

Copyright © ACM. Published in the proceedings of the 11th ACM SIGOPS European Workshop,
19–22 September 2004, Leuven, Belgium.

Utilification
John Wilkes, Jeffrey Mogul, and Jaap Suermondt

HP Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA
john.wilkes@hp.com, jeff.mogul@hp.com, jaap.suermondt@hp.com

Utility computing has the potential to revolutionize the way we purchase, organize, and distribute computational
power and services. It will do so by offloading resource provisioning to centralized sites that can benefit from
economies of scale, careful, failure-resilient construction, flexibility and changeability of hardware choices, and
scalable and business-driven management techniques. But that promise is useless unless we can move applications
from traditional computing environments into utility ones, where the applications are fronted by service interfaces
and resource flexing is the norm. This paper argues that such transformations are worthy of study and effort, and
suggests that the systems community has a great deal to offer to them.

Utility computing
Utility computing systems allow rapid responses to
changing computing demands, new business processes,
disasters, and other events. They are quite the craze
these days. HP has its Adaptive Enterprise strategy,
which encompasses business-process agility and its
Utility Data Center (UDC); Sun Microsystems has its
N1 system (“managing n computers as 1” [14]); and
IBM is offering on-demand computing. Many startup
companies are working in this space, too.

All are pursuing much the same ideas: it is better to
harness computing to the service of business than the
reverse; it is better to streamline the workload of scarce,
highly-paid system managers; and it is becoming
essential to respond rapidly to changes in demand and
situation in today’s commercial and institutional
climates. The relentless commoditization of hardware
has led to more appreciation of the importance of tools
for managing systems for more direct business goals –
not just increased hardware utilization.

The terminology in this rapidly-developing field is still
inconsistent. We will simply define utility computing
as the reliable, resilient, scalable provision of computer-
based services, as and when needed, in response to
internal and external events. This goes beyond the
adaptive provisioning of computer hardware, whether
virtualized or not, to include application-level services.

eOS management
system
• provisioning, planning

• virtualization

• mapping, allocation

• configuration, binding

• monitoring

• enforcement

• reaction

eOS-managed system

Physical resources
(cpu, RAM, storage, network, …)

Physical resources
(cpu, RAM, storage, network, …)

Virtual resources
(OS, LVM, file system, dbms, …)

Virtual resources
(OS, LVM, file system, dbms, …)

Services
(…)

Services
(…)

ApplicationsApplicationsresource
requests

control

monitoring

Figure 1: the eOS architecture.

The eOS architecture [16] is typical of the kind of
structure that results: a layered stack of services plus a
management infrastructure “on the side”. A more
sophisticated example is HP’s Darwin reference
architecture [7], which takes things one stage further by
including business processes in the control loop.

We do not intend to argue the merits of different
approaches to self-managing, utility computing systems:
they are here to stay, and their benefits are compelling.
Instead, we wish to argue the importance of the too-
often neglected processes by which computing
technology is adopted and made useful in the real world.

Utilification
The goal of this paper is to raise awareness of one such
process: how existing applications are brought into a
utility computing environment and helped to benefit
from it. We call the process utilification1.

Once an application is utilified, it is expected to flex its
abilities dynamically as demands change; to put up with
being assigned to different resource instances
(processors, networks, storage), and to participate in the
application- and business-level measurement and
feedback-control system.

We used to think that utilification was simple. You
seek out the application of interest, shut it down; and
bring it up in the new environment. You might need to
wrap some control-loop stuff around it, to measure
throughputs and response times and map these onto the
resulting resource needs, but the process was basically
straightforward, even if effort-intensive.

And then we watched the actual process of utilifying an
application – the one used by DreamWorks to render the
animation for Shrek 2 on an HP utility computing
environment [9]. The HP system has several hundred

1 Thanks to Patrick Goldsack for coining the word.

Linux nodes and a few terabytes of data storage. It runs
one large parallel batch application – image rendering.

