
Triage: Performance Differentiation for
Storage Systems Using Adaptive Control

MAGNUS KARLSSON, CHRISTOS KARAMANOLIS, and XIAOYUN ZHU

HP Labs, Palo Alto, CA

Ensuring performance isolation and differentiation among workloads that share a storage infras-

tructure is a basic requirement in consolidated data centers. Existing management tools rely on

resource provisioning to meet performance goals; they require detailed knowledge of the system

characteristics and the workloads. Provisioning is inherently slow to react to system and workload

dynamics and, in the general case, it is not practical to provision for the worst case.

We propose a software-only solution that ensures predictable performance for storage access.

It is applicable to a wide range of storage systems and makes no assumptions about workload

characteristics. We use an online feedback loop with an adaptive controller that throttles stor-

age access requests to ensure that the available system throughput is shared among workloads

according to their performance goals and their relative importance. The controller considers the

system as a “black box” and adapts automatically to system and workload changes. The controller

is distributed to ensure high availability under overload conditions, and it can be used for both

block and file access protocols. The evaluation of Triage, our experimental prototype, demonstrates

workload isolation and differentiation in an overloaded cluster file-system where workloads and

system components are changing.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; D.4.3

[Operating Systems]: File Systems Management; D.4.8 [Operating Systems]: Performance

General Terms: Performance, Management

Additional Key Words and Phrases: Storage resource management, policy-based management, QoS,

clustered file systems, performance goals, performance management, control theory

1. INTRODUCTION

Resource consolidation in large data centers is a current trend across the IT
industry and is mostly driven by economy-of-scale benefits. Consolidation is per-
formed either within an enterprise or in hosting environments. In these data
centers, storage systems are shared by workloads ofmultiple “customers”. It is

A preliminary version of this article was published in Proceedings of the International Workshop
in Quality of Service, 2004.

Authors’ address: HP Labs, Hewlett Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304;

email: {magnus.karlsson,christos.karamanolis,xiaoyun.zhu}@hp.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1553-3077/05/1100-0457 $5.00

ACM Transactions on Storage, Vol. 1, No. 4, November 2005, Pages 457–480.

458 • M. Karlsson et al.

important to ensure that customers receive the resources and performance they
are entitled to. More specifically, the performance of a workload must be iso-
lated from the activities of other workloads that share the same infrastructure.
Furthermore, available resources should be shared among workloads according
to their relative importance.

Existing state-of-the-art management tools rely on automatic provisioning
of adequate resources to achieve certain performance goals [Anderson et al.
2002]. Although resource provisioning is necessary to meet the basic perfor-
mance goals of workloads, it cannot handle rapid workload fluctuations and
system changes. It is an inherently expensive and slow process—think of set-
ting up servers, configuring logical volumes in disk arrays, or migrating data.
Furthermore, it is too expensive to provision for the worst-case scenario, which
is typically not known a priori. In our work, we ensure predictable performance
of storage systems by arbitrating the use of existing resources under transient
high-load conditions in a way that complements provisioning tools.

1.1 Resource Arbitration

In this article, we focus on storage system throughput as the key resource that is
shared by the workloads. Throughput reflects the capacities of different physi-
cal resources in the system, such as server or controller utilization and network
bandwidth. Throughput sharing is arbitrated by throttling storage access re-
quests of different workloads. That is, requests from each workload are withheld
somewhere on the data path and are released with a rate that complies with
the targeted throughput for that workload.

The way to arbitrate the use of critical resources depends on the behavior
of system components, their configuration, as well as workload dynamics. One
way to achieve performance differentiation is to develop performance models
that characterize the behavior of system components and workloads. Meet-
ing the performance goals of the workloads while minimizing the overall use
of resources is an optimization problem that can be solved using those models
[Anderson et al. 2002]. Performance models that are developed offline have also
been used in the context of feedback-based control loops [Abdelzaher et al. 2002;
Diao et al. 2002a; Ko et al. 2003; Lu, et al. 2001; Robertsson et al. 2003, 2004].
However, enterprise-scale storage systems are large (with capacities often in
the 100s of TBs), distributed, and increasingly heterogeneous, with constantly
evolving hardware and software. Their workloads are complex, consisting of
multiple overlapping I/O streams with unpredictable request patterns. Thus,
it is impractical to devise detailed models of such systems offline to make per-
formance predictions and control resource sharing.

1.2 A Control-Theoretic Approach

Because of the above observations, our approach is based on the assertion that
the storage system must be considered as a “black box”. We assume no prior
knowledge of the behavior of the system and its components, or the workloads
applied to it, except that an increase in throughput generally results in higher
request latencies. We solely depend on online performance monitoring from

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 459

outside the system to infer system models and perform workload throttling
accordingly.

More specifically, we use an online feedback loop that includes a controller
that makes throttling decisions based on the relationship between through-
put and latency in the system. While the response latencies are within the
specified goals for all workloads, the controller gradually increases the number
of requests allowed to fully utilize the system. As soon as at least one work-
load’s latency goal is violated, the controller starts throttling requests back
in accordance with a specified resource sharing policy. In the context of such
feedback-based control, it is important that we can argue about the properties
of the resulting closed loop, namely that the overall system meets its goals (la-
tency goals for each workload, while maximizing the utilization of the system)
despite changes to the system and the workloads. To this aim, we use control
theory to design the closed loop in a systematic way.

There is a number of existing systems that have applied control theory to
computer systems: LotusNotes [Parekh et al. 2002], Apache [Abdelzaher et al.
2002, 2003; Abdelzaher and Bhatti 1999; Diao et al. 2002a; Lu, et al. 2001;
Robertsson et al. 2003, 2004], Squid [Lu, et al. 2001], middleware [Li and
Nahrstedt 1998], file server [Lee et al. 2004]. All these systems use nonadaptive
controllers. The design of an nonadaptive controller depends on the assertion
that a single (usually linear) model can be used to predict precisely the behavior
of the controlled system. This model is developed offline and is then used to set
parameters in the controller that are fixed over time. Those parameters specify
how the controller reacts to feedback from the system. There are also several
systems that use some form of feedback loop to control resource sharing, even
though they do not use control theory in a formal sense [Chambliss et al. 2003;
Diao et al. 2002b, 2002c, 2003a; Goyal et al. 2003; Lumb et al. 2003; Sundaram
and Shenoy 2003; Welsh and Culler 2003]. All of them require some form of
offline modeling and tuning of the system.

Storage systems exhibit a nonlinear behavior that depends on system config-
uration and workloads. For example, with a workload that retrieves data from
an internal cache, the system exhibits a very different performance behavior
compared to the case where data are retrieved from a disk. We show that, in
the general case, it is not possible to design a well-behaved nonadaptive linear
controller with parameters that are applicable to all different operating points
of a storage system, because of the large variability in the system’s operating
range. The use of such a controller would result in long settling times or even
instability1 of the system when the operating point changes, as we report in
Section 3. This precludes the use of any of the prior-art mentioned above.

