
Fault-tolerant replication management in
large-scale distributed storage systems

Richard Golding Elizabeth Borowsky
Storage Systems Program, Hewlett-Packard Labs Computer Science Dept., Boston College

golding@hpl.hp.com borowsky@cs.bc.edu

Abstract

Failures of all forms happen: from losing single network
packets to site-wide disasters. Since businesses rely heavily
on their data, it is imperative that failures require minimal
time and effort to repair and that the service interruption
during the failure or repair period should be as short as
possible. To this end, the ideal system should repair itself,
relying on humans only when absolutely necessary in the
repair process. This paper describes one component of a
self-healing storage system: the component that allows for
automatic recovery of access to data when the power comes
back on after a large-scale outage. Our failure recovery
protocol is part of a suite of modular protocols that make
up the Palladio distributed storage system. This protocol
guarantees that service will be repaired quickly and auto-
matically when enough failures are repaired.

1 Introduction

Many organizations need their computing systems to sur-
vive disasters that disable or destroy entire sites, such as
power outages, earthquakes, and storms. This leads to pro-
viding hosts and storage devices at multiple sites and repli-
cating data to two or more of the sites. Such systems must
keep data available as much as possible without compro-
mising its correctness; and when data cannot be available
for use, it must be maintained until enough of the system
recovers that access can be restored. This is in addition to
“ordinary” failure tolerance, which handles the failure of
individual hardware components—in our case, storage de-
vices.

Recovering from site failures require different solutions
than recovery from single device failures, especially when
systems grow large. Site-wide recovery must proceed
swiftly and scalably. The primary differences are that many
or all components of the system can fail or recover at the
same time, and the number of parallel recovery efforts that

may be ongoing, for example after a site recovers power,
may require that individual recovery steps be frugal in their
resource usage to avoid overloading the system.All tran-
sient state can be lost in such failures, requiring careful at-
tention to ensure that any information needed for recovery
is kept on persistent storage.

The Palladio solution for detecting, handling, and re-
covering from both small- and large-scale failures in a dis-
tributed storage system is a synthesis of work done on fault-
tolerant distributed systems, particularly consensus for con-
sistency and replication for redundancy and fault tolerance.
Our approach was inspired by standard replica control pro-
tocols, notably that of El Abaddi and Toueg [10]. Unlike
previous work, we implement the storage system using four
modular protocols, so that any protocol that meets certain
behavioral requirements can be used. In this paper, we fo-
cus on thelayout control protocol,named by analogy with
replica control protocols, that can correctly recover a sys-
tem from site failure.

The Palladio distributed storage system provides virtu-
alized data storage services to applications running on a
cluster of hosts, connected using a communication fabric.
The system provides the applications with a set ofvirtual
stores,which are structured as a logical array of bytes into
which applications can write and read data, very much like
the high-level interface to a SCSI disk. A write operation is
tri-state atomic, in that it either completes in its entirety, has
no effect, or results in the data range being marked damaged
(in the event of rare permanent failures). Reads and writes
to a store are serialized. This model is simpler than that of
a database—atomicity and serialization are at the granular-
ity of individual I/O operations, rather than multi-operation
transactions.

Virtual stores are implemented by allocating space on
one or more storage devices. The store’slayoutmaps each
byte in its address space to an address on one or more de-
vices. The layout can use striping for performance and
replication for reliability. Unlike some other distributed
storage systems (e.g. Petal [16]), Palladio potentially uses



a different layout strategy for each virtual store to obtain
near-optimal resource utilization [4, 5].

Palladio allows dynamic changes to a virtual store’s lay-
out in order to support fault tolerance and good resource
utilization. For example, when a storage device holding one
replica fails, the system maintains redundancy by creating
another replica using spare space on other devices—akin to
using a hot spare disk in a disk array, but spread over an
entire system. Similarly, if the throughput needs for a par-
ticular store increase, the system may choose to stripe the
store’s data across more storage devices.

Computing environments that use Palladio are expected
to be quite large, storing as much as several petabytes of
data on tens of thousands of disk arrays. Protocols that scale
well to these sizes must show sublinear growth in execution
time, messages, and space as the system size increases. One
implication of this constraint is that protocols cannot simply
search the network to find other nodes or data. For example,
the failure recovery mechanisms cannot search all devices
in order to find the replicas that make up a particular store.
Likewise, a recovery protocol that involves a broadcast to
all nodes can overload the network when a site is recovering
from a power failure. This difference in scale has dictated
a somewhat different approach for Palladio than has been
used in many system: that storage devices take an active
role in the recovery of the stores they are part of.

