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Utility computing has the potential to revolutionize the way we purchase, organize, and distribute computational 
power and services.  It will do so by offloading resource provisioning to centralized sites that can benefit from 
economies of scale, careful, failure-resilient construction, flexibility and changeability of hardware choices, and 
scalable and business-driven management techniques.  But that promise is useless unless we can move applications 
from traditional computing environments into utility ones, where the applications are fronted by service interfaces 
and resource flexing is the norm.  This paper argues that such transformations are worthy of study and effort, and 
suggests that the systems community has a great deal to offer to them. 

 
Utility computing 
Utility computing systems allow rapid responses to 
changing computing demands, new business processes, 
disasters, and other events.  They are quite the craze 
these days.  HP has its Adaptive Enterprise strategy, 
which encompasses business-process agility and its 
Utility Data Center (UDC); Sun Microsystems has its 
N1 system (“managing n computers as 1” [14]); and 
IBM is offering on-demand computing.  Many startup 
companies are working in this space, too. 

All are pursuing much the same ideas: it is better to 
harness computing to the service of business than the 
reverse; it is better to streamline the workload of scarce, 
highly-paid system managers; and it is becoming 
essential to respond rapidly to changes in demand and 
situation in today’s commercial and institutional 
climates.  The relentless commoditization of hardware 
has led to more appreciation of the importance of tools 
for managing systems for more direct business goals – 
not just increased hardware utilization. 

The terminology in this rapidly-developing field is still 
inconsistent.  We will simply define utility computing 
as the reliable, resilient, scalable provision of computer-
based services, as and when needed, in response to 
internal and external events.  This goes beyond the 
adaptive provisioning of computer hardware, whether 
virtualized or not, to include application-level services.   
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Figure 1: the eOS architecture. 

The eOS architecture [16] is typical of the kind of 
structure that results: a layered stack of services plus a 
management infrastructure “on the side”.  A more 
sophisticated example is HP’s Darwin reference 
architecture [7], which takes things one stage further by 
including business processes in the control loop. 

We do not intend to argue the merits of different 
approaches to self-managing, utility computing systems: 
they are here to stay, and their benefits are compelling. 
Instead, we wish to argue the importance of the too-
often neglected processes by which computing 
technology is adopted and made useful in the real world.   

Utilification 
The goal of this paper is to raise awareness of one such 
process: how existing applications are brought into a 
utility computing environment and helped to benefit 
from it.  We call the process utilification1.  

Once an application is utilified, it is expected to flex its 
abilities dynamically as demands change; to put up with 
being assigned to different resource instances 
(processors, networks, storage), and to participate in the 
application- and business-level measurement and 
feedback-control system.  

We used to think that utilification was simple.  You 
seek out the application of interest, shut it down; and 
bring it up in the new environment.  You might need to 
wrap some control-loop stuff around it, to measure 
throughputs and response times and map these onto the 
resulting resource needs, but the process was basically 
straightforward, even if effort-intensive. 

And then we watched the actual process of utilifying an 
application – the one used by DreamWorks to render the 
animation for Shrek 2 on an HP utility computing 
environment [9].  The HP system has several hundred  
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Linux nodes and a few terabytes of data storage.  It runs 
one large parallel batch application – image rendering.   

What surprised us was that this application needed a 
local LDAP server for clients to access their NFS auto-
mount tables.  It never occurred to us that such a service 
would be needed in a UNIX environment.  This insight 
led to other questions:  How many other items like that 
LDAP server were there to think about?  How many of 
them were caught on the first attempt?  And, how much 
harder would this be in more complicated environments, 
where a single application was being teased out from a 
morass of existing ones?  Consider the case of utilifying 
a complex business process like supply chain 
management running on SAP, on top of Oracle, across a 
failure-tolerant cluster of high-end multiprocessor 
machines: just how hard would this be? 

Mutual migration 

At one level, part of the process is like porting an 
application to a new architecture – but now the 
architecture is at a higher level than an instruction set: 
it’s at the level of application component and service 
building-blocks; of network access and discovery 
services; of control-system APIs and larger business 
systems. 

Further thought suggests that the process is a two-way 
one: the application can be brought towards the utility 
computing infrastructure, but the infrastructure can also 
be pushed towards the application (Figure 2).   

 

Figure 2: evolving applications and environments 
towards each other as part of utilification. 