To compensate for the lack of models that can be derived offline and to ensure
that feedback-based control works in realistic systems with nonlinear behavior,
we use adaptive controllers. Adaptive controllers do not depend on the existence
of a single linear system model that needs to be derived offline. Instead, they
periodically (the period is a design parameter) develop online a model of the

1The performance of different workloads would oscillate between extreme values without converg-

ing to the desired goals.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

460 • M. Karlsson et al.

system at its current operating point. Based on that model, the controller pa-
rameters are adjusted dynamically so as to ensure stability and short settling
times for the closed loop.

There is another recent case in the literature where an adaptive controller
is used to provide differentiated web caching among competing workloads [Lu
et al. 2002]. That work also aims at eliminating offline model development and
controller tuning. However, in their case the goal is to provide proportional
differentiation on content hit ratio, while in our work we target directly perfor-
mance goals for each workload. In addition, our work aims at maximizing the
utilization of existing system resources. Our work also differs in the design of
the loop. First, we use a direct self-tuning regulator, a more computationally
efficient type of adaptive controller that can be applied online with negligible
overhead. Second, in the current prototype, Triage, workload control (throt-
tling) is performed in a distributed fashion on the clients that use the service.
Thus, differentiation can be achieved even with multiple storage servers, with-
out requiring a central point of control. Moreover, our decentralized approach
works effectively when the servers are overloaded, when differentiation is most
important. The only other distributed control loop we are aware of [Stankovic
et al. 2001] is based on a nonadaptive controller.

2. SPECIFYING PERFORMANCE OBJECTIVES

As discussed in section 1, this article proposes an online feedback loop that per-
forms resource arbitration among workloads that compete for access to a shared
storage infrastructure. This is done with two objectives. The first is to achieve
performance isolation among the workloads. That is, a workload should obtain
sufficient resources for the performance it is entitled to, irrespective of the be-
havior of other workloads in the system. Since it is not practical to provision the
system sufficiently for the worst-case scenario, the second objective is to pro-
vide performance differentiation among workloads under overload conditions.
In that case, resources should be shared among workloads on the basis of two
criteria: (1) their relative importance; (2) the resources they already consume.
We propose specifying two types of performance goals for each workload:

(1) A latency goal that should be met for all workload requests. This latency
goal depends mostly on the characteristics of the corresponding application
(timeouts, tolerance to delays, etc).

(2) A maximum throughput allotment for which the system should ensure iso-
lation for the workload. This is the maximum throughput the customer is
willing to “pay” for.2

These are both soft goals, that is, they refer to averages (or percentiles) over
some time period. Further, we have to capture the relative importance of differ-
ent workloads for the cases when the available system capacity cannot satisfy
the maximum throughput allotments of all workloads. This can be accomplished
by for example, having the users specify a utility function for each workload.

2Performance goal specifications for workloads are derived from high-level application goals or

service level agreements. The way this mapping is performed is outside the scope of this article.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 461

Table I. Example of Two Workloads Sharing the System

According to Three Throughput Bands

Band 0 Band 1 Band 2

aggr. throughput (IO/s) 0–100 100–400 400–900

workload W1 50% 100% 0%

workload W2 50% 0% 100%

Note: The top row shows the total system throughput in each band;

the two rows below show the ratio by which the two workloads share

that additional throughput.

The aim then is to differentiate the workloads so as to obtain the highest utility.
In this article, we assume that somebody have already solved this optimization
problem and provided us with the performance differentiation they would like to
have between workloads. From typical utility functions, we observe that users
do not usually assign the same importance to the entire range of throughput
they require for their workloads. For example, the first few tens of IO/s are very
important for the application to make progress. Above that, the value customers
assign to the required throughput typically declines, but with different rates for
various workloads. To capture the desired throughput differentiation between
workloads, we specify a number of bands for the available system throughput.
While these bands represent a piecewise function, any other function, such as
a continuous one, could be used to specify the differentiation.

The details of how to specify workload throughput allotments can be best
explained with an example. Consider a system with just two workloads. A
business-critical workload W1 demands up to 350 IO/s, irrespective of other
workload activities. Another workload W2 (e.g., one performing data mining)
requires up to 550 IO/s. W2 is less important than W1, but it still requires
at least 50 IO/s to make progress; otherwise the application may timeout and
abort assuming that the storage system is not responding. That is also the case
with W1, if it does not get 50 IO/s. To satisfy the combined throughput require-
ments of the two workloads, we specify three bands for throughput sharing, as
shown in Table I. According to the specification, the first 100 IO/s in the system
are shared equally between the two workloads, so that both can make progress.
Any additional available throughput up to a total of 400 IO/s is reserved for
W1. Thus, W1’s 350 IO/s are met first. Any additional available throughput is
given to W2 until its 550 IO/s goal is met. Any further throughput in the system
is shared equally between the two workloads.

In general, any number of bands can be defined for any number of workloads
that may share the system, following the principles of this example. If the
system’s capacity at some instance is sufficient to meet fully all throughput
allotments up to band i, but not fully the allotments of band i + 1, then we say
that the “system is operating in band i + 1”. Any throughput above the sum
of the throughputs of bands 0..i is shared among the workloads according to
the ratios specified in band i + 1. The total available throughput indicates the
“operating point” of the system. With 500 IO/s total system throughput in our
example, the operating point of the system is 20% in band 2.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

462 • M. Karlsson et al.

Fig. 1. Feedback loop with a nonadaptive controller for client request throttling.

In addition, the latency target of each workload should be met in the system.
At some instance in time, the system is operating in a band i. As soon as the
latency goal of at least one workload with a nonzero throughput allotment in
any band j , j ≤ i, is violated, the system must throttle the workloads back
until no such violations are observed. Throttling within the specifications of
band i may be sufficient, or the system may need to throttle more aggressively
down to some band k, k < i. On the other hand, it is desirable to utilize the
system’s available throughput as much as possible. Therefore, when the system
is operating in band i and the latency goals of all workloads with nonzero
throughput allotments in bands 0..i are met, the system can let more requests
through. This may result in the system operating in a band m, m > i.

3. DESIGNING A CONTROL LOOP

This section describes the design of the feedback loop for request throttling
in the context of a client-server system that is typical of enterprise storage
systems, irrespective of the storage access protocol used. The system consists
of a number of storage servers and a number of client nodes that access data on
the servers. One or more workloads may originate from a client, or more than
one clients can generate a workload. To keep the discussion simple, we assume
here that there is a 1:1 mapping between clients and workloads. Examples
of such systems include network file systems [Callaghan et al. 1995], cluster
file systems [Lustre 2005], or block-based storage [Saito et al. 2004]. For the
discussions in this article, we use an installation of a cluster file system, Lustre
[2005], with eight clients and one or two servers.

The objective is to design a feedback controller that arbitrates the use of
system throughput by throttling client requests according to the specifications
of the throughput bands and the latency goals. Since we follow a black-box
approach as far as the behavior of the system is concerned, we require that the
feedback loop depends merely on externally observed metrics of the system’s
performance, that is, response latency and throughput.