Palladio is implemented as shown in Figure 1. Each host
includes a device driver that maps application read and write
requests into low-level read and write operations and sends
them to the appropriate storage devices. A small set of man-
agers keeps track of the virtual stores in the system, coordi-
nating changes to their layout and handling recovery from
failure. Of course, a store’s manager can fail, in which case
the store’s management function is quickly regenerated onto
another manager.

The rest of the paper is structured as follows. In Sec-
tion 2, we outline the behaviors of the protocols used to
implement the system. We then present the system assump-
tions we used, followed by the layout control protocol used
in Palladio. We outline proofs for its essential correctness
properties, then discuss extensions and related work.

2 Modular protocols

The overall purpose of the Palladio system is to provide
robust read and write access to data in virtual stores. To
achieve this, it must provide atomic and serialized read and
write access, detect and recover from failure, and accom-
modate layout changes.

Palladio divides the implementation into four protocols,
as shown in Figure 1. In this section we discuss the behav-
iors these protocols must provide each other.

The protocols run between three sets of entities:hosts,

driver

application

protocol

reconciliation

protocol

protocol

protocol

access

layout control

layout retrieval 
data

management

host

storagemanager
device

policies

Figure 1. Palladio implementation structure.
The manager, storage device, and hosts exe-
cute the four protocols shown to provide ap-
plications with data storage services.

on which applications run and which include a device driver
that translates application I/O requests into per-device oper-
ations;storage devices,which actually store the data; and
managers,which maintain the layout information. In ad-
dition, there is amanagement policycomponent that deter-
mines what resources should be used to implement each vir-
tual store.

Theaccess protocolallows hosts to read and write data
on a storage device as long as there are no failures or lay-
out changes for the virtual store. It must provide serialized,
atomic writes that can span multiple devices. When there
has been a failure or layout change, the access protocol must
block until the appropriate recovery actions have occurred
to ensure that the operations remain atomic and serializable.

The layout retrieval protocolallows hosts to obtain the
current layout of a virtual store—the mapping from the vir-
tual store’s address space onto the devices that store parts of
it—from the manager that keeps track of keeps track of the
store’s layout. The host will typically cache the layout in-
formation so that it does not have to access the manager on
every operation. The protocol must provide a way for a pro-
cessor to locate the store’s active manager without running
into scalability problems.

The reconciliation protocolruns between pairs of de-
vices to bring them back to consistency after a failure. The
protocol must ensure that writes that are performed using
the access protocol are atomic, by either rolling back or
committing unfinished writes. Note that the simple seman-
tics provided in a storage system—all writes are overwrites,
and atomicity is at the level of single I/O requests—makes
this procedure straightforward. Reconciliation can typically
be performed repeatedly with no ill effect.

Finally, the layout control protocolruns between man-



agers and devices. It maintains consensus about the layout
and failure status of the devices, and in doing so coordi-
nates the other three protocols. When a store’s layout needs
to be changed, the store’s manager must initiate a layout
update transaction with the storage devices holding parts
of the store; when the transaction commits, they must have
reached consensus on the new layout. As part of the transac-
tion, the devices block the access protocol until hosts have
refreshed their layout information using the layout retrieval
protocol. The layout control protocol must also detect when
devices have failed and recovered. When a device recov-
ers, the layout control protocol must cause the reconcili-
ation protocol to resolve any differences among replicas,
then inform the devices that they can re-enable the access
protocol.

We have developed one such set of protocols as part of
developing the Palladio system. The details on the access
and reconciliation protocols can be found in [1]. The layout
retrieval protocol is simple; it uses a tree-based distributed
search structure to allow a host to find the manager it should
communicate with, after which it simply requests a new
copy of the layout. The layout control protocol is the sub-
ject of this paper.

3 System assumptions

All processors—managers, devices, and hosts—have a
bounded difference in processing rate, so that all local pro-
cessing steps in a protocol take at most a bounded, finite
time �step. Each processor has a clock that is loosely syn-
chronized with real time; that is, there is a bound�clock on
the difference between the local clock and real time.

Each processor is named by a unique identifier, and there
is a total precedence ordering on processor identifiers. In
addition, storage devices can beallocatedanddeallocated.
Each device includes anincarnation numberthat is gener-
ated at each allocation so that the combination of device
identifier and incarnation number is unique over all time.

Processors fail by crashing, and some failures are per-
manent. A transient failure causes the process to lose all its
non-persistent state and to enter a newly-rebooted state.

