
HP
Laboratories
Technical
Report

UNIX disk access patterns

Chris Ruemmler and John Wilkes
Computer Systems Laboratory
Hewlett-Packard Laboratories, Palo Alto, CA

HPL–92–152, December 1992

Also published in USENIX Winter 1993 Technical Conference Proceedings
(San Diego, CA), 25–29 January 1993, pages 405–420.
© Copyright Hewlett-Packard Company 1992. All rights reserved.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 1

Table 1: The three computer systems traced

a. Each machine uses an HP PA-RISC microprocessor.
b. Cello’s file buffer size changed from 10MB to 30MB on April 26, 1992.

Name Processora MIPS
HP-UX
Version

Physical
memory

File buffer
cache size

Fixed
storage

Users Usage type

cello HP 9000/877 76 8.02 96 MB 10/30b MB 10.4 GB 20 Timesharing

snake HP 9000/720 58 8.05 32 MB 5 MB 3.0 GB 200 Server

hplajw HP 9000/845 23 8.00 32 MB 3 MB 0.3 GB 1 Workstation

Introduction

The I/O gap between processor speed and
dynamic disk performance has been growing as VLSI
performance (improving at 40–60% per year) outstrips
the rate at which disk access times improve (about 7%
per year). Unless something is done, new processor
technologies will not be able to deliver their full
promise. Fixes to this problem have concentrated on
ever-larger file buffer caches, and on speeding up disk
I/Os through the use of more sophisticated access
strategies. Surprisingly, however, there has been very
little published on the detailed low-level behavior of
disk I/Os in modern systems, which such techniques are
attempting to improve. This paper fills part of this void,
and also uses the data to provide analyses of some
techniques for improving write performance through
the use of disk caches.

We captured every disk I/O made by three
different HP-UX systems during a four-month period
(April 18, 1992 through August 31, 1992). We present
here analyses of 63-day contiguous subsets of this data.
The systems we traced are described in Table 1: two of
them were at HP Laboratories, one (snake) at UC
Berkeley.

The most significant results of our analyses of
these systems are: the majority of disk accesses (57%)
are writes; only 8–12% of write accesses, but 18–33%
of reads, are logically sequential at the disk level; 50–
75% of all I/Os are synchronous; the majority (67–
78%) of writes are to metadata; user-data I/Os represent
only 13–41% of the total accesses; 10–18% of all write
requests are overwrites of the last block written out; and
swap traffic is mostly reads (70–90%).

UNIX disk access patterns
Chris Ruemmler and John Wilkes – Hewlett-Packard Laboratories

ABSTRACT

Disk access patterns are becoming ever more important to understand as the gap between processor
and disk performance increases. The study presented here is a detailed characterization of every low-
level disk access generated by three quite different systems over a two month period. The
contributions of this paper are the detailed information we provide about the disk accesses on these
systems (many of our results are significantly different from those reported in the literature, which
provide summary data only for file-level access on small-memory systems); and the analysis of a set
of optimizations that could be applied at the disk level to improve performance.

Our traces show that the majority of all operations are writes; disk accesses are rarely sequential; 25–
50% of all accesses are asynchronous; only 13–41% of accesses are to user data (the rest result from
swapping, metadata, and program execution); and I/O activity is very bursty: mean request queue
lengths seen by an incoming request range from 1.7 to 8.9 (1.2–1.9 for reads, 2.0–14.8 for writes),
while we saw 95th percentile queue lengths as large as 89 entries, and maxima of over 1000.

Using a simulator to analyze the effect of write caching at the disk level, we found that using a small
non-volatile cache at each disk allowed writes to be serviced considerably faster than with a regular
disk. In particular, short bursts of writes go much faster – and such bursts are common: writes rarely
come singly. Adding even 8KB of non-volatile memory per disk could reduce disk traffic by 10–
18%, and 90% of metadata write traffic can be absorbed with as little as 0.2MB per disk of non-
volatile RAM. Even 128KB of NVRAM cache in each disk can improve write performance by as
much as a factor of three.FCFS scheduling for the cached writes gave better performance than a
more advanced technique at small cache sizes.

Our results provide quantitative input to people investigating improved file system designs (such as
log-based ones), as well as to I/O subsystem and disk controller designers.

UNIX disk access patterns Ruemmler and Wilkes

2 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

The paper is organized as follows. We begin with
a short overview of previous work in the area. Then
comes a description of our tracing method and details of
the systems we traced; it is followed by a detailed
analysis of the I/O patterns observed on each of the
systems. Then we present the results of both
simulations of adding non-volatile write buffers in the
disks, and conclude with a summary of our results.

Related work

Most I/O access pattern studies have been
performed at the file system level of the operating
system rather than at the disk level. Since logging every
file system operation (particularly every read and write)
generates huge quantities of data, most such studies
have produced only summary statistics or made some
other compromise such as coalescing multiple I/Os
together (e.g., [Ousterhout85, Floyd86, Floyd89]).
Many were taken on non-UNIX systems. For example:
IBM mainframes [Procar82, Smith85, Kure88,
Staelin88, Staelin90, Staelin91, Bozman91]; Cray
supercomputers [Miller91]; Sprite (with no timing data
on individual I/Os) [Baker91]; DEC VMS
[Ramakrishnan92];TOPS-10 (static analysis only)
[Satyanarayanan81].

TheUNIX buffer cache means that most accesses
never reach the disk, so these studies are not very good
models of what happens at the disk. They also ignore
the effects of file-system generated traffic, such as for
metadata and read-ahead, and the effects of swapping
and paging. There have been a few studies of disk
traffic, but most have had flaws of one kind or another.
For example: poor measurement technology (60 Hz
timer) [Johnson87]; short trace periods (75 minutes at a
time, no detailed reporting of data, 2ms timer
granularity) [Muller91]; limited use patterns
[Carson90]. Raymie Stata had earlier used the same
tracing technology as this study to look at the I/Os in a
time-sharing UNIX environment [Stata90]. He
discovered skewed device utilization and small average
device queue lengths with large bursts.

We were interested in pursuing this path further,
and gathering detailed statistics without the limitations
of others’ work. The next section details how we did so.

Trace gathering

We traced three different Hewlett-Packard
computer systems (described in Table 1). All were
running release 8 of the HP-UX operating system
[Clegg86], which uses a version of theBSD fast file
system [McKusick84]. The systems had several
different types of disks attached to them, whose
properties are summarized in Table 2.