HP’s UDC [8], for example, has taken the first step 
down this path by providing virtual data centers, each 
isolated from its peers by security barriers such as 
network VLANs and careful control of the storage area 
network.  Similar approaches are employed in data 
center or application consolidation – the process of 
bringing applications running on multiple, dispersed 
servers together to run on a shared central system.  (A 

common technique is to use “physical partitions” of the 
larger server.)  This simple, isolated-environment 
approach to consolidation works quite well for complete 
application suites that were already well-isolated from 
their initial context, but it does little to address other 
kinds of setups. 

The following sections examine some of the steps of 
bringing an application into the utility context.  Each 
has technical challenges that represent opportunities for 
further research with direct, practical applicability. 

Blueprinting and assessment 

The first step in application bring-over is discovery: 
what application components are there?  How are they 
configured?  What are their dependencies on each other, 
and their environment? 

This process is sometimes called blueprinting.  There 
are already some blueprinting products on the market, 
using the technique to understand and report on an 
environment, support data center consolidation, or 
improve configuration change management.  For 
example, Collation's Confignia “reveals the run-time 
configurations and interdependencies across application 
components, system services and network elements” 
across multiple tiers [5], and Cendura's Cohesion 
provides similar features, and specifically addresses 
change detection and auditing [4]. 

 

Figure 3: the assessment process. 

The discovery process starts with learning about the 
components, and how they are connected – but it needs 
to go further.  Figure 3 diagrams some of these 
additional elements; we call this extended form of 
blueprinting assessment.  It includes gathering data on: 

• how the application’s behavior changes in response 
to varying workloads, changing resource 
availability, security and denial-of-service attacks, 
and hardware and software faults;  



  

 

• how the application’s resource needs change as a 
function of scale and usage across a range of 
external loads or other events (e.g., an internal 
security scan) ; 

• whether and how the application can extend and 
shrink (“flex”) itself to exploit additional resources;  

• how much of the application’s surrounding 
environment needs to be replicated for it to thrive; 
and  

• information about any constraints that need to be 
imposed on the application, or that it imposes on its 
surroundings.   

QoS-based sizing 

One of the (many) hardest parts about assessment is the 
construction of a mapping from offered load to 
application resource needs.  The goal here is to 
automate the process of deciding how to achieve a given 
application-level Quality of Service, or QoS.  (See [17] 
for a storage perspective on this, and [2] for a recent 
distributed-system one.)  A particularly important 
Quality is performance – typically measured by 
throughput or response time. 

This is tricky enough to do with a single, monolithic 
application that has no external points of control.  Even 
simple applications may need black-box techniques (e.g., 
[1], [3]) – it gets much harder when the application is 
composed of a set of components, each of which has 
multiple tuning parameters, as all real-world ones seem 
to be. 

A related open question is how to set the “QoS budget” 
for each separately-tunable component: should a 100ms 
overall response-time budget be split 20:80 between two 
components, or vice versa?  What if the resource 
demands of these two alternatives lead to very different 
costs?  What if the cheapest solution is also the most 
susceptible to external disturbances or mis-estimations 
of the load? 

Resiliency 

This leads to a related thought: the utilification process 
is an ideal point at which to ask questions such as “how 
much application-level resiliency is needed?” and “is 
now the time to increase it?”  Resiliency means 
different things to different people – and different 
applications – but it generally encompasses notions of 
availability (percentage uptime), performability 
(probability of achieving a given performance level), 
and reliability (resistance to data loss or corruption).   

Redundancy and replication are the single commonest 
approach to achieving increased resiliency.  These 
techniques can be applied at many levels: from storage 

systems (e.g., [12]), to application components (which 
will alter the relationships between the pieces), to 
complete application instances.  Alternatively, instead 
of using redundancy and replication to avoid failures, it 
may be more fruitful to develop better techniques of 
detecting and recovering from them [5].  Making these 
design decisions is non-trivial; to make matters worse, 
the results will probably impact the results of the QoS-
based sizing step, so that may have to be revisited. 

Flexing 

Some applications naturally lend themselves to resource 
flexing: adding additional servers to a loosely-coupled 
“embarrassingly parallel” scientific application, for 
example.  But others are trickier. 

An application component that cannot be replicated for 
performance, such as a database that cannot be 
partitioned, can perhaps be migrated to a faster 
computation or storage node.  Of course, this brings its 
own difficulties: how to migrate an application while it 
is up and running, for example.  Most application-
migration systems of which we are aware assume 
implicitly that the target resource set is merely a clone 
of the original, and leave open the question of how to 
adjust the application control parameters simultaneously 
to reconfigure it for its new environment.   

Flexing may also mean shrinking – either because 
demand for the service has fallen off or because another 
service has a more compelling need for a resource. 
Shrinking is much harder, and generally is something 
we prefer to stick our head in the sand about; yet 
learning how to do it is an integral part of utilification.   

