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Remote mirroring is widely deployed, but its complexities
are surprisingly poorly understood. This means that data is
less well protected than it ought to be, and possible
optimizations are infrequently taken advantage of. To
address these difficulties, we (1) demystify the design space
by presenting a taxonomy of the approaches in use, (2)
describe Seneca – a new asynchronous remote-mirroring
protocol that supports write coalescing, asynchronous
propagation, and in-order delivery, and (3) report on a
performance and correctness validation of Seneca. We are
confident that the result is a robust remote-mirroring
protocol that provides good performance and predictable
behavior in the face of a wide range of failure types, such as
rolling disasters.

1  Introduction
Data mirroring is a classic technique for tolerating failures:
by keeping two or more copies of important information,
access can continue if one of them is lost or becomes
unreachable. It is used inside disk arrays (where it is called
RAID1), between disks or disk arrays, and across multiple
sites, where it is called remote mirroring. 

Remote mirroring is widely deployed whenever the cost of
losing data matters. And it does matter: protection for
information assets is often more important than for physical
ones – at least the latter can be replaced after a loss. Gartner
estimates that “Two out of five enterprises that experience a
[site] disaster … go out of business within five years”
[Witty2001]. Even lack of access to data is expensive: 25%
of respondents to one survey estimated that outages cost
them more than $250k/hour, with 4% estimating more than
$5M/hour [EagleRock2001]. Remote mirroring can protect
against both data loss and inaccessibility.

The design choices for remote mirroring are complicated by
competing goals: keeping the copies as closely synchronized
as possible, delaying foreground writes as little as possible,
maintaining accessibility in the face of as many failure types
as possible, and using as little expensive inter-site network
bandwidth as possible.1 

The basic trade-off is between better performance with lower
cost against greater potential data loss, especially for
recently-written data. Simple solutions, such as
synchronously updating all copies, provide high resilience to
data loss but have poor write performance and incur high
network costs in remote-mirroring systems. 

Contributions of this paper

Remote mirroring has been in use for quite a while, so it is
usually thought to be well understood. Despite this, when we
prepared a survey of the approaches used in practice, we
found a wide variation in assumptions, techniques used, and
the degree to which recovery is achievable. Additionally,
many of the design choices are quite intricate and subtle, as
we discovered when we ran our taxonomy past practitioners
in the field. Our first contribution, then, is a taxonomy of the
design choices for remote mirroring.

Our second contribution is the design of a robust remote
mirroring protocol that provides resilience to many kinds
and sequences of failures, low network bandwidth demands,
and low (and tunable) data loss. We also look at its
correctness, using an I/O automata-based simulation.

1 For example, in South Carolina, the rental price of an 155Mb/s OC3 line in 
2002 was about $460k/year [SC2002a]. This is equivalent to the capital 
depreciation cost of about 12TB of mirrored, enterprise-class (HP EVA) 
storage at late 2002 prices. Slower line costs are scaled accordingly: 
constant bit-rate ATM lines inside South Carolina are priced at an average 
of $170 per Mb/s per month [SC2002b]; variable-rate a bit less.

In California, SBC Pacific Bell [SBC2002] offered ATM service for:
DS1: 1.544Mbps = $750 per month plus one-time installation of $1200 
DS3: 40Mbps = $5000 per month plus one-time installation of $3000 
OC-3c: 148Mbps = $7000 per month plus one-time installation of $3000.

This 6:1 cost ratio is a result of the rapidly-changing telecom market, and is 
considered “not unusual” by our IT manager.

Figure 1: canonical remote mirroring system. The remote-
mirroring function (labelled “Seneca”) can be implemented in 
hosts, disk arrays, or in SAN appliances (as shown).
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The final contribution is an evaluation of the protocol’s
performance, looking at how much it reduces network traffic
using traces from real workloads.

2  A taxonomy for remote mirroring
The usual assessment criteria for remote mirroring designs
include data accessibility (availability), resistance to loss or
corruption of data (reliability), performance degradation in
normal use, and the cost of operation, primarily in terms of
inter-site network traffic. Accommodating these conflicting
goals exposes many design and configuration options for
remote-mirroring. The basic axes are as follows:

• the fault-coverage model;

• how closely synchronized the copies are;

• how updates are propagated;

• when updates are acknowledged;

• where the data duplication is performed. 

All of these affect write performance and the amount of
recently-written data that can be lost; some of them affect the
amount of network traffic needed, too.

We use SCSI disk logical units (LUs) as the entities to
mirror, because this is the most common practice. A SCSI
disk drive exports a single LU; a disk array can have
thousands of LUs. LU granularity allows different data to be
given different degrees of protection: for example, a user file
system may need less than a database index, which probably
needs less than the data being indexed. The mirroring
techniques described here can also be applied to other
objects such as files, database tables, or object storage
devices.

In what follows, a local site is one that is closer to the host
and services data in normal operations; a remote site is the
mirror of the local site; a primary site is one that actually
services data; a secondary site is one that is not servicing
data, either down or standing by as a backup. In the normal
case, the local site is primary and the remote site is
secondary. 

2.1  Fault model
The fault model we used when designing the Seneca
protocol is representative of those used in most remote
mirroring designs – albeit more comprehensive than many of
them. A remote mirroring system should tolerate failures of: 

• host computers (hardware and software);

• links, switches, and hubs at each site (these comprise the
local Storage Area Network, or SAN);

• wide- or metropolitan-area links between sites (WAN,
MAN);

• any dedicated hardware used to implement remote
mirroring;

• storage devices (but we ignore failures that are masked
completely within a disk array);

• an entire site.

We assume fail-silent failures, and that recovery or repair of
failed components is possible. A full-scale site disaster may
take days to months to recover from, while a site power
outage may be corrected in minutes, and a broken long-
distance link may recover in a few seconds. 

The traditional approach is to mirror storage across two sites,
but more sites are possible, and may even be mandated soon
for the financial services industry. We concentrate on the 2-
site case here to simplify the exposition. The physical
separation between sites is governed by the kinds of site
failures that are to be tolerated. For example, a fire may take
out a single building, a power outage all the buildings on a
single campus, an earthquake or flood all the buildings
within a metropolitan area.

Both repeated and multiple concurrent failures are expected.
One failure can cause multiple components to fail (e.g., if it
is in a shared component such as a power supply or air
conditioning unit), or it can trigger a cascade of failures by
increasing the stress on the rest of the system – including its
operators. 

We exclude certain scenarios: multiple concurrent site
failures; pervasive software design or implementation faults,
such as ones that fail to maintain duplicated copies correctly;
and mis-installations. These may lead to a disaster, which
we define as unacceptable data or availability loss, as may
the occurrence of “too many” failures that occur before
recovery actions from a previous failure can be completed.
In all cases, data loss is less tolerable than lack of data
availability.