Trace collection method
All of our data were obtained using a kernel-level

trace facility built into HP-UX. The tracing is
completely transparent to the users and adds no
noticeable processor load to the system. We logged the
trace data to dedicated disks to avoid perturbing the
system being measured (the traffic to these disks is
excluded from our study). Channel contention is
minimal: the logging only generates about one write
every 7 seconds.

Each trace record contained the following data
about a single physical I/O:

• timings, to 1µs resolution, of enqueue time (when
the disk driver first sees the request); start time
(when the request is sent to the disk) and
completion time (when the request returns from
the disk);

• disk number, partition and device driver type;
• start address (in 1KB fragments);
• transfer size (in bytes);
• the drive’s request queue length upon arrival at the

disk driver, including the current request;
• flags for read/write, asynchronous/synchronous,

block/character mode;
• the type of block accessed (inode, directory,

indirect block, data, superblock, cylinder group
bitmap)

The tracing was driven by a daemon spawned
from init; killing the daemon once a day caused a new

Table 2: Disk details

a. 1MB/s towards the disk, 1.2MB/s towards the host.
b. A C2204A disk has two 5.25” mechanisms made to look like a single disk drive by the controller.

Disk
Formatted
capacity

Track
buffer

Cylinders
Data

heads
Rotational

speed

Average
8KB

access

Host interconnect

type speed

HP C2200A 335 MB none 1449 8 4002 rpm 33.6 ms HP-IB 1–1.2MB/sa

HP C2204A 1.3 GB none 2x1449b 2x16 4002 rpm 30.9 ms HP-FL 5MB/s

HP C2474S 1.3 GB 128 KB 1935 19 4002 rpm 22.8 ms SCSI-II 5MB/s

HP 97560 1.3 GB 128 KB 1935 19 4002 rpm 22.8 ms SCSI-II 10MB/s

Quantum PD425S 407 MB 56 KB 1520 9 3605 rpm 26.3 ms SCSI-II 5MB/s

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 3

Table 3: Summary of the traces gathered;cello andhplajw were
traced from 92.4.18 to 92.6.20;snake from 92.4.25 to 92.6.27

a. The remaining portion of this drive is the area where the trace data was collected.
b. The percentages do not add up to 100% due to raw disk accesses to the boot partition on disk A.

snake hplajw

ID disk type partition size number of I/Os reads ID disk type partition size number of I/Os reads

A Quantum
PD425S

/ (root) 313 MB 5 848 567 46.6% 40%

A HP 2200A

/ (root) 278 MB 346 553 83.0% 36%

(swap) 94 MB 50 694 0.4% 91% (swap) 24 MB 19 625 4.7% 71%

B HP 97560 /usr1 1.3 GB 2 862 620 22.8% 48% (swap) 16 MB 17 940 4.3% 68%

C HP 97560 /usr2 1.3 GB 3 793 004 30.2% 43% Ba HP 2200A (swap) 16 MB 31 113 7.5% 82%

Total 3.0 GB 12 554 885 100.0% 43% Total 334 MB 416 262 99.5%b 42%

cello

ID disk type partition size number of I/Os reads

A HP C2474S

/ (root) 958 MB 3 488 934 11.9% 59%

/usr/local/lib/news 105 MB 3 511 772 12.0% 44%

(swap1) 126 MB 243 932 0.8% 80%

(swap2) 48 MB 59 423 0.2% 70%

B HP 2204A /users 1.3 GB 4 162 026 14.2% 47%

C HP 2204A /usr/local/src 1.3 GB 1 027 978 3.5% 85%

D HP 2204A /usr/spool/news 1.3 GB 14 372 382 49.0% 36%

E HP 2204A

/usr/spool/news/in.batches 105 MB 479 441 1.6% 13%

/nfs/export/refdbms 29 MB 21 531 0.1% 84%

/backup 946 MB 185 845 0.6% 22%

/tmp 126 MB 623 663 2.1% 4%

(swap3) 75 MB 212 324 0.7% 80%

F HP 2204A /nobackup 1.3 GB 668 687 2.3% 71%

G HP 2204A /nobackup-2 1.3 GB 68 431 0.2% 79%

H HP 2204A /mount/oldroot 1.3 GB 224 908 0.8% 88%

Subtotal for swap partitions 249 MB 515 679 1.8% 79%

Subtotal for the news partitions 1.4 GB 18 363 595 62.6% 37%

Subtotal excluding news and swap 8.8 GB 10 472 003 35.6% 54%

Grand total 10.4 GB 29 351 277 100.0% 44%

trace file to be started (the kernel’s buffering scheme
meant that no events were lost). Each time this
happened, we also collected data on the physical
memory size, the cache size, system process identifiers,
mounted disks, and the swap configuration.

Traced systems
Cello is a timesharing system used by a small

group of researchers at Hewlett-Packard Laboratories
to do simulation, compilation, editing, and mail. A
news feed that was updated continuously throughout
the day resulted in the majority (63%) of the I/Os in the
system, and these I/Os have a higher-than-usual amount
of writes (63%). The other partitions vary, with the

mean being 46% writes. Because of the large activity
directed to the news partitions, the system as a whole
does more writes (56%) than reads.

Snake acted as a file server for an HP-UX cluster
[Bartlett88] of nine clients at the University of
California, Berkeley. Each client was an Hewlett-
Packard 9000/720 workstation with 24MB of main
memory, 66MB of local swap space, and a 4MB file
buffer cache. There was no local file system storage on
any of the clients; all the machines in the cluster saw a
single common file system with complete single-
system semantics. The cluster had accounts for
professors, staff, graduate students, and computer

UNIX disk access patterns Ruemmler and Wilkes

4 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

science classes. The main use of the system was for
compilation and editing. This cluster was new in
January 1992, so many of the disk accesses were for the
creation of new files. Over the tracing period, the /usr1
disk gained 243MB and /usr2gained 120MB of data.

Finally, the personal workstation (hplajw) was
used by the second author of this paper. The main uses
of the system were electronic mail and editing papers.
There was not much disk activity on this system: the file
buffer cache was doing its job well.