Dynamic control 

One of the goals of utility computing is to enable 
“application agility”: rapid adaptation to changing 
circumstances.  This is typically pursued in the context 
of a target QoS level, or Service Level Objective (SLO), 
typically as part of a Service Level Agreement (SLA). 

Open questions here involve how to best specify, 
capture, and review a target QoS level – bearing in mind 
that the specification may need to have enough 
information in it to allow machine-mediated resource 
allocation decisions without human involvement.  
Recently, there has been a new focus on business value 
in QoS metrics and SLAs:  what matters is the business 
value of higher throughput and the cost of downtime, 
not just achieving arbitrarily-specified performance 
levels.  Ultimately, the goal is to operate at a point of 
indifference between better QoS (performance, 
availability, etc) and higher cost [12]. 

The utility control infrastructure may need to allocate or 
withdraw resources from the applications it supports in 



  

 

order to achieve application performance QoS goals, 
and so it needs an appropriate control loop to decide 
when to do so.  We have already mentioned the 
modeling aspect of utilification (what to do to achieve a 
new QoS level), but that still leaves the monitoring 
aspect (What is the offered load?  What are the achieved 
responses?), and decisions about when to apply changes, 
and (perhaps) in what order.  All of these need grafting 
into existing applications, or a way to approximate the 
desired degree of finesse solely by means of externally-
visible metrics. 

 

Figure 4: a canonical control-loop structure. 

A simple control loop typically contains elements akin 
to those in the figure here. Nested control loops make 
this both more challenging and offer new opportunities: 
they can be used to provide fine-grained control to 
augment the higher-level goals (e.g., by throttling I/O 
rates during data migration).  But they may also hide 
some of the effects of lower-level responses: consider a 
system that manages to sustain a target response time 
across a wide range of offered loads, but fails 
catastrophically as soon as those limits are exceeded. 

 

 

Figure 5: control system internal structure.  

The control-loop structure is a well-established one.  Its 
relevance to the utilification problem is two-fold: 

1. it relies on a model of the target system under 
control, which has to be obtained or inferred 
somehow [11]; 

2. it may provoke unexpected interactions between 
control loops at different levels, and the likelihood 
of this should (ideally) be probed for during the 
utilification process. 

For example, database systems like Oracle 10g [14] are 
taking on more of the characteristics of a complete 
computing environment, capable of reallocating 
resources to changing needs.  If this is layered on top of 
a dynamic resource provision infrastructure, which level 
of the system is to make flexing decisions? 

Trust and security 

Utility computing enables the possibly of sharing 
resources across mutually-distrusting customers.  Indeed, 
it may require this if it is to achieve its full economic 
benefits.  Such sharing clearly requires both 
performance and security isolation between the 
customers.  Appropriate security techniques are well 
known; what turns out to be hard is building customer 
trust.  Customers of a utility need to agree that the right 
mechanisms have been deployed, that no loopholes exist, 
and that the mechanisms will achieve the desired results.  
This is a trust issue, not just a security one. 

Since even the best-designed, best-run systems can have 
security holes, the ultimate recourse remains contractual 
agreements to compensate customers for the 
consequences of loss or damage.  In turn, the utility 
provider’s lawyers or insurers need to trust that 
appropriate risk mitigation techniques have been 
correctly deployed before they will sign such a contract. 

 

 

Figure 6: the complete utilification process. 



  

 

Deployment 

We can now pull this whole process together, as shown 
in Figure 6.   

Of course, this quick survey elides a great deal of 
complexity in the individual steps, as well as a larger 
process: that of making appropriate business and 
customer-facing design choices.  Both offer challenging 
opportunities for improving the tie between IT 
infrastructures, the way they are used, and the end goals 
of an organization. 

Service-level interfaces 

After an application has been utilified, one possible next 
step is to extend its functionality to provide a service – 
that is, give the application an interface by which 
“external” customers can submit work to it.2   

This moves us from an infrastructure that is focused on 
providing (virtualized) physical resources to a service-
based one; the domain of dialogue is service-component 
relationships, not resource demand-supply.  Other 
opportunities include ways to package up access portals 
to a service, charge for (or at least meter) their use, and 
providing security and performance isolation between 
competing service users. 

Conclusion 
Bringing applications into a utility computing world 
poses several hard challenges.  Addressing these 
challenges will make the benefits of utility computing 
systems much more attainable – and this is a perfect 
time to do so, because utility computing systems are still 
at a sufficiently formative stage that there’s a real 
chance to change them in fruitful ways. 
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