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Abstract. The data migration problem is the problem of computing a
plan for moving data objects stored on devices in a network from one con-
figuration to another. Load balancing or changing usage patterns might
necessitate such a rearrangement of data. In this paper, we consider the
case where the objects are fixed-size and the network is complete. We
introduce two new data migration algorithms, one of which has prov-
ably good bounds. We empirically compare the performance of these
new algorithms against similar algorithms from Hall et al. [7] which have
better theoretical guarantees and find that in almost all cases, the new
algorithms perform better. We also find that both the new algorithms
and the ones from Hall et al. perform much better in practice than the
theoretical bounds suggest.

1 Introduction

The performance of modern day large-scale storage systems (such as disk farms)
can be improved by balancing the load across devices. Unfortunately, the optimal
data layout is likely to change over time because of workload changes, device
additions, or device failures. Thus, it may be desirable to periodically compute
a new assignment of data to devices [3,5,6,11], either at regular intervals or
on demand as system changes occur. Once the new assignment is computed,
the data must be migrated from the old configuration to the new configuration.
This migration must be done as efficiently as possible to minimize the impact
of the migration on the system. The large size of the data objects (gigabytes
are common) and the the large amount of total data (can be petabytes) makes
migration a process which can easily take several days.

In this paper, we consider the problem of finding an efficient migration plan.
We focus solely on the offline migration problem i.e. we ignore the load im-
posed by user requests for data objects during the migration. Our motivation
for studying this problem lies in migrating data for large-scale storage system
management tools such as Hippodrome [2]. Hippodrome automatically adapts to
changing demands on a storage system without human intervention. it analyzes
a running workload of requests to data objects, calculates a new load-balancing
configuration of the objects and then migrates the objects. An offline migration



can be performed as a background process or at a time when loads from user
requests are low (e.g. over the weekend).

The input to the migration problem is an initial and final configuration of data
objects on devices, and a description of the storage system (the storage capacity
of each device, the underlying network connecting the devices and the size of each
object.) Our goal is to find a migration plan that uses the existing connections
between storage devices to move the data from the initial configuration to the
final configuration in as few time steps as possible. We assume that the objects
are all the same size, for example, fragmenting them into fixed sized extents. We
also assume that any pair of devices can send to each other without impacting
other pairs, i.e., we assume that the underlying network is complete. A crucial
constraint on the legal parallelism in any plan is that each storage device can be
involved in the transfer (either sending or receiving, but not both) of only one
object at a time.

We consider two interesting variants of the fixed size migration problem.
First, we consider the effect of space constraints. For migration without space
constraints we assume that an unlimited amount of storage for data objects is
available at each device in the network. At the other extreme, in migration with
space constraints, we assume that each device has the minimum amount of extra,
space possible — only enough to hold one more object than the maximum of the
number of objects stored on that device in the initial configuration or in the final
configuration. At the end of each step of a migration plan, we ensure that the
number of objects stored at a node is no more than the assumed total space at
that node.

Second, we compare algorithms that migrate data directly from source to
destination with those that allow indirect migration of data, through interme-
diate nodes. We call these intermediate nodes bypass modes. Frequently, there
are devices with no objects to send or receive, and we can often come up with a
significantly faster migration plan if we use these devices as bypass nodes.

We can model the input to our problem as a directed multigraph! G = (V, E)
without self-loops that we call the demand graph. Each of the vertices in the
demand graph corresponds to a storage device, and each of the directed edges
(u,v) represents an object that must be moved from storage device u (in the
initial configuration) to storage device v (in the final configuration). The output
of our algorithms will be a positive integer label for each edge which indicates
the stage at which that edge is moved. I/O constraints imply that no vertex can
have two edges with the same integer label incident to it.

The labels on the edges may be viewed as colors in an edge coloring of the
graph. Thus, direct migration with no space constraints is equivalent to the well
known multigraph edge-coloring problem. The minimum number of colors needed
to edge-color a graph is called the chromatic index or X' of the graph. Computing
X" is NP-complete but there is a 1.1x'(G) + .8 approximation algorithm [9]. A,
the maximum degree of the graph, is a trivial lower bound on the number of

1A multigraph is a graph which can have multiple edges between any two nodes.



colors needed. It is also well known that 1.5A colors always suffice and that there
are graphs requiring this many colors.