Cello and hplajw were traced from 92.4.18 to
92.6.20;snake from 92.4.25 to 92.6.27. We also use a
common week-long subset of the data for some
analyses; this period runs from 92.5.30 to 92.6.6. All
the numbers and graphs in this paper are derived from
either the full or the week-long traces: we say explicitly
if the shorter ones are being used. Each trace (full or
short) starts at 0:00 hours on a Saturday.

The file system configurations for the three
systems are given in Table 3. The total numbers of I/O
requests logged over the tracing period discussed in this
paper were: 29.4M (cello), 12.6M (snake) and 0.4M
(hplajw).

The swap partitions are used as a backing store for
the virtual memory system. In general, there is little
swap activity (0.4% onsnake, 1.8% oncello): these
systems are reasonably well equipped with memory, or
local swap space in the case ofsnake’s diskless clients.
The exception ishplajw, on which 16.5% of I/Os are for
paging because of memory pressure from simultaneous
execution of the X windowing system, FrameMaker,
GNU Emacs, and a bibliography database program.

Analysis

This section presents our detailed analyses of the
trace data. Although it represents measurements from a
single file system design (the HP-UX/4.3BSD fast file
system), we believe this data will be of use to other file
system designers – particularly in providing upper
bounds on the amount of disk traffic that might be saved
by different approaches to designing file systems.

For example, we know that HP-UX is very
enthusiastic about flushing metadata to disk to make the
file system very robust against power failures.1 This
means that the metadata traffic we measured represents
close to an upper bound on how much a metadata-
logging file system might be able to suppress.

I/O timings
Figure 1 shows the distribution of both elapsed

and physical I/O times for the three systems. The
physical time is the time between the disk driver
dispatching a request to the disk and the I/O completion
event – i.e., approximately the time that the disk is
busy; theelapsed time includes queueing delays. The
values are shown in Figure 1 and Table 4. Large
differences between these two times indicate that many
I/Os are being queued up in the device driver waiting
for previous I/Os to complete.

Typical causes for the difference in times include
high system loads, bursty I/O activity, or an uneven
distribution of load between the disks. Table 4 shows
that the disparity in I/O times between elapsed and
physical times is much larger for writes than for reads.
This suggests that writes are very bursty. One cause is

1 Other people might add “or crashes” here, but we’ve never
experienced a system crash in 6 years of running HP-UX on
over twenty PA-RISC machines.

b. Snake c. Hplajwa. Cello

Figure 1: Distributions of physical and elapsed I/O times; see Table 4 for the mean values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical
elapsed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical reads
physical writes
elapsed reads
elapsed writes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical
elapsed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical reads
physical writes
elapsed reads
elapsed writes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical
elapsed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

physical reads
physical writes
elapsed reads
elapsed writes

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 5

Table 5: Per-disk queue length distributions

percentile
cello snake hplajw

A B D A A

% disk idle 73.0% 61.3% 70.5% 78.1% 63.0%

80% 2 3 2 2 5

90% 4 10 25 4 13

95% 11 43 89 7 20

99% 98 144 177 18 39

100% 606 1520 1070 111 124

the syncer daemon, which pushes delayed (buffered)
writes out to disk every 30 seconds.

Snake has by far the fastest physical I/O times:
33% of them take less than 5ms. This is due to the use
of disks with aggressive read-ahead and immediate
write-reporting (the drive acknowledges some writes as
soon as the data are in its buffer). More on this later.

The I/O loads on the disks on these systems are
quite moderate – less than one request per second per
disk. Nonetheless, the queue lengths can become quite
large, as can be seen from Figures 2 and 3. Over 70% of
the time, requests arrive at an idle disk. Some disks see
queue lengths of 5 or more 15% of the time requests are
added, and 5% of the time, experience queue lengths
around 80 (cello) or 20 (hplajw). The maximum queue
lengths seen are much larger: over 1000 requests on
cello, over 100 onhplajw andsnake. This suggests that
improved request-scheduling algorithms may be
beneficial [Seltzer90, Jacobson91].

The bursty nature of the arrival rate is also shown
by Figure 4, which shows the overall arrival rates of
requests, and by Figure 6, which shows request inter-
arrival times. Many of the I/O operations are issued less
than 20ms apart; 10–20% less than 1ms apart.

The I/O load on bothsnake and cello is
significantly skewed, as Figure 5 shows: one disk
receives most of the I/O operations on each system.

c. Hplajw: mean = 4.1; stddev = 7.8b. Snake: mean = 1.7, stddev = 3.5a. Cello: mean = 8.9; stddev = 36.0

Figure 2: Queue length distributions for each disk in each system

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n
of

 I/
O

s

Queue length

disk A
disk B

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n
of

 I/
O

s

Queue length

disk A
disk B
disk C
disk D
disk E
disk F
disk G
disk H

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n
of

 I/
O

s

Queue length

disk A
disk B
disk C

I/O types
Some previous studies (e.g., [Ousterhout85])

assumed that almost all accesses to the disk were for
user data and therefore neglected to measure metadata
and swap accesses. Our data (presented in Table 6)

0 7 14 21 28 35 42 49 56
1

10

100

1000

10000

Q
ue

ue
 L

en
gt

h

Day

mean

50%

75%

85%

95%

max

Percentiles

0 7 14 21 28 35 42 49 56
1

10

100

1000

Q
ue

ue
 L

en
gt

h

Day

mean

50%

75%

85%

95%

max

Percentiles

b. Hplajw

a. Cello

Figure 3: Mean queue length distributions versus time
(daily values over 92.4.18–92.6.20)

Table 4: Mean I/O request response times in ms

system I/O type physical elapsed

cello

reads 23.6 27.4

writes 27.7 272.0

total 25.9 164.0

snake

reads 17.0 22.3

writes 14.9 42.2

total 15.8 33.7

hplajw

reads 27.5 39.2

writes 24.1 142.0

total 25.5 98.5

UNIX disk access patterns Ruemmler and Wilkes

6 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Figure 4: I/O rates for all three systems. All traces being on a Saturday; the hourly data spans 92.5.30–92.6.6

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 I/

O
s

Time (hours)

c. Daily I/O rate on hplajw.
Mean = 6607/day, or 0.076/s.

f. Hourly I/O rate on hplajw.
Mean = 265/hour.

b. Daily I/O rate on snake.
Mean = 199 284/day, or 2.3/s.

e. Hourly I/O rate on snake.
Mean = 7158/hour.

a. Daily I/O rate on cello.
Mean = 465 964 I/Os/day, or 5.4/s.

d. Hourly I/O rate on cello.
Mean = 19 422/hour.