What surprised us was that this application needed a
local LDAP server for clients to access their NFS auto-
mount tables. It never occurred to us that such a service
would be needed in a UNIX environment. This insight
led to other questions: How many other items like that
LDAP server were there to think about? How many of
them were caught on the first attempt? And, how much
harder would this be in more complicated environments,
where a single application was being teased out from a
morass of existing ones? Consider the case of utilifying
a complex business process like supply chain
management running on SAP, on top of Oracle, across a
failure-tolerant cluster of high-end multiprocessor
machines: just how hard would this be?

Mutual migration

At one level, part of the process is like porting an
application to a new architecture – but now the
architecture is at a higher level than an instruction set:
it’s at the level of application component and service
building-blocks; of network access and discovery
services; of control-system APIs and larger business
systems.

Further thought suggests that the process is a two-way
one: the application can be brought towards the utility
computing infrastructure, but the infrastructure can also
be pushed towards the application (Figure 2).

Figure 2: evolving applications and environments
towards each other as part of utilification.

HP’s UDC [8], for example, has taken the first step
down this path by providing virtual data centers, each
isolated from its peers by security barriers such as
network VLANs and careful control of the storage area
network. Similar approaches are employed in data
center or application consolidation – the process of
bringing applications running on multiple, dispersed
servers together to run on a shared central system. (A

common technique is to use “physical partitions” of the
larger server.) This simple, isolated-environment
approach to consolidation works quite well for complete
application suites that were already well-isolated from
their initial context, but it does little to address other
kinds of setups.

The following sections examine some of the steps of
bringing an application into the utility context. Each
has technical challenges that represent opportunities for
further research with direct, practical applicability.

Blueprinting and assessment

The first step in application bring-over is discovery:
what application components are there? How are they
configured? What are their dependencies on each other,
and their environment?

This process is sometimes called blueprinting. There
are already some blueprinting products on the market,
using the technique to understand and report on an
environment, support data center consolidation, or
improve configuration change management. For
example, Collation's Confignia “reveals the run-time
configurations and interdependencies across application
components, system services and network elements”
across multiple tiers [5], and Cendura's Cohesion
provides similar features, and specifically addresses
change detection and auditing [4].

Figure 3: the assessment process.

The discovery process starts with learning about the
components, and how they are connected – but it needs
to go further. Figure 3 diagrams some of these
additional elements; we call this extended form of
blueprinting assessment. It includes gathering data on:

• how the application’s behavior changes in response
to varying workloads, changing resource
availability, security and denial-of-service attacks,
and hardware and software faults;

• how the application’s resource needs change as a
function of scale and usage across a range of
external loads or other events (e.g., an internal
security scan) ;

• whether and how the application can extend and
shrink (“flex”) itself to exploit additional resources;

• how much of the application’s surrounding
environment needs to be replicated for it to thrive;
and

• information about any constraints that need to be
imposed on the application, or that it imposes on its
surroundings.

QoS-based sizing

One of the (many) hardest parts about assessment is the
construction of a mapping from offered load to
application resource needs. The goal here is to
automate the process of deciding how to achieve a given
application-level Quality of Service, or QoS. (See [17]
for a storage perspective on this, and [2] for a recent
distributed-system one.) A particularly important
Quality is performance – typically measured by
throughput or response time.

This is tricky enough to do with a single, monolithic
application that has no external points of control. Even
simple applications may need black-box techniques (e.g.,
[1], [3]) – it gets much harder when the application is
composed of a set of components, each of which has
multiple tuning parameters, as all real-world ones seem
to be.

A related open question is how to set the “QoS budget”
for each separately-tunable component: should a 100ms
overall response-time budget be split 20:80 between two
components, or vice versa? What if the resource
demands of these two alternatives lead to very different
costs? What if the cheapest solution is also the most
susceptible to external disturbances or mis-estimations
of the load?

Resiliency

This leads to a related thought: the utilification process
is an ideal point at which to ask questions such as “how
much application-level resiliency is needed?” and “is
now the time to increase it?” Resiliency means
different things to different people – and different
applications – but it generally encompasses notions of
availability (percentage uptime), performability
(probability of achieving a given performance level),
and reliability (resistance to data loss or corruption).