For indirect migration, we want to get as close as possible to the theoretically
minimum-length migration plan of A while minimizing the number of bypass
nodes needed. The following example shows how a bypass node can be used to
reduce the number of stages. In the graph on the left, each edge is duplicated &
times and clearly x' = 3k. However, using only one bypass node, we can perform
the migration in A = 2k stages as shown on the right. (The bypass node is
shown as o.)

It is easy to see that n/3 is a worst case lower bound on the number of bypass
nodes needed to perform a migration in A stages — consider the example demand
graph consisting of k disjoint copies of the 3-cycle (n = 3k).

In this paper, we introduce two new migration algorithms. The primary focus
of our work is on the empirical evaluation of these algorithms, and the migration
algorithms introduced in [7].

For the case where there are no space constraints, we evaluate two algorithms
which use indirection. We introduce the first of these in this paper; it is called
Mazx-Degree-Matching. This algorithm can find a migration taking A steps while
using no more than 2n/3 bypass nodes. We compare this to 2-factoring [7] which
finds a migration plan taking 2 [A/2] steps by using no more than n/3 bypass
nodes [7]. While 2-factoring has better theoretical bounds than Maz-Degree-
Matching, we will see that Max-Degree-Matching uses fewer bypass nodes on
almost all tested demand graphs.

For migration with space constraints, we introduce a new algorithm, Greedy-
Matching, which uses no bypass nodes. We know of no good bound on the num-
ber of time steps taken by Greedy-Matching in the worst case; however, in our
experiments, Greedy-Matching often returned plans with very close to A time
steps and never took more than 3A/2 time steps. This compares favorably with
4-factoring direct [7] which also never uses bypass nodes but which always takes
essentially 3A/2 time steps.

The paper is organized as follows. In Section 2, we describe the algorithms
we have evaluated for indirect migration without space constraints. In Section 3,
we describe the algorithms we have evaluated for migration with space con-
straints. Section 4 describes how we create the demand graphs on which we test
the migration algorithms while Sections 5 and 6 describe our experimental re-
sults. Section 7 gives an analysis and discussion of these results and Section 8
summarizes and gives directions for future research.



2 Indirect Migration without Space Constraints

We begin with a new algorithm, Maz-Degree-Matching which uses at most 2n/3
bypass nodes and always attains an optimal A step migration plan without space
constraints. Maz-Degree-Matching works by sending, in each stage, one object
from each vertex in the demand graph that has maximum degree. To do this,
we first find a matching which matches all maximum-degree vertices with no
out-edges. Next, we match each unmatched maximum-degree vertex up with a
bypass node. Finally we use the general matching algorithm [8] to expand this
matching to a maximal matching and then send every edge in this new expanded
matching. The full algorithm is given in Appendix A.1; a proof of the following
theorem is given in [1].

Theorem 1. Max-Degree-Matching computes a correct A-stage migration plan
using at most 2n/3 bypass nodes.

We compare Maz-Degree-Matching with 2-factoring from Hall et al. which
also computes an indirect migration plan without space constraints. Hall et al.,
show that 2-factoring takes 2 [A/2] time steps while using no more than n/3
bypass nodes.

We note that in a particular stage of 2-factoring as described in Hall et al.,
there may be some nodes which only have dummy edges incident to them. A
heuristic for reducing the number of bypass nodes needed is to use these nodes
as bypass nodes when available to decrease the need for “external” bypass nodes.
Our implementation of 2-factoring uses this heuristic.

3 Migration with Space Constraints

The Greedy Matching algorithm (Algorithm 1) is a new and straightforward
direct migration algorithm which obeys space constraints. This algorithm even-
tually sends all of the objects [1] but the worst case number of stages is unknown.