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

N
um

be
r

of
 I/

O
s

Time (days)

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 I/

O
s

Time (hours)

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

N
um

be
r

of
 I/

O
s

Time (days)

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 I/

O
s

Time (hours)

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

N
um

be
r

of
 I/

O
s

Time (days)

a. Cello b. Cello (92.5.30 to 92.6.6)

c. Snake d. Snake (92.5.30 to 92.6.6)

0 7 14 21 28 35 42 49 56
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 I/
O

s

Day

A

B

C

Disk ID

0 24 48 72 96 120 144
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 I/
O

s

Hour

A

B

C

Disk ID

0 24 48 72 96 120 144
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
I/

O
s

Hour

A

B

C

D

E

F

Disk ID
0 7 14 21 28 35 42 49 56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
I/

O
s

Day

A

B

C

D

E

F

Disk ID

Figure 5: I/O load distribution across the disks forcello andsnake.
 DisksG andH oncello are omitted, because they saw almost no I/O
traffic; hplajw is omitted because almost all I/O was to the root disk.

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 7

Figure 6: System-wide distribution and density plots
of I/O request inter-arrival times. Cello mean: 185ms;

snake mean: 434ms;hplajw mean: 13072ms

a. inter-arrival distributions

b. inter-arrival densities

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

cello
snake
hplajw

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

cello
snake
hplajw

suggest that these assumptions are incorrect. In every
trace, the user data is only 13–41% of all the I/Os
generated in each system. The metadata percentage is
especially high for writes, where 67–78% of the writes
are to metadata blocks.

The ratio of reads to writes varies over time (Figure
8). The spikes in the hourly graph correspond to nightly
backups. Overall, reads represent 44% (cello), 43%
(snake) and 42% (hplajw) of all disk accesses. This is a
surprisingly large fraction, given the sizes of the buffer
caches on these systems –cello in particular. When
cello’s buffer cache was increased from 10MB to 30MB,
the fraction of reads declined from 49.6% to 43.1%: a
surprisingly small reduction. This suggests that
predictions that almost all reads would be absorbed by
large buffer caches [Ousterhout85, Ousterhout89,
Rosenblum92] may be overly optimistic.

The HP-UX file system generates both
synchronous and asynchronous requests. Synchronous
I/O operations cause the invoking process to wait until
the I/O operation has occurred before proceeding, so
delaying synchronous operations can increase the
latency associated with an I/O operation. Asynchronous
operations proceed in the background, not tied directly
to any process. Requests not explicitly flagged either
way are treated as synchronous at the file system level,
asynchronous at the disk level (this distinction is only
important for writes).

Most read requests are implicitly synchronous
(Table 6 and Figure 7), except for user data, where 14–

Table 6: distribution of I/Os by type
In this table,user data means file contents,metadata includes inode, directory, indirect blocks, superblock, and other
bookkeeping accesses,swap corresponds to virtual memory and swapping traffic, andunknown represents blocks
classified as such by the tracing system (they are demand-paged executables and, onsnake, diskless-cluster I/Os made
on behalf of its clients). The percentages under “I/O type” sum to 100% in each row.
The amount of raw (character-mode, or non-file-system) traffic is also shown as a percentage of the entire I/Os. Raw
accesses are made up of the swap traffic and the demand-paging of executables from theunknown category. Onhplajw,
there was also a small amount of traffic to the boot partition in this mode.
Numbers in parentheses represent the percentage of that kind of I/O that was synchronous at the file system level (i.e.,
did not explicitly have theasynchronous-I/O flag attached to the I/O request).

system operation
I/O type Raw

disk I/Osuser data metadata swap unknown

cello

reads 51.4% (66%) 40.0% (100%) 3.2% (100%) 5.5% (100%) 8.6%

writes 32.0% (55%) 67.3% (72%) 0.7% (100%) 0.0% (100%) 0.7%

total 40.6% (61%) 55.2% (81%) 1.8% (100%) 2.4% (100%) 4.2%

snake

reads 5.7% (86%) 17.4% (100%) 0.7% (100%) 76.2% (83%) 34.0%

writes 19.5% (46%) 78.1% (18%) 0.1% (100%) 2.3% (45%) 0.1%

total 13.4% (53%) 51.5% (30%) 0.4% (100%) 34.7% (82%) 15.0%

hplajw

reads 23.6% (60%) 10.7% (100%) 29.2% (100%) 36.4% (100%) 65.7%

writes 21.7% (26%) 71.2% (52%) 7.1% (100%) 0.0% (100%) 7.1%

total 22.5% (41%) 45.5% (57%) 16.5% (100%) 15.4% (100%) 31.9%

UNIX disk access patterns Ruemmler and Wilkes

8 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Figure 8: Fraction of I/Os oncello that are reads as a function of time (daily: 92.4.18 to 92.6.20; hourly: 92.5.30 to
92.6.6). Note the reduction in read fraction aftercello’s buffer cache was increased in size on 92.4.26.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

F
ra

ct
io

n
R

ea
ds

Day

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

F
ra

ct
io

n
R

ea
ds

Hour

0 7 14 21 28 35 42 49 56
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n

of
 I/

O
s

Day

Read Sync.

Read Neither

Read Async.

Write Sync.

Write Neither

Write Async.

I/O Type

Figure 7: I/Os on each system classified by type, expressed as a fraction of the total I/Os on that system.The labels
synchronous andasynchronous indicate that one of these flags was associated by the file system with the request;

neither indicates that the file system did not explicitly mark the request in either way. The flags do not occur together.

b. Snake

Mean values reads writes both

asynchronous 5.9% 42.6% 48.5%

neither 37.9% 4.6% 42.5%

synchronous 0.0% 9.0% 9.0%

total 43.8% 56.2% 100.0%

c. Hplajw

Mean values reads writes both

asynchronous 4.0% 28.8% 32.8%

neither 38.4% 4.4% 42.8%

synchronous 0.0% 24.4% 24.4%

total 42.4% 57.6% 100.0%

a. Cello

Mean values reads writes both

asynchronous 7.7% 18.7% 26.4%

neither 36.4% 0.8% 37.2%

synchronous 0.0% 36.4% 36.4%

total 44.1% 55.9% 100.0%

0 7 14 21 28 35 42 49 56
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 I/
O

s

Day

Read Sync.