Redundancy and replication are the single commonest
approach to achieving increased resiliency. These
techniques can be applied at many levels: from storage

systems (e.g., [12]), to application components (which
will alter the relationships between the pieces), to
complete application instances. Alternatively, instead
of using redundancy and replication to avoid failures, it
may be more fruitful to develop better techniques of
detecting and recovering from them [5]. Making these
design decisions is non-trivial; to make matters worse,
the results will probably impact the results of the QoS-
based sizing step, so that may have to be revisited.

Flexing

Some applications naturally lend themselves to resource
flexing: adding additional servers to a loosely-coupled
“embarrassingly parallel” scientific application, for
example. But others are trickier.

An application component that cannot be replicated for
performance, such as a database that cannot be
partitioned, can perhaps be migrated to a faster
computation or storage node. Of course, this brings its
own difficulties: how to migrate an application while it
is up and running, for example. Most application-
migration systems of which we are aware assume
implicitly that the target resource set is merely a clone
of the original, and leave open the question of how to
adjust the application control parameters simultaneously
to reconfigure it for its new environment.

Flexing may also mean shrinking – either because
demand for the service has fallen off or because another
service has a more compelling need for a resource.
Shrinking is much harder, and generally is something
we prefer to stick our head in the sand about; yet
learning how to do it is an integral part of utilification.

Dynamic control

One of the goals of utility computing is to enable
“application agility”: rapid adaptation to changing
circumstances. This is typically pursued in the context
of a target QoS level, or Service Level Objective (SLO),
typically as part of a Service Level Agreement (SLA).

Open questions here involve how to best specify,
capture, and review a target QoS level – bearing in mind
that the specification may need to have enough
information in it to allow machine-mediated resource
allocation decisions without human involvement.
Recently, there has been a new focus on business value
in QoS metrics and SLAs: what matters is the business
value of higher throughput and the cost of downtime,
not just achieving arbitrarily-specified performance
levels. Ultimately, the goal is to operate at a point of
indifference between better QoS (performance,
availability, etc) and higher cost [12].

The utility control infrastructure may need to allocate or
withdraw resources from the applications it supports in

order to achieve application performance QoS goals,
and so it needs an appropriate control loop to decide
when to do so. We have already mentioned the
modeling aspect of utilification (what to do to achieve a
new QoS level), but that still leaves the monitoring
aspect (What is the offered load? What are the achieved
responses?), and decisions about when to apply changes,
and (perhaps) in what order. All of these need grafting
into existing applications, or a way to approximate the
desired degree of finesse solely by means of externally-
visible metrics.

Figure 4: a canonical control-loop structure.

A simple control loop typically contains elements akin
to those in the figure here. Nested control loops make
this both more challenging and offer new opportunities:
they can be used to provide fine-grained control to
augment the higher-level goals (e.g., by throttling I/O
rates during data migration). But they may also hide
some of the effects of lower-level responses: consider a
system that manages to sustain a target response time
across a wide range of offered loads, but fails
catastrophically as soon as those limits are exceeded.

Figure 5: control system internal structure.

The control-loop structure is a well-established one. Its
relevance to the utilification problem is two-fold:

1. it relies on a model of the target system under
control, which has to be obtained or inferred
somehow [11];

2. it may provoke unexpected interactions between
control loops at different levels, and the likelihood
of this should (ideally) be probed for during the
utilification process.

For example, database systems like Oracle 10g [14] are
taking on more of the characteristics of a complete
computing environment, capable of reallocating
resources to changing needs. If this is layered on top of
a dynamic resource provision infrastructure, which level
of the system is to make flexing decisions?

Trust and security

Utility computing enables the possibly of sharing
resources across mutually-distrusting customers. Indeed,
it may require this if it is to achieve its full economic
benefits. Such sharing clearly requires both
performance and security isolation between the
customers. Appropriate security techniques are well
known; what turns out to be hard is building customer
trust. Customers of a utility need to agree that the right
mechanisms have been deployed, that no loopholes exist,
and that the mechanisms will achieve the desired results.
This is a trust issue, not just a security one.

Since even the best-designed, best-run systems can have
security holes, the ultimate recourse remains contractual
agreements to compensate customers for the
consequences of loss or damage. In turn, the utility
provider’s lawyers or insurers need to trust that
appropriate risk mitigation techniques have been
correctly deployed before they will sign such a contract.