Figure 1 shows an abstract representation of the feedback loop. In the figure,
w(k) is the observed latency of the system at time k averaged over some sam-
pling period, the length of which is specified by the system identification process
in Section 3.1. k signifies what sample instance this is, with k −1 being the pre-
vious sample instance, k the current, and k + 1 the next sample instance in the
future. The input to the closed-loop system, yref, is the reference value (desired
target value) for latency w(k). Based on the difference between w(k) and yref,

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 463

Fig. 2. A controlled Lustre instantiation.

the controller actuates the system by setting the operating point u(k). This is the
maximum aggregate throughput allowed to be obtained from the system (for
all workloads); how this throughput is shared among workloads is determined
according to the specified bands. Enforcing this maximum throughput requires
that a throttling module intercepts requests somewhere on the datapath—it
could be either on the clients or somewhere on the network. No assumption is
made about the exact location of the controller itself. However, from a design
perspective, it is desirable that:

(1) the controller reacts to end-to-end latencies as perceived by the application,
since these capture overall system capacity, including for example storage
area network bandwidth;

(2) the controller is designed in a decentralized way to ensure it is highly avail-
able even in an overloaded system, which is exactly what the feedback loop
is designed to address.

Workload throttling can be performed (as determined by the controller) at
any point on the datapath between clients and servers. It could be on the servers,
on the clients, or somewhere in between (e.g., some intelligent switch), depend-
ing on what entity in the system can be modified and controlled. Being able to
throttle on or close to the clients has the practical advantage that performance
differentiation can also deal with contention in the network. So, for Triage, the
prototype we discuss in this article, we assume that we have clients that can
be modified to accommodate a throttling module as depicted in Figure 2. We be-
lieve this to be a realistic assumption given that we focus on data centers, where
the software of every node can be configured as necessary. Moreover, there is a
feedback loop with a separate controller for each client/workload in the system.
The reference input to a controller is the latency goal for the that client’s work-
load and the error is estimated locally. The controller calculates locally the op-
erating point of the system, from its own perspective. The corresponding share
for the local workload is derived from the throughput bands specification—all
clients know that table. This does not create any strict synchronization require-
ments among clients, as this table changes infrequently. The controller modules
in the different clients have to agree on the lowest operating point, as this is
used across all clients. (If the minimal value was not used, some clients might
send too many requests and violate isolation.) This requires some simple agree-
ment protocol among the clients, that is executed once every sampling period.
For example, a specific client (e.g., the one with the smallest id) calculates the

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

464 • M. Karlsson et al.

operating point locally and sends it to all other clients; other clients respond
to the group only if they have calculated a lower value than that (the details
of such a protocol are outside the scope of this article). The throttler imposes
a maximum request rate for outgoing requests from the corresponding client.

3.1 System Identification and Validation

In this section, we describe the design of a feedback control loop using a control-
theoretic nonadaptive controller. We do this for four reasons. First, we show
that nonadaptive controllers are inadequate for storage systems and their
workloads. Second, we use them as a comparison baseline for the adaptive
controller we propose as a solution to our problem. Third, the offline system
identification technique described here forms the basis for the online estimation
technique used for the adaptive controller. Fourth, we derive some properties
of the system which are also used for the design of the adaptive closed loop.

The first step toward designing a nonadaptive controller is to develop a model
of the target system. Once we have that model, we can use control theoretic
methods to design a controller for the system so that the resulting closed loop
is stable and converges fast to the performance goal. Once the controller is
designed, the model is not used anymore in the case of a nonadaptive controller.
One type of model most frequently used to design controllers is the following
linear model [Franklin et al. 1998; Hellerstein et al. 2004]:

y(k) =
N∑

i=1

αi y(k − i) +
M∑

i=0

βiu(k − i). (1)

In this model, y(k) is the real latency3 of the requests at time k and u(k) is
the operating point set at time k. The numbers N and M are the order of the
system model, which captures the extent of correlation between the system’s
current and past states. Usually N ≥ M and for simplicity, we will set N = M
for the rest of this section. αi and βi are unknown model parameters. Thus,
the requirement is to find values for αi, βi, N , M and a sample period that
will produce a model that represents the system accurately. The process of
determining these values is called system identification.

An important aspect of system identification is to find the order of the model
(N) that results in a good fit for the measured data. This is related to the
sampling period used to obtain measurements of the system and the inertia or
“memory” of the system. When the request latency is much smaller than the
sampling period, a first-order model (N = 1) is usually sufficient to capture the
dynamics of the system, as there are few requests that affect the system across
two consecutive intervals. Thus, requests occurring at time k − 2 or earlier
have little impact on the latencies at time k. If, however, request latencies are
comparable to (or longer than) the sampling period, then higher order system
models are required. Intuitively, a long sampling period may result in slow

3The reason we use y(k) here instead of w(k) is that we need to have a model of the real effect of the

actuation on the system, not the measured effect of the actuation. In general, deriving a controller

from a system model made out of measured data (w(k)) might lead to instabilities. In our specific

case, it would lead to a slower controller.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 465

Table II. R2 Fit of a First-Order Model and Residual Correlation Coefficient as a Function of

Sample Interval

Sample Interval (ms)

Model 1000 750 500 300 100

of R2 Ccoef R2 Ccoef R2 Ccoef R2 Ccoef R2 Ccoef

Cache 0.764 0.04 0.745 0.05 0.685 0.04 0.479 0.140 0.439 0.140

Disk 0.416 0.045 0.399 0.05 0.379 0.03 0.159 0.047 0.112 0.026

Note: Two workloads: (i) all accesses in the cache; (ii) all accesses on random locations on disk.

reaction and thus insufficient actuation by the controller. On the other hand,
a short sampling period may result in considerable measurement noise and
model over-fitting [Franklin et al. 1998], which in turn can lead to oscillations
in the controlled system.

Since we consider the system as a black box, we have to use statistical meth-
ods to obtain the model (as opposed, e.g., to analytical queuing theory tech-
niques). In order for these methods to work reliably, we need a set of measure-
ments that satisfy the following two criteria. First, the measurements should be
derived from actuation that spans the whole range of possible u(k) values. Sec-
ond, the measurements should reflect all possible deltas between consecutive
actuations u(k) and u(k − 1). Large deltas might affect the system differently
than small ones. For large number of measurements, one method that satis-
fies the above criteria is to select a u(k) at each sample period drawn from a
uniformly random distribution covering the whole set of possible u(k) values.
In other words, u(k) is a white noise signal consisting of signals that cover
the entire spectrum of potential input frequencies. We then fit the obtained
measurements to (1) by using least-squares regression (LSR)4 [Ljung 1998].

We implemented this identification process in the throttler. The clients send
as many requests as they are allowed to by the throttler. To ensure that worst-
case system dynamics are captured by the identification process, we use the
maximum number of clients (eight in our system) and look at the performance
of two extreme workload cases: (i) the entire data set fits in the servers’ cache
(DRAM memory); (ii) all requests go to random locations on the servers’ disks.
Most workloads fall somewhere between these two extremes.

Table II shows the R2 fit and the correlation coefficient of the residual error
for a first-order model as the sampling period is varied. They are both model-
fitting metrics. The correlation coefficient of the residual error [Franklin et al.
1998] is a number between 0 and 1 (the lower the better), which shows how
much predictable information from the measured data is not captured by the
model. A value close to zero means that there is no more predictable information
in the data for us to extract. The R2 fit [Franklin et al. 1998] is also a number
between 0 and 1 (the higher the better), that indicates how much variation in the
measured data is represented by the model. In the table, R2 values are worse
for the on-disk model, because measured latencies are more unpredictable in
that case.