2.2  Bounded divergence 
Minimizing the risk of losing recently-written data means
updating remote copies as rapidly as possible. This is easily
achievable when the two copies are physically close (e.g.,
within the 10km single-link Fibre Channel distance limit),
but becomes problematic if they are further apart, when the
time to propagate an update across a long-distance link can
be prohibitive. For example, the best-case speed-of-light
round trip time across the continental USA is about 27ms,
which is larger than a typical disk access, and huge
compared to the access time to a disk array’s cache. As a
result, there are strong incentives to overlap the propagation
with subsequent I/Os. The drawback is reduced reliability:
writes that haven’t been propagated to the remote site will be
lost if the primary goes down.

Delayed propagation of updates can also reduce the worst-
case long-distance network traffic needed because write-
buffering allows bursty write traffic to be spread out more
evenly over time [Ruemmler1993]. 
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This leads us to the first part of our solution taxonomy: the
amount by which the copies are allowed to diverge while the
links between sites are up. The basic choices are “none” or
“some”. If the remote site becomes unreachable in the
“some” case, or updates aren’t propagating fast enough,
there are two choices as to what to do at the primary: stall (or
abort) writes until the secondary copy catches up, or switch
to a mode with a looser divergence bound. 

No divergence: all updates (writes) are propagated
immediately to the remote site. This implies one of the lock-
step protocols described below. Writes stall or fail if the
remote copy is unreachable. Analysis: the safest thing to do –
and the slowest. This is part of what most people mean when
they talk about “synchronous mode”; it is the only mode in
which non-catastrophic multiple failures will essentially
never lose data: in all other modes (usually called
asynchronous remote mirroring), data that hasn’t propagated
to other sites could be lost. 

Operation- and/or byte-count divergence: the maximum
divergence between the copies is deliberately limited to a
small, fixed number of I/Os (e.g., one outstanding remote
I/O per LU in EMC SRDF’s “Semi-Synchronous” mode
[EMC-SRDF]), or a bounded quantity of data. Analysis: this
allows the transfer time to the remote site to be overlapped
with a local I/O, which offers marginally better performance
than the above. If the operation count or byte count is small,
then the amount of data subject to loss is well bounded, so
recovery may be simplified.

Resource-bounded divergence: the amount of divergence
is bounded by some resource’s size (e.g., the size of a log file
or disk, or the size of an array’s NVRAM cache, as in the
HP XP1024 disk array [HP–XP1024, HP–XP–CA]).
Analysis: even moderate amounts of divergence allows both
good local performance and good inter-site link bandwidth
needs. In practice, the limits are rarely met: disk array caches
are often measured in gigabytes, and log files can easily be
made much larger. Such systems still have to operate
correctly when resource bounds are met, of course, and most
do so by dropping into the unbounded divergence state
discussed next. The order in which changes are propagated
to the remote site matters, too – this aspect just captures how
much divergence is allowed.

Unbounded divergence: there is no bound on the amount of
divergence allowed. Faced with an unreachable site, and/or
lack of log space for updates, this is all that can be done if
local writes are to continue. It is common to keep track of
which data has been updated (e.g., using a per-block, -track,
or -cylinder data structure such as a bitmap) to reduce the
amount of data that has to be sent over the link when the sites
reconnect. Analysis: this allows the best performance, and
the maximum amount of data-accessibility in the case of

single failures: access is not denied unless the data is really
unreachable. Once this state is entered, the only way to
repair a remote copy is to propagate all the changes.

2.3  Single-LU propagation order

Write buffering enables write coalescing (or overwrite
absorption): the overwriting of older writes in the queue of
waiting data. This is most often used at the primary to reduce
network traffic, but it could also be applied at the secondary
to reduce the amount of work needed for an update. Even
small amounts of memory for write coalescing can be quite
effective [Ruemmler1993]. 

The primary effect of write coalescing on fault tolerance is to
alter the order in which updates are applied at the secondary
site. The goal is to ensure that the secondary is always at
some consistent state—one that could be reached by a prefix
of the sequence of writes applied at the primary. A failure
part-way through applying a reordered set of updates can
leave the remote site in a non-consistent state when it needs
to take over from the primary. If the primary site is lost at
this point, it may not be possible to recover the application
that uses the data. (See Figure 2). 

To simplify the discussion, we begin by considering the
ordering options that apply to a single LU, and defer
multiple-LU cases to section 2.4. The design choices are
ordered by the amount of reordering, parallelism, and
coalescing they permit.

Lock-step serial: at most one host write can be outstanding
at a time; each copy is updated in a known order. This
implies full write-though host acknowledgements – see
section 2.5. Analysis: this provides the most careful form of
dissemination for updates, and allows recovery from double
outages, where the write order is otherwise not knowable. It
is only appropriate when reliability is much more important
than performance. The total time to perform the write is the
sum of the response times of the writes to each copy.

Figure 2: rolling disaster from overwrites. The top row shows 
a sequence of data blocks being updated; shading indicates 
generations of overwritten blocks. The second shows the 
data blocks left after coalescing. The third shows the state of 
updates after half the data has been transmitted; no updates 
to blocks A or D have been propagated, so the result is not 
consistent.
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Lock-step parallel: at most one host write can be
outstanding at a time; each copy is updated simultaneously.
This implies full write-though host acknowledgements – see
section 2.5. Analysis: better performance than lock-step
serial; the total time is the maximum of the individual
response times, but a double-copy outage can leave the data
in an uncertain state for writes that were in flight. 

One of the lock-step algorithms is usually implied by the
term “synchronous mode”. Sometimes the secondary site is
updated first (in case connection is lost, and the write should
then be aborted); sometimes the primary. Combinations may
also be useful, such as writing to the primary copy first, and
then updating multiple secondary copies in parallel. 

In-order asynchronous: here, the updates are propagated
to, and applied at, the remote sites in the same order that they
occurred at the primary. Analysis: this does nothing to
reduce the amount of WAN traffic, although it can smooth
out the traffic from write bursts if the divergence bound (i.e.,
delay pipeline) is large enough. 

Dependency-preserving asynchronous: writes are
provided with explicit dependency information, and
propagation preserves these, but is otherwise free to reorder
the updates. Analysis: this allows better performance by
exploiting asynchrony where it would preserve the update
semantics. We do not believe that this has been implemented
for remote mirroring systems, probably because of the
difficulty of providing the necessary dependency data, even
though host-based variants have been shown to work well
[Kondoff1988].

Write-coalescing batches with atomic update: this scheme
explicitly delays sending a batch of updates to the remote
site, in the hope that write coalescing will occur, and only
one copy need be propagated. To avoid inconsistent states at
the secondary, writes can be coalesced only within a batch,
and batches must be committed atomically at the remote site:
that is, all or none of the updates in the batch must be
applied. Analysis: if overwrites are common, this can greatly
reduce the amount of WAN traffic, at the expense of losing
more updates if the primary site fails. 

The size of the batch can be selected in several ways, such as
the elapsed time, the number of updates, or the amount of
data written, or bytes to transfer. It would be possible to
select the batch size that achieves a particular target data-loss
likelihood, taking the WAN link reliability into account (cf.
AFRAID [Savage1996]). 