Read Neither

Read Async.

Write Sync.

Write Neither

Write Async.

I/O Type

0 7 14 21 28 35 42 49 56
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 I/
O

s

Day

Read Sync.

Read Neither

Read Async.

Write Sync.

Write Neither

Write Async.

I/O Type

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 9

Figure 9: Density and distribution plots of the distance inKB between the end of
one request and the start of the next. In the distribution plots, the X-axis is given by

x = sign(d) × log10 (|d|)
of the distanced. The large peaks at –8KB correspond

to block overwrites. The traces run from 92.5.30 to 92.6.6.

d. Snake root disk (trace A) e. Snake /usr1 disk (trace B) f. Hplajw root disk

a. Cello root disk (trace A) b. Cello /users disk (trace B) c. Cello news disk (trace D)

g. Cello distribution plot h. Snake distribution plot i. Hplajw distribution plot

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

0

0.05

0.1

0.15

0.2

0.25

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

0

0.02

0.04

0.06

0.08

0.1

0.12

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

F
ra

ct
io

n
of

 I/
O

s

Log base 10 of distance (kilobytes)

Disk A
Disk B
Disk D

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

F
ra

ct
io

n
of

 I/
O

s

Log base 10 of distance (kilobytes)

Disk A
Disk B
Disk C

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

F
ra

ct
io

n
of

 I/
O

s

Log base 10 of distance (kilobytes)

Disk A
Disk B

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
ra

ct
io

n
of

 I/
O

s

Distance (kilobytes)

Figure 10: Distributions ofper-disk write group sizes and write burst sizes

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

F
ra

ct
io

n
of

 w
rit

e
I/O

s

Write group size (I/Os)

cello
snake
hplajw

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

F
ra

ct
io

n
of

 w
rit

e
I/O

s

Write burst size (I/Os)

cello
snake
hplajw

UNIX disk access patterns Ruemmler and Wilkes

10 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Figure 11: Distribution of transfer sizes for all systems

a. Cello b. Snake c. Hplajw

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

total
writes
reads

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

data
meta
swap
other

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

total
writes
reads

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

data
meta
swap
other

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

total
writes
reads

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
of

 I/
O

s

Size (kilobytes)

data
meta
swap
other

40% of the accesses are asynchronous read-aheads.
Writes are almost all explicitly flagged as synchronous
or asynchronous; again, it is user data that has the
highest amount (45–74%) of asynchronous activity,
except onsnake, where almost all metadata writes
(82%) are asynchronous. All swap and paging traffic is
synchronous.

Write groups and write bursts
Looking just at the stream of write requests, we

found that many of the writes occurred ingroups, with
no intervening reads. Writes rarely occur on their own:
Figure 10 shows that only 2–10% of writes occur
singly; 50% of them happen in groups of 20 or more
(snake) to 50 or more (hplajw). Writebursts are almost
as common. (A burst includes all those I/Os that occur
closer than 30ms to their predecessor.) Most writes (60–
75%) occur in bursts. On cello, 10% of the writes occur
in bursts of more than 100 requests.

I/O placement
Previous studies have shown that I/Os at the file

system level are highly sequential [Ousterhout85,
Baker91]. But our data (plotted in Figure 9) shows that

by the time these requests reach the disk they are much
less so.

We define requests to belogically sequential if
they are at adjacent disk addresses or disk addresses
spaced by the file system interleave factor. There is a
wide range of logical sequentiality: from 4% (on the
cello news disk), 9% (hplajw root disk) to 38% (snake
/usr1 disk). The means for the three systems are shown
in Table 7, expressed as percentages of all I/Os.

I/O sizes
An I/O device can be accessed either through the

block device or the character device. When a file is
accessed via the block device, all I/O is done in
multiples of the fragment size (1KB) up to the block
size (8KB). Disks accessed via the character device
(e.g., for demand paging of executables or swapping)
have no such upper bound, although they are always
multiples of the machine’s physical page size: 2KB for
hplajw, 4KB for the other two.

As Table 6 shows, most all accesses go through
the file system, except onhplajw, where there is a large
amount of swap and paging traffic (32% of the
requests). Figure 11 shows how the distribution of I/O
sizes varies across the systems we traced as a function
of the kind of I/O being performed. As expected, file
system writes are up to 8KB in size, while swap
accesses can be larger than this.

Block overwrites
We observed a great deal of block overwriting: the

same block (typically a metadata block) would be
written to disk over and over again. One cause of this is
a file that is growing by small amounts: each time the

Table 7: Fraction of I/Os that are logically sequential

a. 15.4% without the news disk.

system reads writes

cello 7.7%a 6.3%

snake 14.1% 4.7%

hplajw 4.5% 5.0%

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 11

file is extended, HP-UX posts the new inode metadata
to disk – metadata is essentially held in a write-through
cache.

Figure 12 plots the time between overwrites of the
same block. On the root disks, 25% (hplajw andcello)
to 38% (snake) of updated blocks are overwritten in
less than 1 second; 45% of the blocks are overwritten in
30 seconds (cello); 18% of the blocks are overwritten at
30-second intervals (snake – presumably the syncer
daemon); and over 85% of all blocks written are
overwritten in an hour or less – 98% forsnake.

A similar picture is told by the block access
distributions shown in Figure 13. Up to 30% of the
writes are directed to just 10 blocks, and 65–100% of
the writes go to the most popular 1000 blocks; 1% of
the blocks receive over 90% of the writes.

Together, these figures suggest that caching only a
small percentage of the blocks in non-volatile memory
could eliminate a large fraction of the overwrites.

Figure 12: Distribution of 8KB-block overwrite delays

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.001 .01 .1 1 10 100 1e4 1e5 1e6

F
ra

ct
io

n
of

 w
rit

es

Time (seconds)

disk A
disk B
disk C
disk D
disk E
disk F
disk G
disk H

0

0.2

0.4

0.6

0.8

1

.01 .1 1 10 100 1e4 1e5 1e6

F
ra

ct
io

n
of

 w
rit

es

Time (seconds)

disk A
disk B
disk C

0

0.2

0.4

0.6

0.8

1

.01 .1 1 10 100 1e4 1e5 1e6

F
ra

ct
io

n
of

 w
rit

es

Time (seconds)

disk A
disk B

a. Cello

b. Snake

c. Hplajw

Immediate reporting
The disks onsnake use a technique known as

immediate reporting for some of their writes. Our
studies show that enabling it reduces the mean write
time from 20.9ms to 13.2ms.