4At a high level, LSR is based on the assumption that large measurement changes are highly

unlikely to be caused by noise and thus should be taken into account more than small changes.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

466 • M. Karlsson et al.

Fig. 3. System identification. Two extreme cases: the entire data set in cache and on disk,

respectively.

In Table II, we observe that a first-order model extracts most of the informa-
tion from the data. The two exceptions are the 300 and 100 ms intervals for the
in-cache case. We have tried higher-order models for these cases, but they re-
sulted in less than 0.05 improvement to R2 fits—they are still a lot worse than
having a sample period ≥ 500 ms. Thus, we use first-order models (N = 1) for
the rest of the article. We also see that sampling intervals of 500 ms or higher
provide the best fits. As 500 ms is close to the sample period where the model
degrades, we pick a sample period of 1 s for the rest of the article.

Note that traditionally R2 ≥ 0.8 is considered to be a good fit for a system
that can be approximated by a linear equation. As this is not the case with
our system, we have to look at a plot of the model data versus the real data to
judge whether the model is good. Figure 3 shows that both models predict the
trends correctly, but miss the correct magnitude of the value in extreme cases,
a situation that R2 is biased against.

The captions in Figure 3 show the two models we estimated for the two
extreme cases of workloads. The two models are substantially different, which,
as we will see, results in different controller designs for each case. Also, in both
models, the latency at time k, y(k), depends heavily on the actuation of the
system, u(k), at the same time. The reaction of our system to the actuation is
instantaneous. The intuition behind this is that our sample period is orders of
magnitude larger than the request latencies. Thus, in the models, y(k) depends
on u(k) rather than on u(k−1). Also, y(k) depends more on the actuation setting
and much less on the latency at time k − 1.5

3.2 Nonadaptive Controller Design

Having completed system identification, the next step is to design and assess
a controller for the feedback loop of Figure 1. It is known from the literature

5This is so, because the value of y(k) is typically in the range of 10−1, while u(k) is in the range of

102.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 467

that for a first-order system like ours, a simple integral (I) controller suffices
to control the system [Franklin et al. 1998]. The following is the time-domain
difference equation for an I-controller:

u(k) = u(k − 1) + K I e(k) (2)

In our system, e(k) = yref−w(k), where w(k) is the average measured latency
in the system at time k. This average measurement contains request latencies
that were produced by the system between time k − 1 and k. In the worst case,
w(k) would be based solely on latencies measured close to time k − 1. Thus we
set w(k) = y(k − 1), so that our analytical arguments hold even under those
circumstances. The controller output, u(k), is the desirable operating point of
the system at time k. K I is a constant controller parameter that captures how
reactive the controller is to the observed error. An integral controller ensures
that the measured error in the system output goes to zero in steady state if the
reference signal is a step function [Franklin et al. 1998]. For our system, this
means that the system latency will be able to track the latency reference in
steady state. Intuitively, when the latency error is positive (i.e., the measured
latency is lower than the reference), u(k) is larger than u(k − 1) to allow more
requests to go through to fully utilize the system. On the other hand, a negative
latency error indicates an overload condition in the system, and the controller
decreases u(k) to throttle back the requests to meet the latency goals.

We can now use control theory to come up with a value for K I that leads to a
stable system with low settling times and low overshoot. In order to accomplish
this, it is usually convenient to perform the analysis in the Z-domain [Franklin
et al. 1998; Hellerstein et al. 2004]. The Z-domain is a domain in which time
series such as the controller (2) and the model (1) can be expressed as the sum
of powers of the variable z. z can be viewed as a time shift operator, where z−1

means a delay of one time step, while z2 signifies two time steps in the future.
Control theory can then be used to design the closed loop by analyzing the
transfer function of the closed-loop system. This is the function in the Z-domain
that relates a change in the input to the controller (either from a change in the
reference signal or the measured latency) to the effect on the output when the
system is in a closed loop. To do this, we first need the Z-transform of all the
components of our loop. The Z-transform of the controller, K (z), can be derived
from (2) as follows:

U (z) = U (z)z−1 + K I E(z) ⇒ K (z) = U (z)

E(z)
= zK I

z − 1
. (3)

U (z), Y (z) and E(z) are the equivalents of variables u(k), y(k) and e(k) respec-
tively in the Z-domain. Using the same technique on the system models, we
find that G(z) = Gc(z) = 0.003827z

z−0.04554
or G(z) = Gd (z) = 0.1377z

z−0.001109
respectively, for

each of the two system models of Figure 3. H(z) = z−1 represents a delay of
one interval for the real system latency to be observed by the controller due to
averaging over a sampling period.

The transfer function of the closed-loop system, T (z), can be derived from the
Z-transforms of its components, shown in Figure 1, using standard algebraic

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

468 • M. Karlsson et al.

manipulations of Z-transforms [Franklin et al. 1998]. It is as follows:

T (z) = Y (z)

Yref(z)
= K (z)G(z)

1 + K (z)G(z)H(z)
= N (z)

D(z)
. (4)

The solutions to equation D(z) = 0 are called the poles of the transfer function
while the solutions to N (z) = 0 are called the zeroes. As will be explained later,
the poles indicate whether the closed loop is stable or not, while the zeroes
affect the settling time and overshoot of the controller. Inserting the values
for G(z), K (z) and H(z) above into (4), we obtain two versions of the system’s
transfer function, one for each of the system models:

Tc(z) = 0.003827K I z3

z(z2 − (1.046 − 0.003827K I)z + 0.04554)
, (5)

Td (z) = 0.1377K I z3

z(z2 − (1 − 0.1377K I)z + 0.001109)
. (6)

Control theory states that if the poles of T (z) are within the unit circle (|z| < 1
for all z such that D(z) = 0), the system is stable. Both transfer functions have a
denominator D(z), which is a third-order polynomial. However, one of the poles
is always at zero. Thus, we can only control the location of two poles. Solving this,
we find that the system is stable with 0 < KIc ≤ 546 for the on-cache workload,
and with 0 < KId ≤ 14.5 for the on-disk workload. It is very important that the
system is stable irrespective of whether the data is retrieved from the cache or
from the disk, as this depends not only on the access pattern of the workload
but also on other workloads’ activities in the system. For example, one workload
might have its data completely in the cache if it is running alone in the system,
but it might have all its data being retrieved from the disk if there are other
concurrent workloads evicting its data from the cache. This means that only
for values 0 < K I ≤ 14.5, the closed loop system is stable in practice.

However, stability alone is not enough. We need to pick a value for K I that
also results in low settling times and low overshoot, for the entire range of
possible system models. To do this, we use the transfer functions to calculate
the output values of the system under a step excitation, for different values of
K I . As Figure 4 shows, KIc = 213 and KId = 7.2 are good values for the in-cache
and on-disk models, respectively. However, there is no single K I value that could
work for both cases. Indeed, as Figure 5 shows, when a controller designed for
the in-cache model (with KIc = 213) is applied to a system with most accesses on
disk, it results to an unstable closed loop system. Conversely, when a controller
designed for the disk model (with KId = 7.2) is applied to a workload that mostly
retrieves data from the cache, we end up with unacceptably long settling times
and oscillations.