Algorithm 1 Greedy Matching

1. Let G' be the graph induced by the sendable edges in the demand graph. An edge
is sendable if there is free space at its destination.

Compute a maximum general matching on G'.

Schedule all edges in matching to be sent in this stage.

Remove these edges from the demand graph.

Repeat until the demand graph has no more edges.

G W

We compare Greedy-Matching with two provably good algorithms for mi-
gration with space constraints from Hall et al.. We refer to these algorithms as
4-factoring direct and 4-factoring indirect. Hall et al. show that 4-factoring di-
rect finds a 6 [A/4] stage migration without bypass nodes and that /-factoring
indirect finds a 4 [A/4] stage migration plan using at most n/3 bypass nodes.



In our implementation of 4-factoring indirect, we again use the heuristic of
using nodes with only dummy edges in a particular stage as bypass nodes for
that stage.

4 Experimental Setup

The following table summarizes the theoretical results known for each algo-
rithm?.

Algorithm Type |Space Constraints|Plan Length Worst Case
Max. Bypass Nodes
2-factoring [7] indirect|No 2[A/2] n/3
Maz-Degree-Matching |indirect|No A 2n/3
Greedy-Matching direct |Yes unknown 0
4-factoring direct [7] |direct |Yes 6[A/4] 0
4-factoring indirect [7]|indirect|Yes 4TA/4] n/3

We tested these algorithms on four types of multigraphs?:

1. Load-Balancing Graphs. These graphs represent real-world migrations. A
detailed description of how they were created is given in the next subsection.

2. General Graphs(n,m). A graph in this class contains n nodes and m edges.
The edges are chosen uniformly at random from among all possible edges
disallowing self-loops (but allowing parallel edges).

3. Regular Graphs(n,d). Graphs in this class are chosen uniformly at random
from among all regular graphs with n nodes, where each node has total degree
d (where d is even). We generated these graphs by taking the edge-union of
d/2 randomly generated 2-regular graphs over n vertices.

4. Zipf Graphs(n,dmyn). These graphs are chosen uniformly at random from
all graphs with » nodes and minimum degree d,,;, that have Zipf degree
distribution i.e. the number of nodes of degree d is proportional to 1/d. Our
technique for creating random Zipf graphs is given in detail in [1].

4.1 Creation of Load-balancing Graphs
A migration problem can be generated from any pair of configurations of objects
on nodes in a network. To generate the Load-Balancing graphs, we used two
different methods of generating sequences of configurations of objects which
might occur in a real world system. For each sequence of say [ configurations,
Ci,...Cp foreach i, 1 <4 <[l—1, we generate a demand graph using C; as the
initial configuration and Cj;; as the final.

For the first method, we used the Hippodrome system on two variants of a
retail data warehousing workload [2]. Hippodrome adapts a storage system to
support a given workload by generating a series of object configurations, and

2 For each algorithm, time to find a migration plan is negligible compared to time to
implement the plan.

% Java code implementing these algorithms along with input files for all the graphs
tested is available at www.cs.washington.edu/homes/saia/migration




possibly increasing the node count. Each configuration is better at balancing the
workload of user queries for data objects across the nodes in the network than
the previous configuration. We ran the Hippodrome loop for 7 iterations (enough
to stabilize the node count) and so got two sequences of 7 configurations. For the
second method, we took the 17 queries to a relational database in the TPC-D
benchmark [4] and for each query generated a configuration of objects to devices
which balanced the load across the devices effectively. This method gives us a
sequence of 17 configurations.

Different devices have different performance properties and hence induce dif-
ferent configurations. When generating our configurations, we assumed all nodes
in the network were the same device. For both methods, we generated configura-
tions based on two different types of devices. Thus for the Hippodrome method,
we generated 4 sequences of 7 configurations (6 graphs) and for the TPC-D
method, we generated 2 sequences of 17 configurations (16 graphs) for a total of
56 demand graphs.