Batches can be implemented by logs, or (at a coarser grain)
with an array-based LU snapshot mechanism (e.g., EMC
TimeFinder [EMC-TimeFinder], HP business copy XP [HP-
XP-BC]). A snapshot is a virtual copy of an LU, and updates
it, using copy-on-write, whenever the original LU is
modified. Since the update traffic needed to implement a

snapshot is primarily a function of the original LU’s update
rate and the snaphot’s lifetime, not the total amount of data
in the original LU, keeping a snapshot up to date is
reasonably quick, and it is often possible to synchronize one
in only a few minutes. (Some snapshot implementations take
space proportional to the differences, so creating these is
quick, too; some, like EMC TimeFinder copies, are complete
mirror copies that can be incrementally updated: creating
them is slow, but updating them can be done in time
proportional to the amount by which they have diverged).

All atomic update schemes require sufficient buffering at the
primary and the secondary to store the largest possible batch
– which may be as large as the complete data size.
Obviously, this isn’t always possible (or cost-effective), so
most schemes revert to non-atomic propagation when the
divergence limit switches to unbounded. 

Overwrite-log with atomic update: the overwrite-log
scheme removes the hard send-batch boundaries in favor of a
log of updates that allows write coalescing, together with the
use of receive batches which are defined as the updates that
occur between the first write of a data block and its
overwrite, plus that overwrite. Receive batches represent the
smallest unit that must be applied atomically at the
secondary site. Analysis: this provides better behavior than
the batched scheme, which wait until the end of the batch has
been declared before they start propagating any data within
the batch, perhaps delaying transmission longer than is
needed, and unnecessarily exposing data to primary site
failure. Seneca is the only example we know of.

Send barriers are used to mark the points beyond which
write coalescing may not occur. These are needed to prevent
the size of receive batches growing out of hand—but they
need to be inserted only when necessary (e.g., to mark the
end of a receive batch that has commenced transmission).
For example, one simple dynamic scheme is to start
transmitting pending updates immediately if the WAN is
lightly used, or to artificially delay updates if the WAN is
busy, to increase the overwrite rate. 

Out-of-order asynchronous: the order in which updates are
propagated to the remote site is unrelated to the order in
which they occurred (e.g., a bitmap of updated tracks is kept,
and the updates are propagated in track-number order). This
case is implied if the primary is forced into the unbounded
divergence case. Analysis: good performance, but a rolling
disaster (see section 2.4) can occur if the primary site is lost
before the secondary site has been fully updated. 

Complete copy replacement: the old copy is simply
overwritten in its entirety. Analysis: this may make sense if
the number of changes to be applied is large (such as when a
mirror copy was detached, most of the primary was updated,
and now the secondary is being brought back into synchrony
– a process sometimes called resilvering); if a partial failure
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during the resynchronization is immaterial so the copy can
simply be restarted to recover (e.g., if the copy is only being
used to make a backup from); or if the expense of
maintaining state about the differences is too high.

Explicitly delayed: instead of propagating changes as
quickly as possible to a remote site, they can be explicitly
delayed by at least a certain period of time, or until some
event has occurred, such as a sanity check. For example:
“keep 3 copies: one is the master; one is a remote copy that is
as up to date as possible; and one is always as close to 12
hours behind the master as possible.” Analysis: this
technique can be used to allow time to run sanity checks
(e.g., virus scans) over the data before installing it at the
secondary. 

Explicit delays might be used to replace backups, which are
necessary today to guard against data corruption and
operator error, both failures that mirroring does nothing
about. (Indeed, most mirroring schemes try hard to
propagate errors at the speed of light!)

2.4  Multi-LU propagation order
If an application updates two LUs, on the same or different
arrays, and there are consistency requirements between those
updates, then additional steps have to be taken to handle
these needs. It is common to use a consistency group to
specify the LUs involved. The important thing is the degree
of guarantee offered by the consistency group:

No inter-LU consistency. Analysis: the name rolling
disaster says it all—and comes from a sequence of storage
device failures at different times (e.g., as the result of a fire
or flood in a data center), or from the case where some of the
inter-site links fail but others do not. In either case, the
secondary site can end up in an inconsistent state.

Single-array multi-LU sequencing: maintaining the
relative write order for updates across the LUs, e.g., by using
a single propagation queue. Analysis: this works well for
data whose primary copy is stored within a single array, but
offers no guarantees at all otherwise. All of the single-LU
propagation options discussed above apply here, too.

Multi-array propagation-cessation: since inconsistencies
only occur if writes are propagated out of order, it is
sufficient to stop sending updates to the secondary sites as
soon as any write cannot be delivered. This can be achieved
by having the application (or host OS) stop writing, or the
disk arrays stop propagating writes, as soon as a propagation
failure occurs. Analysis: there may be a small window of
vulnerability if there are multiple outstanding independent
updates while propagation-failure is detected, but this
window can be bounded to roughly the duration of a long-
distance timeout, or by using lock-step propagation (perhaps
in conjunction with last-update rollback at the remote sites.

Implementations of this approach typically require software
support in the host systems (e.g., [EMC–CG2002]).

Multi-array barrier-atomic propagation: multiple disk
arrays collaborate to generate synchronization barriers,
which act to prevent updates that occur after such a barrier
being applied before all updates that preceded the barrier
have been propagated. This can be achieved via a two-phase
commit protocol across the primary copy arrays (plus the
hosts, if there are more than one), followed by a 2-phase
commit across the secondary copies before updates are
applied. Analysis: this is the most desirable state of affairs,
but as the description suggests, it probably cannot be
achieved without higher overheads and complexity than the
preceding cases.

2.5  Returning acknowledgements to the host
The descriptions above considered the degree of
synchronization from the point of view of the copies.
Another perspective is the viewpoint of the host: just how
soon is it told “we have it” on a write? Sooner means greater
best-case performance, because it allows the maximum
amount of concurrent I/O activity; later leaves fewer
opportunities for things to go wrong after the host believes
the write has been successfully recorded. 

If the host issues multiple writes at a time for a single LU,
the SCSI standard allows the disk array to service these in
any order it finds appropriate, provided the effect is as if
each write was completed in the order indicated by the
request-completions sent to the host. If such writes are
serviced in a different order at the primary and secondary,
certain failures may make this visible.

It is helpful to separate the volatility of data from its
location; in what follows, we concentrate on the volatility,
remembering that these observations can be applied at both
the primary and secondary copies. 

Volatile immediate-report: the write is acknowledged as
soon as the data is received into any storage system memory,
even if this is volatile RAM. Analysis: Best possible
performance; but data is vulnerable to a single failure,
including power loss. SCSI disk drives offer this mode for
data written to their cache, but it is only of use if the upper
level software knows what it is doing, and it may have to
explicitly sequence writes (e.g., by draining the I/O pipeline,
or controlling the command queuing). 