HP-UX’s immediate reporting is intended to
provide faster write throughput for isolated writes and
sequential transfers. It operates as follows. Aneligible
write command is acknowledged as complete by the
disk drive as soon as the data has reached the drive’s
volatile buffer memory. Eligible writes are those that
are explicitly or implicitly asynchronous, and those that
are physically immediately after the write that the drive
is currently processing. The disk’s write buffer acts
solely as aFIFO: no request reordering occurs.

Since the data that is immediately-reported is
vulnerable to power failures until it is written to disk,
HP-UX disables immediate reporting for write requests
explicitly flagged as synchronous.

Figure 13: Distribution of writes by 8KB block
number; blocks are sorted by write access count

a. Cello

b. Snake

c. Hplajw

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 w
rit

e
I/O

s

Percent of disk

disk A
disk B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 w
rit

e
re

qu
es

ts

Percent of disk

disk A
disk B
disk C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 w
rit

e
re

qu
es

ts

Percent of disk

disk A
disk B
disk D

UNIX disk access patterns Ruemmler and Wilkes

12 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Simulation studies

We constructed a simulation model to explore
various design alternatives in the I/O subsystem. We
report here on our results with adding non-volatile
RAM (NVRAM) caches. We begin with a description of
the model itself, and the calibration we performed on it.
We then present the results of applying different
caching strategies.

The simulation model
We modelled the disk I/O subsystem in

(excruciating) detail, including transfer times over the
SCSI bus from the host, bus contention, controller
overhead, seek times as a (measured) function of
distance, read and write settling times, rotation
position, track- and cylinder-switch times, zone bit
recording for those disks that had it, media transfer rate,
and placement of sparing areas on the disks.

Figure 15: Distributions of physical I/O times
for different disk caching policies with 128KB

of cache, over the period 92.5.30–92.6.6

b. Snake root disk

c. Hplajw root disk

a. Cello root disk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

none
immediate report

fcfs
satf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

none
immediate report

fcfs
satf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

none
immediate report

fcfs
satf

When immediate reporting is enabled, writes are
faster, and take only 3–7ms for an 8KB block. Figure 1
shows that 45% of all writes occur in less than 7ms.
This is 53% of the writes eligible for immediate
reporting (determined from Figure 7 and Table 3). The
minimum physical request time is around 3ms, made up
of 1.6ms ofSCSI bus data transfer time, plus about the
same again in disk, driver andSCSI channel overheads.

The main benefit of immediate reporting is that
sequential, back-to-back writes can proceed at full disk
data rates, without the need for block interleaving. (On
the HP97560 disks onsnake, this means 2.2MB/sec.)
However, only 4.7–6.3% I/Os are sequential writes, so
the benefit is not as great as might be hoped. Perhaps
caching, which allows request reordering in the disk,
could help alleviate this problem. To investigate this,
we turned to simulation studies driven by our trace data.

Figure 14: Measured and modelled physical
disk I/O times over the period 92.5.30–92.6.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

real
simulated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

real
simulated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 I/
O

s

Time (ms)

real
simulated

c. Quantum PD425S

b. HP97560

a. HP C2200A

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 13

Figure 16: Physical and elapsed times for different cache sizes and caching policies.
The root disk from each system is shown; traces are from 92.5.30–92.6.6.

b. Cello elapsed I/O times

d. Snake elapsed I/O times

f. Hplajw elapsed I/O times

a. Cello physical I/O times

c. Snake physical I/O times

e. Hplajw physical I/O times

16 32 64 128 256 512 1024 2048 4096
0

2

4

6

8

10

12

14

16

18

20

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

16 32 64 128 256 512 1024 2048 4096
0

50

100

150

200

250

300

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

16 32 64 128 256 512 1024 2048 4096
0

5

10

15

20

25

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

16 32 64 128 256 512 1024 2048 4096
0

10

20

30

40

50

60

70

80

90

100

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

16 32 64 128 256 512 1024 2048 4096
0

5

10

15

20

25

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

16 32 64 128 256 512 1024 2048 4096
0

20

40

60

80

100

120

140

160

180

200

T
im

e
(m

s)

Cache size (kilobytes)

none

imm. rpt

fcfs

satf

Caching Policy

To calibrate our model, we compared the
measured I/O times in the traces against the three disks
we simulated. The result is the close match shown in
Figure 14. We did not attempt to mimic the two-spindle,
single-controller HP2204A: instead, we modelled it as
an HP2474S (but with read-ahead disabled, since the
HP2204 controllers do not provide it). Since our results
compare simulator runs, rather than compare
simulations against the real trace (other than for the
calibration), we believe the results are still useful.

Read-ahead at the disk
We did a limited exploration of the effects of in-

disk read-ahead. If read-ahead is enabled, the disk
continues to read sequentially into an internal read-
ahead cache buffer after a read until either a new
request arrives, or the buffer fills up. (This buffer is
independent of the write caches we discuss later.) In
the best case, sequential reads can proceed at the full
disk transfer rate. The added latency for other requests
can be made as small as the time for a single sector read

(0.2ms for an HP97560) in all but one case: if the read-
ahead crosses a track boundary, the track switch
proceeds to completion even if there is a new request to
service.2

Table 8 shows the effects of disabling or enabling
read-ahead for thecello traces. Enabling it improves
physical read performance by 10% and elapsed read
times by 42%, but has no effect on write times.

2 A more recent HP disk, the HP C3010, lets the host decide
whether such inter-track read-aheads should occur.

Table 8: Effect of read-ahead on I/O times, averaged
over all disks oncello; 92.5.30–92.6.6

read-
ahead?

Reads Writes

elapsed physical elapsed physical

no 33.7ms 16.4ms 255.4ms 18.3ms

yes 19.5ms 14.7ms 255.5ms 18.3ms

UNIX disk access patterns Ruemmler and Wilkes

14 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Non-volatile write caching at the disk
If non-volatile memory were used for the write

buffers in the disk, the limitations of immediate
reporting could be lifted: both synchronous and non-
sequential writes could be cached. In particular, we
were interested in how the write-back policy from the
cache would affect performance.