5 Results on the Load-Balancing Graphs

5.1 Graph Characteristics

Detailed plots on the characteristics of the load-balancing graphs are given in [1]
and are summarized here briefly. We refer to the sets of graphs generated by
Hippodrome on the first and second device type as the first and second set
respectively and the sets of graphs generated with the TPC-D method for the
first and second device types as the third and fourth sets.

The number of nodes in each graph is less than 50 for the graphs in all sets
except the third in which most graphs have around 300 nodes. The edge density
for each graph varies from about 5 for most graphs in the third set to around 65
for most graphs in the fourth set. The A value for each graph varies from about
15 to about 140, with almost all graphs in the fourth set having density around
140.

5.2 Performance

Figure 1 shows the performance of the algorithms on the load-balancing graphs
in terms of the number of bypass nodes used and the time steps taken. The
z-axis in each plot gives the index of the graph which is consistent across both
plots. The indices of the graphs are clustered according to the sets the graphs
are from with the first, second, third and fourth sets appearing left to right,
separated by solid lines.

The first plot shows the number of bypass nodes used by 2-factoring, 4-
factoring indirect and Maz-Degree-Matching. We see that Max-Degree-Matching
uses 0 bypass nodes on most of the graphs and never uses more than 1. The
number of bypass nodes used by 2-factoring and 4-factoring indirect are always
between 0 and 6, even for the graphs with about 300 nodes. The second plot
shows the number of stages required divided by A for Greedy-Matching. Recall
that this ratio for 2-factoring, Max-Degree-Matching and 4-factoring indirect is
essentially 1 while the ratio for 4-factoring direct is essentially 1.5. In the graphs



in the second and third set, Greedy-Matching almost always has a ratio near 1.
However in the first set, Greedy-Matching has a ratio exceeding 1.2 on several
of the graphs and a ratio of more than 1.4 on one of them. In all cases, Greedy-
Matching has a ratio less than 4-factoring direct.

We note the following important points: (1) On all of the graphs, the number
of bypass nodes needed is less than 6 while the theoretical upper bounds are
significantly higher. In fact, Maxz-Degree-Matching used no bypass nodes for the
majority of the graphs (2) Greedy-Matching always takes fewer stages than 4-
factoring direct.

6 Results on General, Regular and Zipf Graphs

6.1 Bypass Nodes Needed

For General, Regular and Zipf Graphs, for each set of graph parameters tested,
we generated 30 random graphs and took the average performance of each al-
gorithm over all 30 graphs. For this reason, the data points in the plots are not
at integral values. Greedy-Matching never uses any bypass nodes so in this sec-
tion, we include results only for Max-Degree-Matching, 4-factoring indirect and
2-factoring.

VARYING NUMBER OF NODES

The three plots in the left column of Figure 2 give results for random graphs
where the edge density is fixed and the number of nodes varies. The first plot
in this column shows the number of bypass nodes used for General Graphs with
edge density fixed at 10 as the number of nodes increases from 100 to 1200.
We see that Maz-Degree-Matching and 2-factoring consistently use no bypass
nodes. 4-factoring indirect uses between 2 and 3 bypass nodes and surprisingly
this number does not increase as the number of nodes in the graph increases.

The second plot shows the number of bypass nodes used for Regular Graphs
with A = 10 as the number of nodes increases from 100 to 1200. We see that
the number of bypass nodes needed by Maz-Degree-Matching stays relatively
constant at 1 as the number of nodes increases. The number of bypass nodes
used by 2-factoring and 4-factoring indirect are very similar, starting at 3 and
growing very slowly to 6, approximately linearly with a slope of 1/900.

The third plot shows the number of bypass nodes used on Zipf Graphs with
minimum degree 1 as the number of nodes increases. In this graph, 2-factoring
is consistently at 0, Maz-Degree-Matching varies between 1/4 and 1/2 and 4-
factoring indirect varies between 1 and 4.