Non-volatile immediate report: the write is acknowledged
as soon as the data is received into at least one non-volatile
memory (NVRAM) in the storage system. Analysis: This is the
mode commonly used by single-controller disk arrays. Data
is vulnerable to loss of the single copy. 

Redundant non-volatile immediate report: the write is
acknowledged as soon as the data is written into failure-
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tolerant non-volatile memory in the storage system (e.g.,
mirrored NVRAM). Analysis: This is the mode commonly
used by high-quality dual-controller disk arrays. Data is still
vulnerable to loss if the memory loses data, if the disk array
suffers a complete failure, or if the site goes down. 

Single write-through: the write is acknowledged only after
the data has been transferred onto at least one of the long-
term storage devices. Analysis: This is the mode used by
asynchronous remote mirroring: the primary copy is the
target for the write-through, the secondary, remote copy
happens later. Data is vulnerable to loss of the local copy, or
a site failure. 

Redundant write-through: the write is acknowledged only
once the data has been written through to “sufficiently
many” long-term storage devices to survive the target
number of concurrent covered failures. Analysis:
redundancy can be provided by updating the local and
remote copies, or by updating the primary copy and the
write-behind log of pending data that needs to be sent to the
secondary, remote, copies. Data is vulnerable to loss of all
the copies at a site, or a site failure. 

Full write-through: the write is acknowledged only once all
copies have been updated. (This mode implies lock-step
synchronization.) Analysis: This is the mode commonly
called “synchronous”. Reliability is as good as it gets;
performance less so. There are circumstances when it’s still
the right thing to do. 

2.6  Where data duplication is done
Remote mirroring requires data duplication, which can be
performed in four main places, each with advantages and
disadvantages. Although the relative importance of these
factors changes, common concerns include: the ease of
supporting heterogeneous hosts and storage devices; whether
additional hardware elements are needed; whether host
software needs changing or installing; additional host CPU
loads; cost, performance, and scalability of the solution; and
ease of supporting LU groups that span disk arrays (simplest
at the host, hardest at the arrays).

At the host: typically in a device driver or logical volume
manager (LVM). Analysis: typically gives the greatest
flexibility in terms of WAN link support; allows for file-level
replication, not just at the LU level; simplifies the grouping
case; but imposes additional CPU load on the hosts, and may
be harder to manage if the ratio of hosts or host types to
storage devices is large.

In an I/O card at the host: typically by means of a “smart”
host bus adapter (HBA). One example is the original
COMPAQ VersaStor scheme [Widen2000]. Analysis: can
off-load I/O processing from the host, and avoids OS-
dependence of the host-based scheme. Relies on the SAN to

provide in-band connectivity to inter-site links, e.g., by
running IP over Fibre Channel to a gateway.

At the disk array: typically in the array controller firmware.
Current implementations tend to require the remote array to
be from the same manufacturer (and sometimes the same
model), as the primary array. Analysis: probably the most
commonly deployed scheme today. In the past, fewer native
network-link types were supported than with host-based
approaches; more recently, gateways and protocol converters
have broadened the scope of support.

In the SAN fabric: either as an in-band “SAN appliance”,
or as an extension to a SAN fabric switch. An example of the
former is the HP CASA product [HP–CASA]. Analysis:
conceptually elegant, but may be limited by the I/O
bandwidth or latency of the in-band hardware. Bounding the
traffic to just the LUs in a group (in the sense of section 2.4)
can be used to achieve scalability: one box needs only to
handle the traffic of a single group, or a small number of
them. It’s also important that the appliance doesn’t become a
single point of failure: most appliance implementations
support failover pairs for this reason. Switch-based
implementations are actively being discussed in industry;
how failure-tolerance will be achieved in this case is not yet
clear. 

2.7  Additional features

In this section, we summarize some additional techniques
and possible extensions.

Multiple secondary copies. Although we have chosen to
focus on the 2-copy case for ease of exposition in this paper,
it’s clear that there can be more than one secondary copy,
and the different copies can have different techniques
applied to them.

Partial copies. The descriptions above are written as if each
copy is a full instance of the data. There are circumstances in
which this need not be the case: what matters is that the
mirroring system can provide the illusion of a full copy, even
in the face of failures. Thus, an old copy plus a redo log can
be used to provide the illusion of an up-to-date copy and a
prior one. So can a current copy and an undo log. Similarly,
just the log of recent changes can itself act as a virtual copy
if there are other mechanisms for restoring the underlying
state: this means that a 2.5-copy system could be constructed
with the log held at an intermediate site, separate from the
true secondary copy.

Bidirectional mirroring: some systems allow both ends to
act as primaries for different LUs. 

Active-active mirroring: two or more sites can update the
same LUs. This requires both synchronous mirroring and
application-level support.
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Multiple recovery points: both the batch- and log-based
approaches lead themselves to a strategy of preserving prior
state, rather than discarding it as soon as an update is
applied. This can permit state reconstruction at multiple
points in the past. Tape backups can be thought of as one
extreme form of this; the S4 project at CMU, which keeps
the complete write log, another [Strunk2000].

2.8  Application fail-over
We have concentrated here on the recovery and propagation
behavior of the storage system. In real life, the recovery and
failover behaviors of the applications are also vital, but it is
beyond the scope of this paper to address these aspects, other
than to observe that recovering a consistent copy of the
stored data is but the first step to application recovery.

2.9  Applying the taxonomy 
We found it instructive to test the taxonomy by applying it to
a number of extant remote mirroring products. Table 1
provides such a sample. In addition, we expand on a few of

them here to illustrate the remote mirroring design space in a
little more detail.

EMC SRDF: EMC claims to have been the first to market
with a “storage-based replication software application” in
1993 with SRDF, the Symmetrix Remote Data Facility
[EMC2002, EMC–SRDF], which provides inter-array
remote mirroring. Up to two remote copies can be
maintained from one primary using the “Concurrent SRDF”
feature, in synchronous mode.

EMC literature encourages the use of synchronous mode,
which is a lock-step, no-divergence protocol. When the
performance penalty of synchronous operation is too high,
semi-synchronous mode is available, which allows one
outstanding I/O per LU to be in flight asynchronously to the
secondary site. Subsequent writes are stalled until it returns.
Adaptive copy mode provides track-count-bounded
asynchrony, with no ordering guarantees; if the count is
exceeded, writes are stalled. 

system divergence propagation order where done

Veritas Volume 
Replicator

none / IO-count-bounded / log-space-
bounded / unbounded (bitmap)

lock-step / in-order 
asynchronous / in-order 
asynchronous / out of order

host

IBM's Peer-to-Peer 
Remote Copy (PPRC)

none / 
unbounded (full copy)

lock-step / out of order disk array

IBM's Extended 
Remote Copy (XRC). 