Policies we explore here include: no cache at all,
immediate reporting, caching with a straightFCFS
scheduling algorithm, and caching with a modified
shortest access time first scheduling (SATF) algorithm.
(SATF is a scheduling algorithm that takes both seek
and rotation position into account [Seltzer90,
Jacobson91]. We modified it to favor writing large
blocks out of the cache over small ones since this gave
better performance at small cache sizes: it freed up
space in the cache faster.)

We gave reads priority over flushing dirty buffers
from the cache to disk, given the small number of
asynchronous reads we saw in our traces. Each
simulated disk was also given a reserved buffer for
reads so that these did not have to wait for space in the
write buffer. In addition, large writes (>32KB) were
streamed straight to the disk, bypassing the write buffer.

The results are presented in Figure 15 and 16,
which show how the I/O times change under the
different policies for the traces from the different
systems.

We were surprised by two things in this data: first,
there was almost no difference in the mean physical I/O
times between theFCFS and SATF scheduling
disciplines in the disk. In this context,FCFS is really the
SCAN algorithm used by the device driver (modified by
overwrites, which are absorbed by the cache). With
small numbers of requests to choose from,SATF may
second-guess the request stream from the host – and get
it wrong – in the face of incoming read requests. At
larger cache sizes, this effect is compensated for by the
increased number of requests SATF can select from.

Second, even though the mean physical times
were uniformly better when caching was enabled, the
elapsed times for small cache sizes were sometimes
worse. We tracked this down to the cache buffer
replacement policy: the cache slots occupied by a
request are not freed until the entire write has finished,
so that an incoming write may have to wait for the
entire current write to complete. At small cache sizes,
this has the effect of increasing the physical times of
writes that happen in bursts big enough to fill the cache
– thereby accentuating the queueing delays, which
occur mostly in these circumstances.

We also found that a very small amount of
NVRAM (even as little as 8KB per disk) at theSCSI
controller or in the host would eliminate 10–18% of the
write traffic, as a result of the many overwrites. Indeed,
on snake, 44–67% of metadata writes are overwritten
in a 30 second period: absorbing all of these would
reduce the total I/Os by 20%.

Reads were slowed down a little (less than 4%)
when caching was turned on. We surmise that the
increased cache efficiency increased the mean seek
distance for writes by absorbing many of the
overwrites. This meant that a read issued while a cache-
flush write was active would occasionally have to wait
for a slightly longer seek to complete than it would have
done if there had been no caching. Also, reads do not
interrupt a write: if this happens, the physical read time
will include the time for the write to finish.

Non-volatile write caching at the host
We then determined how the amount ofNVRAM

affected how many writes we could absorb in each 30
second interval in our traces. (We assumed no
background write activity to empty the cache during the
30 second intervals.) We show this data in two ways:
Figure 17 shows the distribution of 30-second intervals

Figure 17: Distributions of the cache sizes needed to
absorb all write accesses over 30 second intervals.

b. Snake (92.5.30–92.6.6)

c. Hplajw (92.5.30–92.6.6)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F
ra

ct
io

n
of

 o
cc

ur
re

nc
es

Kilobytes of write pool

all
metadata

data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

F
ra

ct
io

n
of

 o
cc

ur
re

nc
es

Kilobytes of write pool

all
metadata

data

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F
ra

ct
io

n
of

 o
cc

ur
re

nc
es

Kilobytes of write pool

all
metadata

data

a. Cello (92.5.30–92.6.6)

Ruemmler and Wilkes UNIX disk access patterns

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 15

in which a given amount of cache was able to absorball
of the writes; Figure 18 shows the fraction of writes
absorbed by a given cache size. (The disparity between
the “overwrites” and “total” lines in the latter represents
the amount of valid data in theNVRAM cache at the
end of the 30 second period.)

Two hundredKB of NVRAM can absorb all writes
in 65% (cello) to 90% (hplajw) of 30 second intervals. If
metadata alone is considered (because it has the highest
percentage of synchronous I/Os), all metadata writes
can be absorbed in 80% of the intervals with 100KB
(hplajw andsnake) to 250KB (cello) of NVRAM.

The “total” lines in Figure 18 show the write I/O
bandwidth: once the cache is big enough to absorb this,
little further improvement is seen. 95% absorption is
reached at 700KB (hplajw), 1MB (snake) and 4MB

Figure 18: distributions of the number of writes
absorbed by given cache sizes over 30 second intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

F
ra

ct
io

n
of

 w
rit

es
 a

bs
or

be
d

Cache size (kilobytes)

total
overwrite

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

F
ra

ct
io

n
of

 w
rit

es
 a

bs
or

be
d

Cache size (kilobytes)

total
overwrites

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000

F
ra

ct
io

n
of

 w
rit

es
 a

bs
or

be
d

Cache size (kilobytes)

total
overwrites

b. Snake (92.5.30–92.6.6)

c. Hplajw (92.5.30–92.6.6)

a. Cello (92.5.30–92.6.6)

(cello). Overwrites account for 25% (hplajw) to 47%
(snake) of all writes.

Conclusions

We have provided a great deal of information on
three complete, disk-level I/O traces from computer
systems with moderately disparate workloads. These
results will be of use to others in understanding what
file systems do, to evaluate possible changes, and to
provide distribution parameters for modelling.

We have also presented the results of simulations
of write caching at the disk level, and demonstrated that
this is an effective technique, although a new finding is
that the write scheduling policy has little effect on the
cache efficacy.

Acknowledgments
This work was carried out as part of the DataMesh

research project at HP Laboratories. We thank the users
and administrators of the systems we traced for their
cooperation in allowing us to gather the data. David
Jacobson helped us interpret some of our results.

Availability
For researchers wishing greater detail than can be

reproduced here, we have made the raw data for the
graphs in this paper available via anonymousftp from
ftp.hpl.hp.com, in the filepub/wilkes/USENIX.Jan93.tar.

References

[Baker91] Mary G. Baker, John H. Hartman,
Michael D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout. Measurements of a distributed file
system.Proceedings of 13th ACM Symposium on
Operating Systems Principles (Asilomar, Pacific
Grove, CA). Published asOperating Systems
Review25(5):198–212, 13–16 October 1991.

[Bartlett88] Debra S. Bartlett and Joel D. Tesler. A
discless HP-UX file system.Hewlett-Packard
Journal39(5):10–14, October 1988.