VARYING EDGE DENSITY

The three plots in the right column of Figure 2 show the number of bypass
nodes used for graphs with a fixed number of nodes as the edge density varies.
The first plot in the column shows the number of bypass nodes used on General
Graphs, when the number of nodes is fixed at 100, and edge density is varied
from 20 to 200. We see that the number of bypass nodes used by Maz-Degree-
Matching is always 0. The number of bypass nodes used by 2 and 4-factoring
indirect increases very slowly, approximately linearly with a slope of about 1/60.
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Fig. 1. The top plot gives the number of bypass nodes required for the algorithms 2-
factoring, 4-factoring indirect and Maz-Degree-Matching on each of the Load-Balancing
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on each of the Load-Balancing Graphs. The three solid lines in both plots divide the
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Specifically, the number used by 2-factoring increases from 1/2 to 6 while the
number used by 4-factoring indirect increases from 4 to 6.

The second plot shows the number of bypass nodes used on Regular Graphs,
when the number of nodes is fixed at 100 and A is varied from 20 to 200.
The number of bypass nodes used by Mazx-Degree-Matching stays relatively flat
varying slightly between 1/2 and 1. The number of bypass nodes used by 2-
factoring and 4-factoring indirect increases near linearly with a larger slope of
1/30, increasing from 4 to 12 for 2-factoring and from 4 to 10 for 4-factoring
indirect.

The third plot shows the number of bypass nodes used on Zipf Graphs, when
the number of nodes is fixed at 146 and the minimum degree is varied from 1 to
10. 2-factoring here again always uses 0 bypass nodes. The Max-Degree-Matching
curve again stays relatively flat varying between 1/4 and 1. 4-factoring indirect
varies slightly, from 2 to 4, again near linearly with a slope of 1/5.

We suspect that our heuristic of using nodes with only dummy edges as
bypass nodes in a stage helps 2-factoring significantly on Zipf Graphs since there
are so many nodes with small degree and hence many dummy self-loops.

6.2 Time Steps Needed

For General and Regular Graphs, the migration plans Greedy-Matching found
never took more than A + 1 time steps. Since the other algorithms we tested
are guaranteed to have plans taking less than A + 3, we present no plots of
the number of time steps required for these algorithms on General and Reqular
Graphs.

As shown in Figure 3, the number of stages used by Greedy-Matching for
Zipf Graphs is significantly worse than for the other types of random graphs. We
note however that it always performs better than 4-factoring direct. The first
plot shows that the number of extra stages used by Greedy-Matching for Zipf
Graphs with minimum degree 1 varies from 2 to 4 as the number of nodes varies
from 100 to 800. The second plot shows that the number of extra stages used
by Greedy-Matching for Zipf Graphs with 146 nodes varies from 1 to 11 as the
minimum degree of the graphs varies from 1 to 10. High density Zipf graphs are
the one weakness we found for Greedy-Matching.

7 Analysis

Our major empirical conclusions for the graphs tested are:

— Maz-Degree-Matching almost always uses less bypass nodes than 2-factoring.

— Greedy-Matching always takes less time steps than 4-factoring direct.

— For all algorithms using indirection, the number of bypass nodes required is
almost always no more than n/30.

For migration without space constraints, Maz-Degree-Matching performs very
well in practice, often using significantly fewer bypass nodes than 2-factoring. Its
good performance and good theoretical properties make it an attractive choice
for real world migration problems without space constraints.
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Number of Nodes

Minimum Degree

the number of bypass nodes needed for 2-factoring, 4-

factoring direct and Maz-Degree-Matching for the General, Regular and Zipf Graphs.
The three plots in the left column give the number of bypass nodes needed as the
number of nodes in the random graphs increase. The three plots in the right column
give the number of bypass nodes needed as the density of the random graphs increase.
The plots in the first row are for General Graphs, plots in the second row are for Regular

Graphs and plots in the third row are for Zipf Graphs.
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For migration with space constraints, Greedy-Matching always outperforms
4-factoring direct. It also frequently finds migration plans within some small
constant of A. However there are many graphs for which it takes much more
than A time steps and for this reason we recommend 4-factoring indirect when
there are bypass nodes available.