space-bounded / 
unbounded (full copy)

in order asynchronous /
out of order

host + 
disk array

EMC symmetrix SRDF

Synchronous: none / unbounded (per-
track bitmap)

lock-step / out of order disk array

Semi-synchronous: IO-count-bounded 
(<=1) / unbounded (track “bitmap”)

in-order / out-of-order disk array

Adaptive Copy: track-count-bounded / 
unbounded (track “bitmap”)

out of order / out-of-order disk array

NetApps SnapMirror
unbounded 
(file system structure)

atomic in-order asynchronous 
batched, with overwrites

file server

HP XP
continuous access 

synchronous: none / unbounded 
(bitmap)

lock-step / out of order disk array

asynchronous: cache-space-bounded /
unbounded (bitmap)

in-order asynchronous /
out of order

disk array

HP Continuous 
Access Storage 
Appliance (CASA)

synchronous: none / unbounded 
(bitmap)

lock-step /out of order duplexed SAN
appliance

asynchronous: disk-queue-space-
bounded / unbounded (bitmap)

in order / out of order duplexed SAN
appliance

Seneca
time-bounded batches / log-space-
bounded / unbounded (bitmap)

grouped, atomic in-order 
asynchronous batched, with 
overwrites / (same) / out of order

duplexed SAN
appliance

Table 1: a few sample remote mirroring systems. A “/” between steps indicates the next level of fallback 
behavior. Additionally, in most cases, synchronous mode can be told to allow or fail (abort) application I/Os 
if the link goes down; these variants are not shown.
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Multi-array propagation cessation is supported in
synchronous mode, with help from EMC-supplied host
software [EMC–CG2002].

If the remote site becomes disconnected, a per-track data
structure keeps a note of which tracks have been modified –
but not the order in which this is done (i.e., this is effectively
a bitmap-like solution), so recovery from any extended link
break or site outage is always performed in unordered mode,
which is vulnerable to a rolling disaster. To avoid this, EMC
suggests the use of the separate TimeFinder product to
provide the effect of (large) batches.

IBM XRC: IBM’s Extended Remote Copy (XRC) software
for their MVS mainframes employs a host-based data mover
to drain cached data from disk arrays’ NVRAM cache, write
it to an on-disk log, and transmit it to a remote site
[IBM1997]. Each data mover session groups and orders the
I/Os for the volumes under its care in timestamp order. If the
disk array cache fills up, application I/Os are stalled, up to
some threshold time, after which XRC reverts to the
unbounded case, and a full volume copy will be needed. 

HP XP arrays: the HP XP disk arrays and the similar
Hitachi Data Systems arrays provide both synchronous
updates and an in-order, space-bounded asynchronous
update mode [HP–XP1024, HP–XP–CA]. The latter mode
keeps writes in the mirrored NVRAM cache of the primary
array; the ordering is implemented by maintaining a
timestamp or sequence number on dirty blocks in the cache,
and applying the writes in the same order at the secondary.
Multiple LUs in one array can be grouped into a consistency
group, which is the unit of I/O ordering. The amount of
cache allocated to the write buffer is sized dynamically;
when it gets above a high water mark, foreground
application writes will be deliberately slowed down in
increments, eventually to virtual lock-step. As we will show
later, the array’s cache is likely to provide adequate buffering
in the absence of a link or remote site failure without any
slowdown. As a last resort, the array reverts to bitmap-based
unbounded divergence. 

HP Continuous Access Storage Appliance (CASA): a
SAN mirroring appliance [HP–CASA]. In asynchronous
mode, it provides in-order delivery until a disk-based queue
fills up, and then resorts to an unbounded bitmap mode to
track updates during any remote site or link failure.

Veritas Volume Replicator (VVR) [Veritas2002]: a host-
based scheme that can support multiple remote copies. It can
operate in synchronous mode, or with per-host I/O-count-
bounded, multi-LU, in-order asynchrony, using a circular
disk-based “storage replication log (SRL)”. If the remote site
becomes unreachable in synchronous mode, then writes can
be refused, or VVR can drop into “soft” asynchronous mode
until the link comes back up. If the SRL fills up, writes can
be stalled until space is available, refused, or VVR can drop

into an unbounded mode that uses a bitmap to record
updated blocks. If a count-based bound for asynchronous
I/Os is reached, writes can be refused or stalled until a low
water mark is reached. VVR does no overwrite absorption in
normal operation, and nor does it perform atomic updates at
the secondary. Writes are acknowledged from the secondary
copy as soon as they are received in the secondary host (a
special case of the volatile immediate report of section 2.5).

Network Appliance SnapMirror: this product uses
asynchronous, write-coalescing batched file system updates
that are applied atomically at a remote file server
[Patterson2002]. The WAFL file system is used to keep track
of the blocks that have been updated, including which blocks
are still in use and worth propagating. The WAFL file system
always operates in a no-overwrite mode, so it readily
supports applying a coordinated set of updates atomically. 

3  The Seneca protocol1 
For Seneca, we set out to design an asynchronous mirroring
system that could exploit a relatively low-speed wide-area
network link by coalescing overwrites safely – i.e., in an
order-preserving manner. Seneca’s goal is to make the data
available and keep each copy consistent despite disk array
1 “Seneca, comparing his degenerate times with those of the heroic Scipio, 
who bathed in austerely simple surroundings, complained: ‘But who in 
these days could bear to bathe in such a fashion? We think ourselves poor 
and mean if our walls are not resplendent with large and costly mirrors …’.” 
[de la Croix1975, p225].
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Figure 3: the general steps in the Seneca mirroring protocol.
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failures, Seneca box failures, network failures, and both
temporary and permanent site outages. 

To simplify the exposition, we present the Seneca protocol as
if it were running between a dedicated pair of remote-
mirroring SAN appliances (Figure 1), although the protocol
could readily be implemented in the disk arrays, in the hosts,
or in host I/O bus adapters. 

An overview of the protocol is shown in Figure 3. In normal
operation (i.e., while the remote site is reachable), a write at
the primary causes a write record to be written
synchronously in a primary log, and the data can then be
written to the primary copy (LU). The primary log can be
implemented in a disk inside a Seneca box, or, better, in a
disk array in the local SAN—preferably one equipped with
an NVRAM write buffer, and disjoint from the one holding
the primary copy.

Seneca implements the overwrite log with an atomic update
protocol. It can use either the single or redundant write-
through schemes to report completion back to the host; and it
can be integrated into a multi-LU propagation scheme. 

3.1  Log barriers 
Update records and data blocks in the primary log are
propagated to the secondary Seneca in the same order as they
were written to the primary LU. This transmission occurs in
parallel with continuing operations at the primary; we
assume in-order transport across the WAN. The propagated
blocks are appended to the log at the secondary Seneca. This
secondary log is divided into receive batches, which are
committed to the secondary LU atomically. Receive batches
are bounded by inserting send barriers and expanded by
removing receive barriers.

A send barrier is one that Seneca deliberately and
periodically inserts into the primary log, following the last
block that has been written to the primary LU. Overwrites to
blocks following the last send barrier are allowed, which
saves both network bandwidth and log space. Overwrites to
blocks preceding any send barriers, however, are prohibited.
Send barriers may bound the divergence between the
primary and secondary Senecas in terms of the elapsed time,
the number of transactions, the amount of data, or any other
metric. Their frequency can be adjusted manually or
automatically, as described in section 2.3.