[Bozman91] G. P. Bozman, H. H. Ghannad, and E. D.
Weinberger. A trace-driven study of CMS file
references. IBM Journal of Research and
Development35(5/6):815–28, Sept.–Nov. 1991.

[Carson90] Scott D. Carson. Experimental
performance evaluation of the Berkeley file system.
Technical report UMIACS–TR–90–5 and CS–TR–
2387. Institute for Advanced Computer Studies,
University of Maryland, January 1990.

[Clegg86] Frederick W. Clegg, Gary Shiu-Fan Ho,
Steven R. Kusmer, and John R. Sontag. The HP-UX
operating system on HP Precision Architecture
computers.Hewlett-Packard Journal37(12):4–22,
December 1986.

[English92] Robert M. English and Alexander A.
Stepanov. Loge: a self-organizing storage device.
USENIX Winter 1992 Technical Conference
Proceedings (San Francisco, CA), pages 237–51,
20–24 January 1992.

UNIX disk access patterns Ruemmler and Wilkes

16 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

[Floyd86] Rick Floyd. Short-term file reference
patterns in aUNIX environment. Technical report
177. Computer Science Department, University of
Rochester, NY, March 1986.

[Floyd89] Richard A. Floyd and Carla Schlatter Ellis.
Directory reference patterns in hierarchical file
systems.IEEE Transactions on Knowledge and
Data Engineering1(2):238–47, June 1989.

[Jacobson91] David M. Jacobson and John Wilkes.
Disk scheduling algorithms based on rotational
position. Technical report HPL–CSP–91–7.
Hewlett-Packard Laboratories, 24 February 1991.

[Johnson87] Thomas D. Johnson, Jonathan M. Smith,
and Eric S. Wilson. Disk response time
measurements.USENIX Winter 1987 Technical
Conference Proceedings(Washington, DC), pages
147–62, 21–23 January 1987.

[Kure88] Øivind Kure.Optimization of file migration in
distributed systems. PhD thesis, published as
UCB/CSD 88/413. Computer Science Division,
Department of Electrical Engineering and Computer
Science, UC Berkeley, April 1988.

[McKusick84] Marshall K. McKusick, William N. Joy,
Samuel J. Leffler, and Robert S. Fabry. A fast file
system forUNIX. ACM Transactions on Computer
Systems2(3):181–97, August 1984.

[Miller91] Ethan L. Miller and Randy H. Katz.
Analyzing the I/O behavior of supercomputer
applications. Digest of papers, 11th IEEE
Symposium on Mass Storage Systems (Monterey,
CA), pages 51–9, 7–10 October 1991.

[Muller91] Keith Muller and Joseph Pasquale. A high
performance multi-structured file system design.
Proceedings of 13th ACM Symposium on Operating
Systems Principles (Asilomar, Pacific Grove, CA).
Published asOperating Systems Review25(5):56–
67, 13–16 October 1991.

[Ousterhout85] John K. Ousterhout, Hervé Da Costa,
David Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A trace-driven analysis of the
UNIX 4.2 BSD file system.Proceedings of 10th
ACM Symposium on Operating Systems Principles
(Orcas Island, WA). Published asOperating Systems
Review19(5):15–24, December 1985.

[Ousterhout89] John Ousterhout and Fred Douglis.
Beating the I/O bottleneck: a case for log-structured
file systems.Operating Systems Review23(1):11–
27, January 1989.

[Porcar82] Juan M. Porcar. File migration in
distributed computer systems. PhD thesis, published
as Technical report LBL–14763. Physics, Computer
Science and Mathematics Division, Lawrence
Berkeley Laboratory, UC Berkeley, July 1982.

[Ramakrishnan92] K. K. Ramakrishnan, Prabuddha
Biswas, and Ramakrishna Karedla. Analysis of file
I/O traces in commercial computing environments.
Proceedings of 1992ACM SIGMETRICS and

PERFORMANCE92 International Conference on
Measurement and Modeling of Computer Systems
(Newport, RI). Published as Performance
Evaluation Review20(1):78–90, 1–5 June 1992.

[Rosenblum92] Mendel Rosenblum and John K.
Ousterhout. The design and implementation of a
log-structured file system.ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[Satyanarayanan81] M. Satyanarayanan. A study of file
sizes and functional lifetimes.Proceedings of 8th
ACM Symposium on Operating Systems Principles
(Asilomar, Ca). Published asOperating Systems
Review, 15(5):96–108, December 1981.

[Seltzer90] Margo Seltzer, Peter Chen, and John
Ousterhout. Disk scheduling revisited.USENIX
Winter 1990 Technical Conference Proceedings
(Washington, DC), pages 313–23, 22–26 Jan. 1990.

[Smith85] Alan Jay Smith. Disk cache—miss ratio
analysis and design considerations.ACM
Transactions on Computer Systems3(3):161–203,
August 1985.

[Staelin88] Carl Staelin. File access patterns. Technical
report CS–TR–179–88. Department of Computer
Science, Princeton University, September 1988.

[Staelin91] Carl Staelin and Hector Garcia-Molina.
Smart filesystems.USENIX Winter 1991 Technical
Conference Proceedings (Dallas, TX), pages 45–51,
21–25 January 1991.

[Stata90] Raymie Stata.File systems with multiple file
implementations. Masters thesis, published as a
technical report. Dept of Electrical Engineering and
Computer Science, MIT, 22 May 1990.

Author information

Chris Ruemmler is currently finishing hisMS
degree in Computer Science at the University of
California, Berkeley. He received hisBS degree from
the University of California, Berkeley in May, 1991. He
completed the work in this paper during an internship at
Hewlett-Packard Laboratories. His technical interests
include architectural design, operating systems,
graphics, and watching disks spin around and around at
4002RPM. His personal interests include deep sea
fishing, swimming, and music.

John Wilkes graduated with degrees in Physics
(BA 1978,MA 1980), and a Diploma (1979) and PhD
(1984) in Computer Science from the University of
Cambridge. He has worked since 1982 as a researcher
and project manager at Hewlett-Packard Laboratories.
His current primary research interests are in resource
management in scalable systems in general, and fast,
highly available parallel storage systems in particular.
He particularly enjoys working with university students
on projects such as this one.

The authors can be reached by electronic mail at
ruemmler@cs.berkeley.edu andwilkes@hpl.hp.com.