7.1 Theory Versus Practice

In our experiments, we have found that not only are the number of bypass nodes
required for the types of graphs we tested much less than the theoretical bounds
suggest but that in addition, the rate of growth in the number of bypass nodes
versus the number of demand graph nodes is much less than the theoretical
bounds. The worst case bounds are that n/3 bypass nodes are required for 2-
factoring and 4-factoring indirect and 2n/3 for Maz-Degree- Matching but in most
graphs, for all the algorithms, we never required more than about n/30 bypass
nodes.

The only exception to this trend is regular graphs with high density for
which 2-factoring and 4-factoring indirect required up to n/10 bypass nodes.
A surprising result for these graphs was the fact that Maz-Degree-Matching
performed so much better than 2-factoring and /-factoring indirect despite its
worse theoretical bound.

8 Conclusion

We have introduced two new data migration algorithms and have empirically
evaluated their performance compared with two algorithms from [7]. The metrics
we used to evaluate the algorithms are: (1) the number of time steps required to
perform the migration, and (2) the number of bypass nodes used as intermediate
storage devices. We have found on several types of random and load-balancing
graphs that the new algorithms outperform the algorithms from [7] on these two
metrics despite the fact that the theoretical bounds for the new algorithms are
not as good. Not surprisingly, we have also found that for all the algorithms
tested, the theoretical bounds are overly pessimistic. We conclude that many of



the algorithms described in this paper are both practical and effective for data
migration.

There are several directions for future work. Real world devices have different
I/O speeds. For example, one device might be able handle sending or receiving
twice as many objects per stage as another device. We want good approximation
algorithms for migration with different device speeds. Also in some important
cases, a complete graph is a poor approximation to the network topology. For
example, a wide area network typically has a very sparse topology which is more
closely related to a tree than to a complete graph. We want good approximation
algorithms for commonly occuring topologies (such as trees) and in general for
arbitrary topologies. Saia [10] gives some preliminary approximation algorithms
for migration with variable device speeds and different network topologies.

Another direction for future work is designing algorithms which work well
for the online migration problem. In this paper, we have ignored loads imposed
by user requests in devising a migration plan. A better technique for creating
a migration plan would be to migrate the objects in such a way that we inter-
fere as little as possible with the ability of the devices to satisfy user requests
and at the same time improve the load balancing behavior of the network as
quickly as possible. This may require adaptive algorithms since user requests are
unpredictable.

A final direction for future work is designing algorithms which make use of
free nodes when available but do not require them to perform well. In particular,
we want a good approximation algorithm for migration with indirection when no
external bypass nodes are available. To the best of our knowledge, no algorithm
with an approximation ratio better than 3/2 for this problem is known at this
time.
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A Appendix

A.l

Mazx-Degree-Matching

Algorithm 2 Max-Degree-Matching(demand graph G)

1.

Set up a bipartite matching problem as follows: the left hand side of the graph
is all maximum degree vertices not adjacent to degree one vertices in G, the right
hand side is all their neighbors in GG, and the edges are all edges between maximum
degree vertices and their neighbors in G .

Find the maximum bipartite matching. The solution induces cycles and paths in
the demand graph. All cycles contain only maximum degree vertices, all paths have
one endpoint that is not a maximum degree vertex.

Mark every other edge in the cycles and paths. For odd length cycles, one vertex
will be left with no marked edges. Make sure that this is a vertex with an outgoing
edge (and thus can be bypassed if needed). Each vertex has at most one edge
marked. Mark every edge between a maximum degree vertex and a degree one
vertex.

Let V' be the set of vertices incident to a marked edge. Compute a maximum
matching in G that matches all vertices in V' (This can be done by seeding the
general matching algorithm [8] with the matching that consists of marked edges.)
Define S to be all edges in the matching.

For each edge vertex u of maximum degree with no incident edge in S, let (u,v)
be some out-edge from u. Add (u,b) to S, where b is an unused bypass node, and
add (b,v) to the demand graph G.

Schedule all edges in S to be sent in the next stage and remove these edges from
the demand graph.

If there are still edges in the demand graph, go back to step 1.