A receive barrier is initially associated with each write; that
is, each data block can by default be committed at the
secondary Seneca by itself. Receive barriers bound the sets
of blocks that have to be applied atomically as a unit. When
a block is overwritten before it is propagated, the earlier
write record for that block is removed from the log, as are
any receive barriers for blocks written between the old copy
and the new write (i.e., the end of the log). This merges those
blocks into the same receive batch.

For an example, consider Figure 4. The second write to data
block A overwrites the earlier version, and removes the
receive barriers associated with blocks B and C that were
written between the two writes to A. The consequence of the
overwrite is that the three blocks A, B and C can no longer be
transferred to or committed in the secondary Seneca in the
same order as they were written—instead, either all of them
need to be committed at the secondary copy, or none.

3.2  Block state transitions 
Figure 5 shows the state transitions of a data block and its
write record in the primary log.

A data block is in the clean state if it has not been written
since the last time it was committed at the secondary Seneca.
A write to a clean block normally adds a write record and a
copy of the newly-written block to the primary log and
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A Write record
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Receive batchesReceive barriers
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Figure 4: receive batches.
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changes the state of the block to logged. After the block is
written to the primary LU, its state changes to committed. A
write to a logged or committed block overwrites the copy in
the primary LU, and appends a new write record (with state
logged) and a copy of the data to the primary log, effectively
replacing the old record and data.

A committed block changes to the checked state after a new
send barrier is inserted (after it) into the log. A checked
block changes to the propagated state after its record and
data are sent to the secondary Seneca. A write to a checked
or propagated block overwrites the copy in the primary LU,
and appends a new write record and a copy of the new data
to the primary log, which do not replace the old record and
data. An acknowledgement from the secondary Seneca for a
batch containing the propagated block changes the block
back to the clean state.

When the primary log space is filled, all logged, committed,
checked and propagated blocks change to the bitmapped
state, which will be explained in Section 3.3.

At the secondary Seneca, the newly-received records and
data blocks are first appended to a secondary log there,
typically on disk, although it could be in NVRAM. When a
receive barrier is stored in the secondary log, the secondary
(1) sends an acknowledgement for the receive batch back to
the primary Seneca, (2) marks the batch as “acknowledged”
and (3) triggers the batch’s commitment at the secondary
LU. The commitment copies the data blocks from the
secondary log to the secondary LU, deletes the log records,
and frees the log space. 

Acknowledgements sent to the primary Seneca are used to
garbage-collect the primary log: an acknowledged receive
batch allows all the records and data blocks in that batch to
be deleted from the primary log. 

Both the primary and the secondary Seneca can fail during
the propagation process. When it recovers, a Seneca instance
examines the kind of log it had to determine whether it was
the primary or secondary Seneca. If it was a secondary
Seneca when it failed, it will re-apply its secondary log up to
and including the last acknowledged receive batch, and carry
on as a secondary. The situation for a returning Seneca with
a primary log is more complicated, which will be discussed
in section 3.3.4.

3.3  Seneca state machines 
The Seneca protocol is defined in terms of a pair of state
machines, one for each of the primary and secondary Seneca
modes. Figure 6 shows the state transitions of a Seneca
instance in response to failure and recovery events.

When acting as a primary Seneca, the possible failure events
are PriLogFilled (primary log filled), PriLogFailed (primary
log disk failed), PriFailed (primary Seneca or LU failed), and

SecDisconnected (any failure that leaves the secondary
Seneca inaccessible to the primary one, including secondary
log disk failure, secondary Seneca LU failure and/or network
outage). 

The possible recovery events include PriLogReturned
(primary log disk is repaired), SecRepaired (secondary
returns and contains all the data stored in its log and LU
before it crashed) and SecReplaced (secondary returns with
empty storage). 

Acting as a secondary Seneca, the possible failure events
include SecLogFilled (secondary log filled), SecFailed and
PriFailed. The possible recovery events include SecRepaired
and SecReplaced. 

We describe a few interesting corner cases in the Seneca
state transitions below.

3.3.1 Failover and fallback

In case of a secondary failure, the primary Seneca continues
to perform in the Standalone state, and brings the secondary
site back up to date when it returns.

If the primary Seneca fails, the secondary Seneca becomes
the new primary. We call this failover. When a Seneca
returns, it always returns as a secondary Seneca. Even if it
was the local Seneca, it needs some preparation, such as
cleaning up its log, before it is ready to serve as the primary.
When both Senecas are ready, i.e. free of outstanding
updates, the local Seneca becomes the primary again. We
call this fallback.

We assume that some entity outside Seneca will make the
decision of whether and when to failover or fallback, and
notify Seneca accordingly, because this decision is
influenced by many factors outside the storage system,
including the state of networks, sites, and applications, as
well as the judgement of human operators. It may also
involve operations at application level to complete the
failover.

Seneca’s failover mode starts when the surviving secondary
changes to the Failover state. In the Failover state, the
secondary prepares to be the primary by first committing the
data in its secondary log to its LU, to bring the LU as up to
date as possible. Write requests will be put on hold until
Seneca leaves this state, e.g. changes to the Standalone state. 

When it is repaired, the secondary Seneca first sends a
request to the primary for updates, and then starts to operate
in the Normal state. However, if it returns with empty
storage, Seneca starts in the DirectUpdate state because the
complete snapshot of the primary LU will be propagated and
there almost certainly won’t be enough log space for the
complete snapshot. After the entire snapshot is committed in
the secondary LU, the secondary Seneca changes to the
Normal state.
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3.3.2 Log failure

In the Normal state, when the primary log space is filled
(e.g., because the secondary Seneca is down for a long
enough time, or the network connection to the secondary is
too slow), or the log fails, the primary Seneca changes to the
PropBitmap state, and merely marks new updates in its
bitmap.

In the PropBitmap state, the primary Seneca propagates the
blocks in the bitmap (or a complete snapshot of the primary
LU if necessary) to the secondary as soon as it can, and asks
the secondary to commit all the changes to its LU atomically
if possible. However, the secondary may not be able to do so
if it is in the DirectUpdate state. As a consequence, the data
in the secondary LU could be inconsistent with that in the
primary LU until all the changes are committed.
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When the primary log fails in any state, the primary Seneca
changes to the Logless state, in which it does not record any
updates and does not propagate any updates to the
secondary.

In the Normal state, when the secondary log space is filled or
fails, the secondary Seneca changes to the DirectUpdate
state, in which it writes any data from the primary directly to
the LU, bypassing the log. This may mean that the data in the
secondary LU is inconsistent with the primary copy in the
DirectUpdate state—but the only alternative is to allow it to
get still further out of date.

