
1

My cache or yours?
Making storage more exclusive

Theodore Wong (Carnegie Mellon University)
John Wilkes (HP Labs)

USENIX 2002

Theodore Wong USENIX 20022

Typical storage system

TB disk storage

…

Clients: MB file system caches

…

Array:
GB block cache

Gbit/s network

2

Theodore Wong USENIX 20023

Motivation

• Array cache is inclusive
• Blocks duplicated in the client and array

• We make the array cache exclusive
• Blocks either at the client or array

“Your cache ain’t nuthin’ but trash.”
–Muntz and Honeyman

Theodore Wong USENIX 20024

Client LRU

Typical inclusive caching

Array
read

Client
read

Array LRU

Discard

Discard

Client
request

Blocks cached in two places: wasteful!

3

Theodore Wong USENIX 20025

Array LRU

Client LRU

Exclusive caching

Discard

Client
request

Client
read “Demote”

Blocks cached in only one place

Theodore Wong USENIX 20026

Outline

• Single-client evaluation

• Multi-client evaluation

• Conclusions

4

Theodore Wong USENIX 20027

Single-client evaluation
• Verify that exclusive caching works

• Study caching schemes in simple systems:
• Single client cache, equal in size to array cache
• Read-only workloads

• Analyze sensitivity to:
• Reduced bandwidth
• Larger and smaller array cache sizes

Theodore Wong USENIX 20028

Predicting benefits: Random

0
0

H
it

ra
te

Cache size

Inclusive
Exclusive

In
cr

ea
se

5

Theodore Wong USENIX 20029

Predicting benefits: Zipf-like

0
0

H
it

ra
te

Cache size

Inclusive
Exclusive

In
cr

ea
se

Theodore Wong USENIX 200210

Single-client workloads: Synthetic

• RANDOM (e.g., transaction processing)
• ZIPF (e.g., web server; file server)

• Simulated in Pantheon

6

Theodore Wong USENIX 200211

Single-client schemes

• INCLUSIVE
• Baseline “typical” scheme

• DEMOTE
• Exclusive caching scheme

Theodore Wong USENIX 200212

Single-client results: Synthetic

Exclusive caching works

0
1
2
3
4
5
6

RANDOM ZIPF
Workload

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE DEMOTE
64 MB client cache
64 MB array cache

1 Gbit/s network
10 ms disk latency

7

Theodore Wong USENIX 200213

Sensitivity evaluation results: Network

Resilient to bandwidth variation

RANDOM

0
2
4
6
8

10
12
14
16

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE
DEMOTE

ZIPF

0

1

2

3

4

5

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE
DEMOTE

Theodore Wong USENIX 200214

Single-client workloads: Real

• CELLO99: File server
• TPC-H: Database server benchmark
• DB2: Multi-client database workload
• HTTPD: Web server farm

• Simulated in fscachesim

8

Theodore Wong USENIX 200215

Single-client results: Real

0
1
2
3
4
5
6

CELLO99 TPC-H DB2 HTTPD
Workload

La
te

nc
y

(m
s)

INCLUSIVE DEMOTE
1 Gbit/s network

5 ms disk latency

Exclusive caching works for real loads

Theodore Wong USENIX 200216

Sensitivity evaluation results: Cache size

Resilient to array cache size variation

TPC-H

0

1

2

3

4

5

6

1 10 100 1000
Array cache size (GB)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE

DEMOTE

32 GB client cache
1 Gbit/s network

5 ms disk latency

9

Theodore Wong USENIX 200217

Single-client summary

Exclusive caching yields significant speedups
Resilient to bandwidth, cache size variation

Workload Speedup
CELLO99 1.3

TPC-H 1.1
DB2 1.4

HTTPD 2.2

Workload Speedup
RANDOM 7.5

ZIPF 1.7

Theodore Wong USENIX 200218

Multi-client evaluation

• Predict benefits for real systems
• Large array cache, smaller client caches

• Consider effects of inter-client sharing

• Define two types of workload:
• Disjoint workloads: No block sharing
• Shared workloads: Some block sharing

10

Theodore Wong USENIX 200219

Shared workloads and DEMOTE

Need to save “disk-read” blocks at array

Clients

Array LRU

Request 1

Request 3

Re-read! Request 2

Theodore Wong USENIX 200220

Adaptive exclusive caching

Data

“Ghost”
LRU caches

Real LRU cache
Array

Demoted block

Read block

Data
Metadata

Metadata

11

Theodore Wong USENIX 200221

Adaptive caching: Receiving requests

Hit?

“Ghost”
LRU caches

Real LRU cache
Array

Read request
Hit?

?

Theodore Wong USENIX 200222

Insertions with scores

• Read block insertion:
• Score = read ghost hits / sum of ghost hits
• 0 → real cache head, 1 → real cache tail

• Demoted block insertion: similar to read

Need to make insertions fast

12

Theodore Wong USENIX 200223

Fast insertions with segments
1.0 0.8 0.6 0.20.4 0.0

0.9 0.20.5

Array LRU; uniform

Blocks

1.0 0.8 0.6 0.0

Array LRU; exponential

0.9 0.5 0.2 Blocks

Theodore Wong USENIX 200224

Multi-client workloads

• Disjoint:
• DB2 (8 hosts): As before
• OPENMAIL (6 hosts): Mail server farm

• Shared:
• HTTPD (7 hosts): As before

• Simulated in fscachesim

13

Theodore Wong USENIX 200225

Multi-client schemes

• INCLUSIVE
• Baseline

• DEMOTE

• DEMOTE-ADAPT-EXP
• Adaptive caching, exponential segments

Theodore Wong USENIX 200226

Multi-client results: DB2

DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks

0
1
2
3
4
5
6

C1 C2 C3 C4 C5 C6 C7 C8

Client name

La
ten

cy
 (m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

14

Theodore Wong USENIX 200227

Multi-client results: OPENMAIL

Again, DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks

0

1

2

3

4

5

C1 C2 C3 C4 C5 C6

Client name

La
ten

cy
(m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

Theodore Wong USENIX 200228

Multi-client results: HTTPD

DEMOTE-ADAPT-EXP for shared workloads:
• Keep both demoted and disk-read blocks

0

1

2

C1 C2 C3 C4 C5 C6 C7

Client name

La
ten

cy
 (m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

15

Theodore Wong USENIX 200229

Multi-client summary

Eject read blocks for disjoint workloads
(DB2, OPENMAIL)
Keep some read blocks for shared workloads
(HTTPD)

DB2
OPENMAIL

HTTPD

DEMOTE DEM-ADAPT-EXP

1.3

1.2

1.5

Workload

1.2 0.9
0.6

Mean per-client speedup

Theodore Wong USENIX 200230

Related work
• Inclusive caching

[Muntz1992, Froese1996]

• Global memory management:
• Database system cache management

[Franklin1992]
• Peer-to-peer cooperative caching

[Dahlin1994, Feeley1995]

• Per-workload cache management policies

16

Theodore Wong USENIX 200231

Conclusions

• Exclusive caching beats inclusive

• Simple demote op yields big speedups

“My cache OR your cache?”
–Wong and Wilkes

Theodore Wong USENIX 200232

More information

• My research page:
• http://www.cs.cmu.edu/~tmwong/research/

• HPL Storage Systems Program:
• http://www.hpl.hp.com/SSP/