In conclusion, nonadaptive controllers designed following an offline system
identification and design approach, as described above, do not work with storage
systems like those we study here. Storage systems typically change a lot, either
because of the dynamics of multiple concurrent workloads or because of changes
in the configuration of the system itself. The latter may happen either because
of failures of system components or because of management actions such as

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 469

Fig. 4. The settling time and overshoot as a function of Ki when all data is in the cache (i) and on

the disk (ii). Both diagrams have two y-axes: settling time (s) and overshoot (%).

Fig. 5. The performance of the nonadaptive controller. A controller designed for the in-cache model

is applied to a mostly on-disk workloads (left). A controller for the on-disk model is applied to a

mostly in-cache workload (right). A latency of 0 means that there were no requests during that

sample period.

(re)provisioning. We cannot even design a separate nonadaptive controller for
each possible operating point of the system, because such operating points
are not known a priori, for realistic storage systems. In this section, we an-
alyzed the feasibility of a nonadaptive controller using an I-controller that is
appropriate for the systems we study. However, the results are applicable to any
nonadaptive controller. The unknown and unpredictable behavior of storage
systems makes it impossible to develop offline models for them, a fundamental
requirement for any type of nonadaptive controller.

The following section describes the design of a controller that dynamically
adapts, so that the closed loop is both stable and converges fast independent of
workload characteristics and system configuration.

4. DESIGNING AN ADAPTIVE CONTROLLER

We conclude from the previous section, that for a black-box storage system, we
need to dynamically adapt the controller as the operating point of the system

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

470 • M. Karlsson et al.

Fig. 6. Adaptive controller for client request throttling.

changes. This is exactly what adaptive control theory can be used for. An adap-
tive controller can be viewed as a controller that performs the system iden-
tification process described in the previous section automatically and online.
These controllers adapt online to system dynamics in two stages. First, they
estimate a system model using an online system identification process. Second,
they design online an appropriate controller for the current system model. In
practice, online closed-loop design using these two steps is computationally in-
tensive and may result in poorly conditioned loops for some parameter values.
Instead, we use a direct self-tuning regulator [Åström and Wittenmark 1995]
as our adaptive controller. These controllers estimate the system model and
controller in a single step, resulting in better adaptivity as well as lower com-
putational complexity. A block diagram of the feedback loop with the adaptive
controller is shown in Figure 6.

4.1 Analysis of the Adaptive Closed Loop

The main idea behind direct self-tuning regulators is to estimate a system
model that directly captures the controller parameters. In order to construct the
control law (the algorithm that decides how to perform actuation), the adaptive
controller first estimates a model which is then used to derive the control law.
We show how to do this, by starting from the generic model (1) with N = 1 and
M = 2 rewritten as follows:

y(k) = s1 y(k − 1) + r1u(k − 1) + r2u(k − 2). (7)

This is the model of the system from the perspective of the controller. That is,
the measured latency, y(k), is a function of the previous actuator settings and
latency measurements. We found in Section 3.1 that y(k) sampled at 1-second
intervals captures sufficiently the system dynamics. That system identification
process also showed that a first-order model accurately describes our target
system. However, in order to form a direct self-tuning regulator of a first-order
system, we need to start from (7) which is a second-order model. The reason for
this will be explained in the following paragraph.

The model parameters of (7) are estimated using a Recursive Least-Squares
(RLS) estimator [Ljung and Söderström 1987], an online version of the well-
known least-squares regression process. It provides the same estimation of
regular least squares, but with a lower computational complexity. To derive a

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 471

controller from this model, we observe that a controller is a function that returns
u(k). By shifting Eq. (7) one step ahead in time and solving for u(k), we get:

u(k) = 1

r1

y(k + 1) − s1

r1

y(k) − r2

r1

u(k − 1). (8)

If this equation is to be used to calculate the actuation setting u(k), then
y(k + 1) represents the desirable latency to be measured at the next sample
point at time k + 1, that is, it is yref. Thus, the final control law is:

u(k) = 1

r1

yref − s1

r1

y(k) − r2

r1

u(k − 1) (9)

The stability of the proposed adaptive controller can be established using a
variation of a well-known proof from the literature [Åström and Wittenmark
1995]. That proof applies to a simple direct adaptive control law that uses
a gradient estimator. In our case, however, we have a least-squares estimator.
The proof is adapted to apply to our estimator by ensuring persistent excitation.
Persistent excitation just states that there must be enough variability in the
actuator settings that RLS can estimate a model from it. Simply put, we need to
observe the latency of more than one actuator setting to form a model of it. The
rest of the proof steps remain the same. For the proof to be applicable, the closed-
loop system must satisfy all of the following properties: (i) the delay d (number
of intervals) by which previous controller outputs u(k) affect the system is fixed
and known; (ii) the zeroes (roots of the nominator) of the system’s transfer
function are within the unit circle; (iii) the sign of r1 is known; and (iv) the upper
bound on the order of the system is known. For our system, d = 1, the zeroes of
the system are at zero, r1 > 0, and we know that our system can be described
well by a first-order model. Given that these conditions hold, the proof shows
that the following are true: (a) the estimated model parameters are bounded; (b)
the normalized model prediction error converges to zero; (c) the actuator setting
u(k) and system output y(k) are bounded; (d) the controlled system output y(k)
converges to the reference value yref. Therefore, the closed-loop system with the
direct self-tuning regulator is stable, and the system latency converges to the
reference latency in steady state. The details of the stability proof can be found
in the Appendix

4.2 Adaptive Controller Design

In this section, we describe the operation of the adaptive controller in detail.
We discuss a number of heuristics we use to improve the properties of the
closed loop, based on knowledge of the specific domain. Using the pseudocode
of Figure 7, we go through all the steps of the online controller design process
and provide the intuition behind each step.

First, in line 1, the algorithm applies a so-called conditional update
law [Åström and Wittenmark 1995]. It checks whether there are any requests
in the last sample interval to provide a latency measurement. If not, neither
the model parameters are modified nor the actuation is computed.

At every sampling period, the algorithm performs an online estimation of the
model of the closed-loop system (equation (7)), as described in Section 4.1. That

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

472 • M. Karlsson et al.

Fig. 7. Pseudocode description of adaptive controller.

is, it estimates parameters s1, r1 and r2 using least-squares regression [Åström
and Wittenmark 1995] on the measured latencies. As a model derived from just
one sample interval is generally not a good one, the algorithm uses a model that
is a combination of the previous model and the model calculated from the last
interval measurements. The extent that the old model is taken into account is
governed by a forgetting factor λ, 0 < λ ≤ 1.

When the system changes suddenly, the controller needs to adapt faster than
what the forgetting factor λ allows. This is handled by the reset law of line 5.
If any of the new model parameters differ more than 30% from those of the old
model, the old model is not taken into account at all. To ensure sufficient exci-
tation so that a good new model can be estimated, u(k) is set to its maximum
value umax. In the down side, this results in poor workload isolation and differ-
entiation for a few sample intervals. However, it usually pays off, as the new
incorrect model produces a few quite different actuation settings. This means
that the estimator gets good varied data to quickly estimate a better model and
thus overall results in shorter settling times.