3.3.3 Disaster

When both Senecas fail simultaneously, the whole system is
out of service, i.e. it changes to the Disaster state. If the
primary fails while the secondary is in the DirectUpdate
state, the whole system is also out of service because the
surviving secondary is not able to serve consistent data. 

3.3.4 A failover dilemma 

When a primary Seneca fails, applications can fail over onto
the secondary Seneca, which then becomes the new primary.
Data left in the old primary log will be considered lost, and
new data can be written to the new primary Seneca. When
the old primary Seneca returns, the data in its LU and log
could be inconsistent with that in the new primary Seneca,
i.e. both Senecas could have a piece of data that the other
does not. The following options exist:

1. Prohibit failover. The entire storage will be unavailable 
until the old primary Seneca returns, but inconsistency 
will not occur.

2. Live with inconsistency and minimize data loss. The old 
primary Seneca will keep the data in its log, and people 
or applications must resolve the conflicts between the 
two mirror sites.

3. Live with data loss and eliminate inconsistency. The old 
primary Seneca will try to undo the data in its log by 
requesting the current copy from the new primary.

Both options 1 and 2 require intervention at the application
level, and so are outside the scope of Seneca’s ability to
recover. In practice, option 2 is usually the one that is used,
but we focus here on option 3, which requires undoing
changes in the old primary’s log. Figure 7 shows an example.

In the old primary log, some blocks might have been
committed to the local LU while others have not. The old
primary Seneca asks the new primary for its current copy of
the committed blocks, which we call the backup of those
blocks. The backup of all committed blocks is transmitted to
the old primary as a single backup batch, and will be written
to the old primary LU in a single, atomic action. 

In a more complicated case, some committed blocks might
have been written in the new primary Seneca before the old
returns (e.g., B2 in Figure 7). In this case, the backup batch
will be expanded to include all other blocks that were written
before the committed blocks in the new primary (e.g. D2 in
Figure 7). The reason is similar to that for atomic receive
batches (Section 3.1). Once the committed updates at the old
primary are successfully undone, the old primary log is
simply discarded. 

In an extreme case, the new primary Seneca might fail
before it sends the backup to the old one. In this case, the old
primary Seneca will keep its log and try to commit the
logged blocks in it instead. As a consequence, data
considered lost in the failover mode (e.g., A1, B1 and C1 in
Figure 7) can come back while data written in the failover
mode (e.g., D2, B2 and E2 in Figure 7) can disappear after
the new primary fails!

3.4  Seneca shadowing
Seneca itself needs to be fault-tolerant; therefore, a local
Seneca instance is implemented as a pair of Seneca boxes.
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copies for 
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Figure 7: update and backup-copy propagation during failover and recovery. Shaded blocks are in the local LU at each Seneca, 
unshaded blocks also reside in the local log.
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The simplest way to achieve this is to have one Seneca box
be active, while the other acts as a shadow, to which the
active Seneca can fail over. Changes to the active Seneca’s
memory are propagated to the shadow before their write
operation returns (e.g., in the style of Harp [Liskov1991]).
Active-active implementations are also possible.

Ideally, both Seneca boxes will have access to a common log
on the SAN, and the only extra latency is the transferring of
a short message to the shadowing Seneca across an
interconnecting LAN. Therefore, the shadowing Seneca will
be a hot standby, i.e., it will have exactly the same state as
the primary one when the fail-over occurs. The log disk can
be made fault-tolerant by local redundancy schemes, such as
RAID5, or mirroring.

3.5  Summary
In this section we presented a remote mirroring protocol in
some detail, including the corner cases that make such
protocols so challenging in practice. 

4  Verifying Seneca correctness
Given the complexity of the corner-cases in a protocol of this
form, we felt that it was important to apply some kind of
assurance testing to it beyond just prototype and test. Sample
approaches include theorem proving, model checking, and
simulation. We quickly learned that the Seneca protocols
were too complicated to describe at a useful level of detail in
any of the languages used for theorem proving and model
checking, and cast around for an alternative. 

We started from I/O automata [Lynch1989], which model
components in asynchronous concurrent systems as labeled
transition systems. While the original I/O automata method
uses a special purpose language to allow an exhaustive
search of the automata state space, our approach was
simulation: we built an event-driven simulator that generated
events by constrained random walks in the state space,
executed the automata, and checked the correctness of the
results against our expectations of correct behavior and event
sequences. This had the added benefit of allowing the
protocol to be implemented in the same language as a real
deployment (in our case, C). 

It is not our intention here to argue that this approach was the
best possible one, but instead to report on our experiences
with what turned out to be a fruitful tool.

We wrote automata for each Seneca box, log, LU, WAN and
write record, and modelled the Seneca protocol responding
to external events. State transitions in the automata take
place in response to external events such as write request,
log disk failure, Seneca or LU failure and WAN outage. State
transitions also take place in response to internal events
between the machines such as log space exhaustion, update
propagation and batch commit.

We used the model to increase our confidence in:

1. Coverage: that Seneca is in a valid state after any 
sequence of events.

2. Safety: that the mirror copies are consistent in normal 
states, and the sequence of updates at the secondary 
Seneca is always a prefix of the sequence at the primary.

3. Liveness: that data will eventually be written in both 
mirrors unless a disaster happens.

To check liveness, we stopped the generation of external
events and let the automata run until no more internal events
were generated. We used assertions inserted in various
locations of the model for correctness checking, rather than
formal reasoning. We found this approach to be an efficient
way of checking a complicated protocol like Seneca, and
gaining confidence in it.

The checking was done incrementally. The simulator
injected a random sequence of external events into the
Seneca model until an assertion failed. We then looked for
the bug by examining the simulation traces. On average, it
took less than half an hour to discover and fix a bug.
Typically, the model would survive a longer sequence of
events after each bug was fixed. We biased the event stream
very strongly towards failure events, in order to test the
recovery code: typically 15 writes for every external (failure
or recovery) event.

Over 131 runs with distinct random seeds, the average count
of failure injections before a protocol error was detected was
16435. If we assume that the Seneca’s handling of write
events is correct, and external failures (such as the failure of
a mirrored Seneca or log device) occur at the (relatively
high) rate of once a quarter, this corresponds to an estimated
mean time between failures (MTBF) of 4100 years for the
Seneca protocol proper. Obviously, this is a statistical
estimate, not a guarantee, and does not take into account
implementation or operator errors—but we still feel that it
builds more confidence than merely asserting the protocol’s
likely correctness.

Most of the bugs we found so far were transcription errors in
coding the state-transition diagrams we had developed,
which would have been too detailed to be covered by a
theorem prover or a model checker. In one example, a
backup batch (section 3.3.4) included new updates that had
already been propagated to and queued in the secondary
Seneca, so the queued updates were committed twice,
resulting in out-of-order writes to the secondary LU. This
kind of error would be hard to detect with traditional
testing—especially if failures were induced manually. The
last bug we had found at the time of writing was only
detected after 1.77M writes, 75.9k failure events and 22.4k
recovery events were injected into Seneca, which in turn
provoked Seneca to generate an additional 6.60M internal
events. 
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5  Performance analysis
One of the key questions for Seneca is the amount of
network bandwidth that can be saved by delaying I/Os
(asynchrony) and coalescing (over-writes). To assess how
this will work in practice, we examined a number of real-
world I/O traces, summarized in Table 2. The traces were
gathered from HP-UX systems, using techniques similar to
those used in [Ruemmler1993]. 

