (in network round trips
to storage nodes). This is a simple corollary of the results above:

Corollary 1 We have

1) for serial updates: δ = 1+(t+1)(d+t/2−1); ρ = 2+δ;
2) for parallel updates: δ = 1 + 2t(d + t/2 − 1); ρ = 2.
3) for hybrid updates with r = dSERIAL: δ = 1 + (t + 1)(d +

t/2 − 1); ρ = 2 + d δ
dSERIAL

e.

V. DOES UPDATE ORDER MATTER?

In the previous section, we have assumed that writers using
serial updates executes steps (3.x) in the order shown: (3.0),
(3.1), etc. Thus, the data block is updated before any check
blocks. Other orders are possible, like (3.1), (3.2), (3.0), etc.
Are these orders all equivalent?

Since check blocks are symmetric for a linear MDS code, the
only thing that matters is when the data block is updated. In the
δ1-serial-update scheme, a writer updates δ1 check blocks in
some fixed order, followed by the data block, followed by the
remaining δ2 = n − k − δ1 check blocks in some fixed order.
We show that the choice of δ1 affects erasure recoverability.
Intuitively, this is because data blocks are more valuable than
check blocks as the former may be used to recover to multiple
states: in our balls-and-bins scenario, balls corresponding to data
blocks may appear in multiple bins, which is not true for check
blocks.

Thus, we ask: (a) What is the erasure recoverability for a
given δ1? (b) What is the erasure recoverability for an optimal
choice of δ1?

Theorem 4 Let D(x, y) = d x
y+1 − y

2 e. An (n, k) code under
δ1-serial-update is (t, d)-recoverable if and only if ∀t1 ∈
{0, · · · , t}

d ≤ max{D(δ1, t1), D(δ2, t2), D(n − k + t1t2, t)}
where δ2 = n − k − δ1 t2 = t − t1

(6)

Proof sketch. For δ1-serial updates, the analysis is very similar
to that for the serial case. Divide the set of crashed writers into
two sets Y and Y ′: Y (of size t1) has writers that crashed before
updating their data blocks and Y ′ (of size t2 = t − t1) has the
other crashed writers. Divide the set of check blocks into two
(possibly overlapping) sets X and X ′: X (of size at least δ1)
contains check blocks updated by all writers in Y ′, and X ′ (of

size at least δ2 = n− k− δ1) contains check blocks updated by
no writers in Y .

We can bound the recoverability by independently applying to
these two sets the analysis as for the original serial update case,
but with parameters (δ1, t1) and (δ2, t2) instead of (n − k, t).
Note that D(n− k, t) is just dSERIAL. To get a bound of D(n−
k+t1t2, t) in the third term of the max in the theorem, we count
the total number of balls in all bins: we have δ1 − t1(t1 + 1)/2
balls in bins corresponding to Y , and δ2 − t2(t2 + 1)/2 balls
in bins corresponding to Y ′. We add these together and apply
the analysis for the original serial update case again where the
maximum total number of bins is t+1 (not t1+1+t2+1 = t+2).

Finally, since the adversary will choose a worst-case t1, it has
to hold for all valid t1.

Theorem 5 An (n, k) code under δ1-serial-update is (t,Dmin)-
recoverable for some δ1 and at most (t,Dmax)-recoverable for
any δ1, where:

Dmin = dn − k

t + 1
− t + 1

4
e and Dmax = dn − k

t + 1
− t − 1

4
e (7)

Proof. Given the bound on tolerable erasures for a given δ1

from the previous result, we can formulate the proof in terms
of the following game: assume the “good guy” or mover
picks δ1, δ2 : δ1 + δ2 = n − k; the adversary then picks
t1, t2 : t1 + t2 = t. In this game, the payoff to the mover
is max{D(δ1, t1), D(δ2, t2), D(n − k + t1t2, t)}. The proof
proceeds in two parts:

1) Upper bound: Show that for each choice of (δ1, δ2) by
the mover, the adversary has a feasible choice of (t1, t2)
such that the payoff to the mover, D ≤ Dmax.

2) Lower bound: Show that a choice (δ1, δ2) =
(bn−k

2 c, dn−k
2 e) has payoff D ≥ Dmin.

Proof of upper bound: For a given choice of δ1, δ2, let the
adversary pick t1, t2 such that:

ti ≥ Xi =

√

(Dmax − 1

2
)2 + 2δi − (Dmax +

1

2
), i = 1, 2

Then, (ti + Dmax +
1

2
)2 ≥ (Dmax − 1

2
)2 + 2δi

⇒ ti(ti + 1) + 2Dmax(ti + 1) ≥ 2δi

⇒ δi

ti + 1
− ti

2
≤ Dmax ⇒ d δi

ti + 1
− ti

2
e ≤ Dmax, i = 1, 2

Thus D(δ1, t1) ≤ Dmax and D(δ2, t2) ≤ Dmax. Also, D(n −
k+ t1t2, t) reaches its maximum value for t1 = t2 = t/2 where
it is ≤ Dmax. Hence if such a choice of t1, t2 exists, D ≤ Dmax.
It remains to be shown that the adversary has a feasible choice
of integers 0 ≤ t1 ≤ t, 0 ≤ t2 ≤ t, t1 + t2 = t satisfying both
constraints above.