There is a possibility that the estimated model predicts a behavior that we
know to be impossible in the system. Specifically, it may predict that an increase
in throughput results in lower latency or that r1 = 0 (undesirable because r1

is inverted). This is tested in line 9. As this can never be the case in computer
systems, the algorithm discards the new model and uses the one from the pre-
vious interval instead. Even if such a wrong model was allowed to be used, the
controller would eventually converge to the right model. By including this test,
the controller converges faster.

The above three improvements are all targeted at shortening the time it
takes for the model to converge. As such, they do not affect the stability proof
in the Appendix. RLS and the control loop as a whole is guaranteed to be stable
and converge even without these improvements. It will just take longer for it
to converge.

Finally, the new operating point u(k) is calculated in line 11 using Eq. (9) with
the current model estimates. However, we need to make sure that the controller

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 473

does not set u(k) to an impossible value or to a value that does not make sense
in the system, that is, either u(k) < 0 or u(k) > umax in our case. This is checked
using a so-called anti-windup law, in line 12 [Åström and Wittenmark 1995].
In those cases, the value of u(k) is set to 0 and umax respectively.

The enforcement of such boundary conditions on the values of u(k) is not
covered by the stability proof in the Appendix. However, instability due to
boundaries enforcement can only occur if the boundary conditions are triggered
frequently. This is not the case in our design, for two reasons. First, we never
operate the system aiming at a workload throughput close to 0 (i.e., just a few
requests per second). Second, we set umax to a value higher than both the total
throughput capacity of the system and the throughput allotment of the highest
band. Thus, it is unlikely that the controller sets a u(k) above that value. The
boundary conditions are usually triggered only when the model is bad due to a
model reset or during the first few seconds after turning the system on. Such
brief periods of boundary conditions enforcement do not affect stability. The
design of adaptive controllers with boundary conditions (also known as satu-
ration points) and other constraints is an active research area in the control
theory community.

Finally, an iteration of the algorithm completes with updating the old model
with the new one in line 16.

5. EXPERIMENTAL RESULTS

In this section, we use experimental results to confirm the analytical arguments
made in Section 4. We demonstrate the following points about the proposed
adaptive controller:

—Its performance is comparable to a nonadaptive controller that has been
specifically designed for the current operating range of the system.

—It achieves performance isolation and differentiation among workloads ac-
cording to performance goals specified as in Section 2.

—It performs well in the face of sudden changes to either system, performance
goals, or workloads.

We evaluate the proposed adaptive controller in a Lustre installation. Lustre
is a cluster file system for Linux that is designed to achieve high-aggregate
throughputs. For the experiments, we use either one or two servers and eight
client nodes. All nodes are of the same hardware configuration: 2x PIII CPUs
at 1 GHz, 2 GB RAM, and one directly attached Seagate 36GB SCSI Ultra160,
15K rpm hard disk. All nodes are running a RedHat Linux installation using
kernel version 2.4.20 with Lustre-specific patches.

As before, we assume a workload per client. All the experiments involve
synthetic workloads that can be manipulated as required for the points we need
to make. We use IOzone [IOzone 2003] as our workload generator, augmented
with an implementation of our throttler. Each client starts an IOzone process
that synchronously issues request as fast as the throttler allows it to.

We first compare the performance of our adaptive controller with that of
the nonadaptive controller that was designed offline for a specific operating

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

474 • M. Karlsson et al.

Fig. 8. The performance of the non-adaptive controller on the left and of the adaptive controller

on the right. The controllers are enabled at time 10 seconds. Two workloads are considered, a

cache-bound one and a disk-bound one, each with its own latency goal.

Fig. 9. The performance of the adaptive controller when the workload changes from disk to cache-

bound. The latency goal is also changed to demonstrate the adaptability of the model estimation.

The workload as well as its latency goal change at time 40 seconds.

range, assuming that the system remains within that operating range. Figure 8
shows that the two controllers are indistinguishable in practice. The adaptive
controller has settling times and overshoot comparable to that of the nonadap-
tive controller (approximately 2–3 seconds). Both controllers result in higher
oscillation with the random disk-bound workload, since latencies are more un-
predictable in that case. In conclusion, there is no performance penalty due the
online estimation of the adaptive controller’s parameters.

Figure 9 demonstrates how fast the adaptive controller adapts to sudden sys-
tem changes. In this case, the workload characteristics change dramatically—
the workload turns from an all-in-disk to an all-in-cache data set. To demon-
strate adaptability, we also change the latency goal of the workload at the same
time, since a more aggressive goal is feasible with the all-in-cache data set.
The adaptive controller traces the change and the new performance goal of the
workload is met within 3 seconds.

Figure 10 demonstrates performance isolation between two workloads that
compete for system throughput. Initially, no throttling is happening and the
latency goals of both workloads are violated. The right figure shows the

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 475

Fig. 10. Latency and throughput isolation when running two cache-bound workloads. The con-

troller is enabled at time 10 seconds.

Fig. 11. Latency and throughput differentiation in a dynamic system. Both workloads are cache-

bound. At time 30 seconds, the capacity of the system (number of servers) is doubled.

throughput goals of the two workloads—these reference values represent the
aggregate throughput goal for each workload as specified by the throughput
bands (Section 2), that is achievable with the current system capacity. Before
the controller is activated, the throughout goal of workload 2 is exceeded by
more than 6x, while the goal of workload 1 is not met. Within approximately
2 seconds from the moment the controller is enabled, the available system
throughput is shared between the two workloads according to their specifica-
tions. The latency goals of both workloads are also satisfied. In fact, it can be
seen, that the aggregate (for both workloads) achievable system throughput
with the controller enabled is approximately 150 IO/s less than the aggregate
throughput obtained from the uncontrolled system. The reason is that the work-
loads are throttled so that they meet their latency goals. Higher throughput
(even though there is some available capacity in the system) would result in
violation of the latency goals, due to queuing delays.

Figure 11 demonstrates differentiation between two workloads, when the
capacity of the system is not sufficient to meet the goals of both workloads. It
also shows how the controller adapts when the system capacity changes. The
performance goals of the two workloads are specified in Table I.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

476 • M. Karlsson et al.

Initially, the data is placed on just one server, which can provide only up to
500 IO/s while satisfying the latency goals of both workloads, which are 4 and
5 ms respectively. According to Table I, the system operates in the beginning of
band 2. That is, workload 1 gets all its approximately 350 IO/s due to 50 IO/s
from band 0 and 300 IO/s from band 1; workload 2 gets 50 IO/s from band 0
and just some of the IO/s from band 2.

At time 30 seconds, the system’s capacity is doubled by adding an additional
server. The data is now striped across both servers6 and both workloads are
load-balanced evenly across the two servers. The new system has higher per-
formance, being able to provide close to 700 IO/s while it meets the latency goals
of the two workloads. Thus, the system now operates at the end of band 2. The
estimated model adapts fast to the change (due to the reset law of Figure 7) and
the controller changes the throttling performed on workload 2 within 2 seconds
from system reconfiguration.