Figure 6: the complete utilification process.

Deployment

We can now pull this whole process together, as shown
in Figure 6.

Of course, this quick survey elides a great deal of
complexity in the individual steps, as well as a larger
process: that of making appropriate business and
customer-facing design choices. Both offer challenging
opportunities for improving the tie between IT
infrastructures, the way they are used, and the end goals
of an organization.

Service-level interfaces

After an application has been utilified, one possible next
step is to extend its functionality to provide a service –
that is, give the application an interface by which
“external” customers can submit work to it.2

This moves us from an infrastructure that is focused on
providing (virtualized) physical resources to a service-
based one; the domain of dialogue is service-component
relationships, not resource demand-supply. Other
opportunities include ways to package up access portals
to a service, charge for (or at least meter) their use, and
providing security and performance isolation between
competing service users.

Conclusion
Bringing applications into a utility computing world
poses several hard challenges. Addressing these
challenges will make the benefits of utility computing
systems much more attainable – and this is a perfect
time to do so, because utility computing systems are still
at a sufficiently formative stage that there’s a real
chance to change them in fruitful ways.

Acknowledgments

Eric Anderson was the person who first suggested the
problem to us. Discussions with several HP Labs
colleagues helped crystallize our understanding of the
space and clarify this paper.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P.Reynolds,
and A. Muthitacharoen. Performance Debugging for
Distributed Systems of Black Boxes, Proc. 19th ACM
Symp. on Operating Systems Principles (SOSP’03),
pp. 74–89, Oct. 2003

[2] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-Based Load Management in Federated
Distributed Systems. Proc. 1st Symp. on Networked

2 We refuse to call this process servicification!

Systems Design and Implementation (NSDI), March
2004.

[3] P. Barham, R. Isaacs, R. Mortier, and D.Narayanan.
Magpie: real-time modelling and performance-aware
systems. 9th workshop on Hot Topics in Operating
Systems (HotOS-IX), May 2003

[4] Cendura Corporation. Intelligent application blueprints:
managing modern distributed applications,
http://www.cendura.com/pdf/CohesionBrochure.pdf,
2004

[5] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A.
Fox, E. Brewer. Path-Based Failure and Evolution
Management. Proc. 1st Symp. on Networked Systems
Design and Implementation (NSDI), March 2004.

[6] Collation, Inc. Collation Confignia,
http://www.collation.com/products/, 2003.

[7] Hewlett-Packard. The HP vision for the Adaptive
Enterprise: achieving business agility. http://
www.hp.com/go/adaptive, part 5981-6177EN, July 2003.

[8] Hewlett-Packard. HP Utility Data Center: transforming
data center economics. part 5982-3291EN, Mar. 2004.

[9] Hewlett-Packard. HP Labs goes Hollywood. http://
www.hpl.hp.com/news/2004/apr-jun/nab.html, Apr. 2004.

[10] IBM. On demand business. http://www.ibm.com/e-
business, 2004.

[11] M. Karlsson, C. Karamanolis and X. Zhu. Triage:
performance isolation and differentiation for storage
systems. Intl. Workshop on Quality of Service (IWQoS),
pp. 67–74, June 2004.

[12] K. Keeton, C. Santos, D. Beyer, J. Chase and J. Wilkes.
Designing for disasters. File and Storage Technologies
(FAST'04), March-April 2004.

[13] Utility computing. IBM Systems Journal special issue
43(1), 2004.

[14] Oracle Corporation. Oracle database 10g.
http://otn.oracle.com/products/database/oracle10g, 2004.

[15] Sun Microsystems. N1 Grid - Introducing Just In Time
Computing. http://wwws.sun.com/software/
solutions/n1/wp-n1.pdf, 2002.

[16] J. Wilkes, P. Goldsack, J. Janakiraman, L. Russell, S.
Singhal, and A. Thomas. eOS - the dawn of the resource
economy. 8th Workshop on Hot Topics in Operating
Systems (HotOS-VIII), May 2001.

[17] J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. Intl. Workshop
on Quality of Service (IWQoS'2001), pp. 75–91, June
2001. Published as Springer-Verlag Lecture Notes in
Computer Science 2092.