Given that δ1 + δ2 = n − k, it can be verified that X1 + X2

reaches maximum value for δ1 = δ2 = n−k
2 . Hence,

X1 + X2 ≤ 2

{

√

(Dmax − 1

2
)2 + n − k − (Dmax +

1

2
)

}

n − k

t + 1
− t − 1

4
≤ Dmax ⇒ n − k ≤ t2 − 1

4
+ Dmax(t + 1)

⇒ X1 + X2 ≤ t − 1

Furthermore, when δ1 < Dmax or δ2 < Dmax, a trivial
strategy exists for the adversary such that D ≤ Dmax by setting

t1 = 0 or t2 = 0 respectively, hence we can safely assume that
all non-trivial choices for the mover involve δ1 ≥ Dmax and
δ2 ≥ Dmax. In this case, it is clear that X1 ≥ 0 and X2 ≥ 0.

The constraints t1 ≥ X1, t2 ≥ X2, and t1 + t2 = t form
an isosceles right triangle in the first quadrant with axes t1 and
t2. All feasible choices of t1 and t2 for the adversary lie on its
hypotenuse of length `, where `2 = 2(t − X1 − X2)

2 ≥ 2, i.e.,
` ≥

√
2. Thus the hypotenuse passes through at least one pair of

integer points (t1, t2), and hence the adversary has a strategy that
for any choice of δ1 and δ2 by the mover, there exists a choice
t1 and t2 such that the payoff D ≤ Dmax = dn−k

t+1 − t−1
4 e.

Proof of lower bound: Let the mover pick δ1 = b(n−k)/2c
and δ2 = d(n−k)/2e. The best strategy for the adversary clearly
is to pick t1 = b t

2c and t2 = d t
2e. In this case, the total number

of balls ≥ n−k− t1(t1 +1)/2− t2(t2 +1)/2 and total number
of bins ≤ t + 1. Hence,

D ≥ dn − k

t + 1
− t

2
+

t2 − 1

4(t + 1)
e = dn − k

t + 1
− t + 1

4
e = Dmin

Remarks: The recoverability of a “half-half” split is at most
one erasure away from optimal. In many cases (e.g., When n−k
is even, and t is odd), it is optimal. A more precise analysis
reveals it is optimal in ≥ 75% of cases when both n−k and t are
odd and and ≥ 50% of cases when t is even. Loosely speaking,
such a modified serial scheme tolerates about t/4 more erasures
compared to the original serial scheme.

VI. CONCLUDING REMARKS

Erasure codes are increasingly finding use in storage appli-
cations. We have considered a typical system where distributed
storage is protected from data loss by using systematic linear
MDS codes. Clients accessing storage try to maintain consis-
tency by updating check blocks when writing to a data block,
but may fail partway due to system crashes (e.g., O/S failure)
or component failures (e.g., hardware failure.)

In this paper we have studied how concurrent partial updates
affect the erasure recoverability of an MDS code. We obtain
tight bounds relating the number of writer crashes, the number
of erasures, and the minimum distance of the MDS code used.

Some questions naturally beg to be answered: 1) What are
the corresponding bounds for non-MDS codes, and can they be
related simply to the minimum distance of the code? 2) Can
these bounds be extended to array codes, where data blocks
and check blocks of a codeword may co-exist on a disk?

REFERENCES

[1] V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley-
Interscience, 1998.

[2] J. Kubiatowicz et al., “Oceanstore: An architecture for global-scale
persistent storage,” in ASPLOS, 2000.

[3] F. Chang et al., “Myriad: Cost-effective Disaster Tolerance,” in FAST, 2002.
[4] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “A decentral-

ized algorithm for erasure-coded virtual disks,” in DSN, 2004.
[5] G. R. Goodson, J. J. Wylie, G. R. Ganger, , and M. K. Reiter, “Efficient

byzantine-tolerant erasure-coded storage,” in DSN, 2004.
[6] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes

efficiently for storage in a distributed system,” Tech. Rep., Available at
http://www.nisl.wustl.edu/Papers/Tech/iguana.pdf, Dec 2004.

[7] Z. Zhang and Q. Lian, “Reperasure: Replication protocol using erasure-code
in peer-to-peer storage,” in SRDS, 2002.

[8] W. Litwin and T. Schwarz, “LH* RS : A high-availability scalable
distributed data structure using reed solomon codes,” in SIGMOD, 2000.