• cello2002: an 8-processor HP 9000 N4000 timesharing
system for a small group of researchers with 16 GB of
RAM, an HP XP512 disk array (total allocated storage
was 1.44 TB), running HP-UX 11.00; the trace data is
from Wed Sept. 18th, 2002. This is a successor to the
1992 cello system described in [Ruemmler1993].

• SAP: an SAP installation from a utility company, running
on an HP V2500 that was using SAP ISUCCS 4.5B on
top of a 4 TB Oracle database, being accessed by more
than 3000 users retrieving customer’s utility bills for
updating and reviewing. There were also some batch jobs
running in the background. The trace was taken in the
afternoon of Thursday Jan. 31, 2002. The storage system
was an HP XP512 disk array with 160 73 GB disks in

RAID 1/0 mode, a 16 GB cache, and running remote
mirroring to a second, remote XP512 via eight ESCON
links. 

• RDW: a retail data warehouse system, containing 500 GB
of shopping basket information, executing on an HP
V2250 running HP-UX 11.00; the storage system was an
EMC Symmetrix array. The trace was made on Tuesday
Feb. 22, 2000.

• OpenMail: one of 6 HP9000 K580 servers, each of which
had 6 CPUs and 3.75 GB of memory and was connected
to an EMC Symmetrix 3700 disk array providing
640 GB of storage. The system was running a production
OpenMail email workload on HP-UX 10.20 with 4500
users, 1400 of whom were active during the traced
period. The trace was taken on Thursday Jan. 20, 2000.

We begin by examining how much the overwrite rate
reduces the WAN traffic: quite respectable reductions in total
WAN traffic are available: e.g., 5–40% for a batch size of 30
seconds (Figure 8a), and significantly greater reductions for
the largest batches (Figure 8b). 

Figure 9 confirms that the distribution of batch sizes is far
from uniform, which is why the rate-smoothing performed

 

workload length date I/O count write count % writes
total data 

written
mean 

write rate
peak 1 second

write rate

cello2002 24 hours 2002/09/18 6760626 5250126 77.7% 67.40 GB 0.78 MB/s 100.30 MB/s

SAP 15 mins 2002/01/31 4986071 150339 3.0% 1.75 GB 1.95 MB/s 6.75 MB/s

RDW 1.4 hours 2000/02/11 1797210 60758 3.4% 1.70 GB 0.34 MB/s 5.33 MB/s

OpenMail 1 hour 1999/12/17 1287941 931979 72.4% 6.13 GB 1.70 MB/s 15.80 MB/s

Table 2: traced system workload summary
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Figure 8: fraction of data transmitted across the WAN, as a function of the batch duration. The left-most point corresponds to no 
overwrites (for which batch duration is irrelevant); the others are for the indicated batch duration. Both graphs are scaled so that 
1.0 corresponds to the mean write rate (see Table 2 for its value). 

(a) Mean transmission fraction (averaged across all the 
batches), scaled to the mean write rate.

(b) Largest-batch transmission fraction, scaled to the 
mean write rate, as well as the mean transmission 
fraction, for scale. Note the log scale on the Y-axis.
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by asynchronous I/Os is so important. The long-term mean
write rate for each of our workloads could be handled by a
single 45 Mb/s T3 line, even with no overwrite absorption.
But the peak rates require more: the 95th percentile of the 10
second-average I/O rate (Figure 9d), scaled up to cover all 6
OpenMail servers, would require three T3 lines at 85%
utilization with write coalescing, and four lines at 93%
utilization without.

We determine the worst-case log size for each trace, using
the 100% T3 link utilization assumption. Figure 10 shows
that the log size required to handle write propagation delays
is small when the link is up – usually much less than 1 GB.
(Cello is an anomaly: it was processing large I/O traces at the
time, and its load is a file system, whereas the other systems
are databases.) This means that the size of the log is
determined almost entirely by the link outage time for which
in-order delivery is desired: at these average rates, even a
100 GB log will cover an outage for 14–81 hours. 

In some cases, the cost for a WAN link is a function of the
data sent over it. To explore the effects of this, we
extrapolated the OpenMail workload for all six servers, and
applied the cost functions from [SC2002a] to the WAN
traffic that resulted. Using no overwrites, the cost would

have been $40.1k/month; allowing write coalescing reduced
the cost to $31.3k/month with a 1 minute batch duration, or
$12.7k/month with a 5 minute batch duration.

6  Related work
Our goal here is to discuss the genesis/predecessors for the
Seneca work itself, rather than existing mirroring products,
which were discussed above.

In an analysis of the failure statistics of the Tandem fault-
tolerant system [Gray1986a], Jim Gray suggested that
remote replication, if one could afford it, protected against
75% of all failures. Partial replication, in the style of RADD
[Stonebraker1989], information dispersal [Rabin1989] or
Myriad [Chang2002], is probably inappropriate for the
applications considered here because of their I/O latencies.

The Jasmin reliable disk server [Uppaluru1987] created a
watch dog to copy disk partitions from the active server to
the semi-active (once-failed) server, and maintained a water
mark to indicate which blocks had been copied and which
had not. 

Mime [Chao1992], a shadow-writing storage system,
avoided synchronous metadata updates using a log and
barriers. 

The SnapMirror paper [Patterson2002] contains some
similar observations to ours, but its focus was on execution
performance, rather than the details of the protocol or its
correctness; long batch lengths—tens of minutes to hours,
rather than seconds; and the support needed in the WAFL no-
overwrite file-system for block coalescing, rather than how
to minimize the size of the atomic update groups, or the
correctness of the resulting protocol.

7  Conclusion
In this paper, we explored the complications and nuances of
the remote mirroring problem and the design space of
solutions to it, by providing a taxonomy of both. We also
described—in some detail—a protocol for asynchronous
write propagation that allows safe overwrites, and told of our
experiences in validating it’s correctness and assessing its
performance. 
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Figure 9: CDFs of measured batch sizes for 10 and 60 second batch durations, with and without overwrites, for the traced 
systems. The pair of lines to the left are the 10-second case, the leftmost line within each pair is the no-write-coalescing case.
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Our studies of real-world trace data suggest that long-term
average write bandwidth may be quite low, even if peak I/O
rates are high. These results show that asynchronous remote
mirroring protocols can deliver significantly lower WAN
link traffic by smoothing out bursty write traffic, and write
coalescing reduces the WAN traffic still further – especially
in the bursty periods. Doing so correctly and safely requires
careful attention to avoiding many possible failure modes
and corner cases. We believe Seneca provides such a
protocol.
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