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Typical storage system

TB disk storage

…

Clients: MB file system caches

…

Array:
GB block cache

Gbit/s network



2

Theodore Wong    USENIX 20023

Motivation

• Array cache is inclusive
• Blocks duplicated in the client and array

• We make the array cache exclusive
• Blocks either at the client or array

“Your cache ain’t nuthin’ but trash.”
–Muntz and Honeyman
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Client LRU

Typical inclusive caching
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Blocks cached in two places: wasteful! 
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Array LRU

Client LRU

Exclusive caching

Discard

Client
request

Client
read “Demote”

Blocks cached in only one place
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Outline

• Single-client evaluation

• Multi-client evaluation

• Conclusions
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Single-client evaluation
• Verify that exclusive caching works

• Study caching schemes in simple systems:
• Single client cache, equal in size to array cache
• Read-only workloads

• Analyze sensitivity to:
• Reduced bandwidth
• Larger and smaller array cache sizes
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Predicting benefits: Random
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Predicting benefits: Zipf-like
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Single-client workloads: Synthetic

• RANDOM (e.g., transaction processing)
• ZIPF (e.g., web server; file server)

• Simulated in Pantheon
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Single-client schemes

• INCLUSIVE
• Baseline “typical” scheme

• DEMOTE
• Exclusive caching scheme
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Single-client results: Synthetic

Exclusive caching works
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Sensitivity evaluation results: Network

Resilient to bandwidth variation
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Single-client workloads: Real

• CELLO99: File server
• TPC-H: Database server benchmark
• DB2: Multi-client database workload
• HTTPD: Web server farm

• Simulated in fscachesim
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Single-client results: Real
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Exclusive caching works for real loads

Theodore Wong    USENIX 200216

Sensitivity evaluation results: Cache size

Resilient to array cache size variation

TPC-H
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Single-client summary

Exclusive caching yields significant speedups
Resilient to bandwidth, cache size variation

Workload Speedup
CELLO99 1.3

TPC-H 1.1
DB2 1.4

HTTPD 2.2

Workload Speedup
RANDOM 7.5

ZIPF 1.7
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Multi-client evaluation

• Predict benefits for real systems
• Large array cache, smaller client caches

• Consider effects of inter-client sharing

• Define two types of workload:
• Disjoint workloads: No block sharing
• Shared workloads: Some block sharing
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Shared workloads and DEMOTE

Need to save “disk-read” blocks at array

Clients

Array LRU

Request 1

Request 3

Re-read! Request 2
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Adaptive exclusive caching

Data

“Ghost”
LRU caches

Real LRU cache
Array

Demoted block

Read block

Data
Metadata

Metadata
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Adaptive caching: Receiving requests

Hit?

“Ghost”
LRU caches

Real LRU cache
Array

Read request
Hit?

?
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Insertions with scores

• Read block insertion:
• Score = read ghost hits / sum of ghost hits
• 0 → real cache head, 1 → real cache tail

• Demoted block insertion: similar to read

Need to make insertions fast
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Fast insertions with segments
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Multi-client workloads

• Disjoint:
• DB2 (8 hosts): As before
• OPENMAIL (6 hosts): Mail server farm

• Shared:
• HTTPD (7 hosts): As before

• Simulated in fscachesim
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Multi-client schemes

• INCLUSIVE
• Baseline

• DEMOTE

• DEMOTE-ADAPT-EXP
• Adaptive caching, exponential segments
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Multi-client results: DB2

DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks
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Multi-client results: OPENMAIL

Again, DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks
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Multi-client results: HTTPD

DEMOTE-ADAPT-EXP for shared workloads:
• Keep both demoted and disk-read blocks
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Multi-client summary

Eject read blocks for disjoint workloads
(DB2, OPENMAIL)
Keep some read blocks for shared workloads 
(HTTPD)

DB2
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HTTPD

DEMOTE DEM-ADAPT-EXP
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Related work
• Inclusive caching

[Muntz1992, Froese1996]

• Global memory management:
• Database system cache management

[Franklin1992]
• Peer-to-peer cooperative caching

[Dahlin1994, Feeley1995]

• Per-workload cache management policies
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Conclusions

• Exclusive caching beats inclusive

• Simple demote op yields big speedups

“My cache OR your cache?”
–Wong and Wilkes
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More information

• My research page:
• http://www.cs.cmu.edu/~tmwong/research/

• HPL Storage Systems Program:
• http://www.hpl.hp.com/SSP/