6. CONCLUSION

This article proposes a technique for achieving performance isolation and dif-
ferentiation among multiple workloads that share the same storage infrastruc-
ture, a common problem in consolidated data centers. The proposed solution is
based on a distributed adaptive controller that throttles workloads according
to their performance goals and their relative importance. The controller con-
siders the storage system as a black box, which makes the solution applicable
to a wide range of systems, and it adapts automatically to system and workload
dynamics.

The article argues that an adaptive control law is the only appropriate
generic way to control a storage system. A nonadaptive controller is not suffi-
cient in our case. We cannot even design a separate nonadaptive controller for
each possible operating range of the system, because such operating ranges are
not known a priori. Storage systems are large and complex; in general, their
performance behavior and workloads cannot be predicted.

In this article, we demonstrate the feasibility and design of an adaptive con-
troller. We do not claim that this is the best adaptive controller to be used for
black-box storage systems. As a topic for future research, more complex and pos-
sibly faster adaptive controllers should be evaluated. However, our arguments
about the necessity of adaptive controllers are generally applicable, because of
the inherent characteristics of large storage systems and their workloads.

APPENDIX
STABILITY PROOF OF THE ADAPTIVE CONTROLLER

In this Appendix, we prove the stability of our adaptive controller from Sec-
tion 4. The proof is valid for a changing but bounded yref, thus we use the
notation yref(k) in the proof. The model used is also more general as it can be of
any order. The proof holds for first-order models as well as any other bounded
order model.

6The size of the data sets for this experiment is small, just a few MB. Thus, the migration of the

data to the new configuration is essentially instantaneous—happens within a few ms.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 477

Consider the following discrete-time linear system,

w(k) = φT (k − d)θ0 = φT (k − 1)θ0, (10)

where

φ(k − 1) = [w(k − 1) · · · w(k − N) u(k − 1) · · · u(k − M)]T , (11)

and

θ0 = [s1 · · · sN r1 · · · rM]T . (12)

LEMMA 1 (RECURSIVE LEAST-SQUARES (RLS) ESTIMATOR PROPERTIES). [GRAHAM

AND SANG 1984]. Let the RLS estimator

θ̂ (k) = θ̂ (k − 1) + P (k − 2)φ(k − 1)

1 + φ(k − 1)T P (k − 2)φ(k − 1)
e(k), k ≥ 1 (13)

e(k) = w(k) − φ(k − 1)T θ̂ (k − 1) (14)

P (k − 1) = P (k − 2) − P (k − 2)φ(k − 1)φ(k − 1)T P (k − 2)

1 + φ(k − 1)T P (k − 2)φ(k − 1)
(15)

with θ̂ (0) given and P (−1) = P (−1)T > 0, be applied to data generated by (10).
It then follows that

(i) ||θ̂ (k)−θ0||2 ≤ κ1||θ̂ (0)−θ0||2, k ≥ 1, κ1 = condition number of P (−1)−1.
(ii) limk−>∞ e(k)√

1+κ2φ(k−1)T φ(k−1))
= 0, κ2 = maximum eigenvalue of P (−1).

(iii) limk−>∞ ||θ̂ (k) − θ̂ (k − h)|| = 0, for any finite h.

The above lemma shows that (i) parameter estimates from the RLS con-
verges, (ii) the errors in the estimates are bounded, and (iii) the normalized
prediction error converges to zero.

LEMMA 2 (KEY TECHNICAL LEMMA [ÅSTRÖM AND WITTENMARK 1995]). Let {sk}
be a sequence of real numbers and let {σk} be a sequence of vectors such that

(i) ||σk|| ≤ c1 + c2 max0≤h≤k |sh|, c1 ≥ 0, c2 > 0.

(ii) limk−>∞
s2
k

α1+α2σ T
k σk

= 0, α1 > 0, α2 > 0.

Then ||σk|| is bounded, and limk−>∞ sk = 0.

In the direct self-tuning adaptive controller, we use the following control law,

φ(k)T θ̂ (k) = yref(k + 1), (16)

where yref(k) is the reference value for w(k).
Next we prove a theorem that establishes the stability of the closed-loop

system using such a controller. The proof is adapted from the one in Åström
and Wittenmark [1995] for an adaptive control law that uses a simple projection
algorithm.

THEOREM 1. Consider a system described by (10). Let the system be controlled
with the adaptive control algorithm given by (16), where the estimator is given
in Lemma 1. Let the reference signal yref be bounded. Assume that

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

478 • M. Karlsson et al.

(A1) The time delay d from (10) is fixed.
(A2) Upper bounds on the order of the system (N,M) are known.
(A3) The zeroes (roots of the nominator) of the system’s transfer function are

within the unit circle.
(A4) The sign of r1 is known.

Then

(i) The sequences {u(k)} and {w(k)} are bounded.
(ii) limk−>∞ |w(k) − yref(k)| = 0.

PROOF. Define the tracking error ε(k) as

ε(k) = w(k) − yref(k). (17)

From (16) and (14), we have

ε(k) = w(k) − φ(k − 1)T θ̂ (k − 1) = e(k). (18)

Hence, the tracking error equals to the prediction error. Then, based on
Lemma 1, we have

lim
k−>∞

ε(k)2

1 + κ2φ(k − 1)T φ(k − 1)
= 0.

We have established condition (ii) of Lemma 2 with sk = ε(k), σk = φ(k−1), α1 =
1, and α2 = κ2. To establish condition (i), we note that

w(k) = ε(k) + yref(k).

Since yref(k) is bounded, it follows that

|w(k)| ≤ a1 + a2 max
0≤h≤k

|ε(k)|, a1 ≥ 0, a2 > 0.

Moreover, since the inverse transfer function of the system is stable due to
assumption (A3), it follows that

|u(k − 1)| ≤ b1 + b2 max
0≤h≤k

|ε(k)|, b1 ≥ 0, b2 > 0.

Hence, there exist c1 ≥ 0 and c2 > 0 such that

|φ(k − 1)| ≤ c1 + c2 max
0≤h≤k

|ε(k)|.

Applying Lemma 2, we have, φ(k) is bounded, and limk−>∞ |ε(k)| = 0. Hence,
the adaptive controller used in this article is stable.

ACKNOWLEDGMENTS

The authors would like to thank Terril Hurst, Mikael Johansson and Kim
Keeton for their help.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Triage: Performance Differentiation for Storage Systems • 479

REFERENCES

ABDELZAHER, T., SHIN, K. G., AND BHATTI, N. 2002. Performance guarantees for web server end-

systems: A control-theoretical approach. IEEE Trans. Paral. Distrib. Syst. 13, 1, 80–96.

ABDELZAHER, T., SHIN, K. G., AND BHATTI, N. 2003. User-level QoS-adaptive resource management

in server end-systems. IEEE Trans. Comput. 52, 5, 678–685.

ABDELZAHER, T. F. AND BHATTI, N. 1999. Web content adaptation to improve server overload be-

havior. In Proceedings of the International World Wide Web Conference (WWW) (Toronto, Ont.,

Canada). 1563–1577.

ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S., UYSAL, M., AND VEITCH, A. 2002. Hippodrome:

Running circles around storage administration. In Proceedings of the International Conference
on File and Storage Technologies (FAST) (Monterey, CA). 175–188.

ÅSTRÖM, K. J. AND WITTENMARK, B. 1995. Adaptive Control, 2nd ed. Electrical Engineering: Con-

trol Engineering. Addison-Wesley Publishing Company. ISBN 0-201-55866-1.

CALLAGHAN, B., PAWLOWSKI, B., AND STAUBACH, P. 1995. RFC1813: NFS version 3 protocol specifi-

cation. http://www.faqs.org/rfcs/rfc1813.html.

CHAMBLISS, D., ALVAREZ, G., PANDEY, P., JADAV, D., XU, J., MENON, R., AND LEE, T. 2003. Performance

virtulization for large-scale storage systems. In Proceedings of the Symposium on Reliable Dis-
tributed Systems (SRDS) (Florence, Italy). 109–118.

DIAO, Y., HELLERSTEIN, J., AND PAREKH, S. 2002a. MIMO control of an Apache web server: Modeling

and controller design. In Proceedings of the American Control Conference (ACC) (Anchorage, AK).

4922–4927.

DIAO, Y., HELLERSTEIN, J., AND PAREKH, S. 2002b. Optimizing quality of service using fuzzy control.

In Proceedings of the International Workshop on Distributed Systems Operations and Manage-
ment (DSOM) (Montreal, Que., Canada). 42–53.

DIAO, Y., HELLERSTEIN, J., AND PAREKH, S. 2002c. Using fuzzy control to maximize profits in service

level management. IBM Syst. J. 41, 3, 403–420.

DIAO, Y., HELLERSTEIN, J., PAREKH, S., AND BIGUS, J. 2003a. Managing web server performance with

AutoTune agents. IBM Syst. J. 42, 1, 136–149.

DIAO, Y., LUI, X., FROEHLICH, S., HELLERSTEIN, J., PAREKH, S., AND SHA, L. 2003b. On-line response

time optimization of an apache web server. In Proceedings of the International Workshop on
Quality of Service (IWQoS) (Monterey, CA). 461–478.

FRANKLIN, G. F., POWELL, J. D., AND WORKMAN, M. 1998. Digital Control of Dynamic Systems, 3rd

ed. Addison-Wesley. ISBN 0-201-82054-4.

GOYAL, P., JADAV, D., MODHA, D., AND TEWARI, R. 2003. CacheCOW: QoS for storage system caches.

In Proceedings of the International Workshop on Quality of Service (IWQoS) (Monterey, CA).

498–516.

GRAHAM, G. AND SANG, S. K. 1984. Adaptive Filtering: Prediction and Control. Prentice Hall,

Englewood Cliffs, NJ. ISBN 0-130-04069-X.

HELLERSTEIN, J., DIAO, Y., PAREKH, S., AND TILBURY, D. 2004. Feedback Control of Computing Sys-
tems. Wiley-IEEE Press, New York. ISBN 0-471266-37-X.

IOZONE 2003. IOzone File-System Benchmark. www.iozone.org.

KO, B.-J., LEE, K.-W., AMIRI, K., AND CALO, S. 2003. Scalable service differentiation in a shared

storage cache. In Proceedings of the International Conference on Distributed Computing Systems
(ICDCS) (Providence, RI). 184–193.

LEE, H. D., NAM, Y. J., AND PARK, C. 2004. Regulating I/O performance of shared storage with a

control theoretical approach. In Proceedings of the NASA/IEEE Conference on Mass Storage Sys-
tems and Technologies (MSST) (College Park, MD). IEEE Computer Society Press, Los Alamitos,

CA.

LI, B. AND NAHRSTEDT, K. 1998. A control theoretical model for quality of service adaptations.

In Proceedings of the International Workshop on Quality of Service (IWQoS) (Napa, CA). 145–

153.

LJUNG, L. 1998. System Identification: Theory for the User, 2nd ed. Prentice-Hall, Englewood,

Cliffs, NJ. ISBN 0-136566-95-2.

LJUNG, L. AND SÖDERSTRÖM, T. 1987. Theory and Practise of Recursive Identification. MIT Press,

Cambridge, MA. ISBN 0-262620-58-8.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

480 • M. Karlsson et al.

LU, C., ABDELZAHER, T., STANKOVIC, J., AND SON, S. 2001. A feedback control approach for guar-

anteeing relative delays in web servers. In Proceedings of the IEEE Real Time Technology and
Applications Symposium (RTAS) (Taipei, Taiwan), IEEE Computer Society Press, Los Alamitos,

CA. 51–62.

LU, Y., ABDELZAHER, T., LU, C., AND TAO, G. 2002. An adaptive control framework for QoS guar-

antees and its application to differentiated caching services. In Proceedings of the International
Workshop on Quality of Service (IWQoS) (Miami Beach, FL). 23–32.

LU, Y., SAXENA, A., AND ABDELZAHER, T. 2001. Differentiated caching services; a control-theoretical

approach. In Proceedings of the International Conference on Distributed Computing Systems
(ICDCS) (Phoenix, AZ). 615–622.

LUMB, C., MERCHANT, A., AND ALVAREZ, G. 2003. Façade: Virtual storage devices with performance

guarantees. In Proceedings of the International Conference on File and Storage Technologies
(FAST) (San Francisco, CA). 131–144.

LUSTRE. 2005. Lustre Cluster File-System. www.lustre.org.

PAREKH, S., HELLERSTEIN, J., JAYRAM, T., GANDHI, N., TILBURY, D., AND BIGUS, J. 2002. Using control

theory to achieve service level objectives in performance management. J. Real-Time Syst. 23, 1–2

(July-Sept.), 127–141.

ROBERTSSON, A., WITTENMARK, B., AND KIHL, M. 2003. Analysis and design of admission control

in web-server systems. In Proceedings of the American Control Conference (ACC) (Denver, CO).

254–259.

ROBERTSSON, A., WITTENMARK, B., KIHL, M., AND ANDERSSON, M. 2004. Admission control for web

server systems-design and experimental evaluation. In Proceedings of the IEEE Conference on
Decision and Control (CDC) (Paradise Island, Bahamas). IEEE Computer Society Press, Los

Alamitos, CA, 531–536.

SAITO, Y., FRøLUND, S., VEITCH, A., MERCHANT, A., AND SPENCE, S. 2004. Fab: building reliable enter-

prise storage systems on the cheap. In Proceedings of the Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Boston, MA). 48–58.

STANKOVIC, J., HE, T., ABDELZAHER, T., MARLEY, M., TAO, G., AND SO, S. 2001. Feedback control

scheduling in distributed systems. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS) (London, UK). 59–72.

SUNDARAM, V. AND SHENOY, P. 2003. A practical learning-based approach for dynamic storage

bandwidth allocation. In Proceedings of the International Workshop on Quality of Service (IWQoS)
(Monterey, CA) 479–497.

WELSH, M. AND CULLER, D. 2003. Adaptive overload control for busy internet servers. In Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems (USITS) (Seattle, WA).

43–56.

Received April 2005; revised July 2005; accepted August 2005

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