The network reliably delivers messages in a bounded
time �msg in the absence of partitions. The network does
not corrupt or replay messages, nor spontaneously generate
them. Messages are delivered in FIFO order between pairs
of processors. In practice this can be approximated using
a transport protocol that masks out occasional packet loss.
The network can partition processors into mutually commu-
nicating subsets. During a partitioning, any two nodes can
communicate if and only if they are in the same partition.

The network provides means of locating all reachable
nodes of a particular kind within some bounded time
�lookup. The results of this search may omit some, but

not all, of the appropriate nodes and may include only a
bounded number of inaccurate nodes. This could be ac-
complished through a name service implemented as part of
the network infrastructure.

We assume a fail-silent model offailures, where nei-
ther the network nor nodes exhibit performance failures or
generate messages outside the protocol. We model all fail-
ures locally as a restart of a node to a known state, with
all non-persistent data lost; all failures of remote nodes ap-
pear indistinguishable from network partitions. There is no
bound on the time required to recover from a failure, since
some failures will be permanent. Permanent network parti-
tions, in particular, can prevent the layout control protocol
from ever recovering. As a result we show that recovery
occurs only when recovery makes sufficient resources be-
come available and remain available for at least a bounded
stability period�recovery (Section 5).

4 Layout control protocol

This section presents a summary of the layout control
protocol. For full details see [12].

4.1 Epochs and consensus

The layout control protocol tries to maintain agreement
between a store’s manager and the storage devices that hold
the store. There are two things to be agreed upon: the layout
of data onto storage devices, and the identity of the store’s
active manager.

While there will usually be many manager nodes on the
network, at any given moment at most one manager node
will be theactive managerfor a particular store. The iden-
tity of the active manager can change over time, either be-
cause of failures or to balance load across the system.

The storage devices and manager go throughepochsof
agreement, during which the layout and manager are fixed.
They perform a transactionalepoch transitionto move from
one layout or manager to another, using a distributed atomic
commitment protocol initiated by the manager to ensure
consensus. Efficient protocols exist to accomplish this in
the face of failures (e.g. [15]), which complete in a bounded
timeO(�msg) in the absence of failures. Epoch transitions
happen as a result of layout changes, migration of the active
manager, or as the final step in recovery.

Each epoch is numbered, and theepoch numberis in-
creased by one on each epoch transition. The epoch number
thus is a shorthand reference for the version of the layout in-
formation, and is used as such in to signal when hosts need
to refresh their cached copy of the layout.

During an epoch, each non-failed device obtains a time-
limited lease[3, 14] from its active manager, and periodi-
cally asks for the lease to be renewed. As long as the device



has a lease, it believes that the manager is functioning. The
manager believes that a device is functioning as long as the
device has an unexpired lease. When a device does not re-
new its lease in time, the manager believes the device has
failed and maintains this belief until the end of the epoch.
Short leases make for fast detection of failure, but impose
more messaging overhead than longer leases.

The leases implement a kind offailure suspector.The
atomic commitment and layout control protocols use this
failure suspector to detect when processes have (probably)
failed. Consensus is solvable in asynchronous systems us-
ing an unreliable failure suspector [7, 8], which will suspect
any failed process of having failed but which may suspect
some (but not all) correct processes as having failed.

4.2 Interface to other protocols

The correct functioning of the system depends on the
data access, data reconciliation, and layout control proto-
cols working together. We discuss a few of the essential
properties here.

The data access protocol [1] provides serialized and
atomic data read and write operations that span multiple de-
vices. The protocol performs efficiently in the normal case
where there are no failures.

When there is a failure, or when some device loses its
lease, any (multi-device) write operation that includes that
device will block. The non-failed devices will then be-
gin queuing subsequent read and write requests. This pre-
serves the state of the data until the failed device is reinte-
grated into the system. Reintegration includes reconciling
the replicas to restore consistency among the the devices,
which completes or rolls back any unfinished write opera-
tions on reachable devices.

The layout control protocol controls the behavior of the
access protocol by manipulating the device’s lease: a de-
vice may perform read and write operations only while its
lease is valid. The layout control protocol also handles rein-
tegrating devices that have returned to service, by running
the reconciliation protocol, performing an epoch transition,
and only then beginning to issue leases to the device again.

The layout control protocol and access protocol together
ensure that the host’s cached copy of layout information is
consistent with the manager’s version. All the protocols use
the epoch number as a version number for the layout infor-
mation, and the host maintains this version number with its
cached layout copy. The layout control protocol increases
the epoch number at each change in the layout, and ensures
that the manager and all non-failed devices agree on that
number. On each I/O, the access protocol checks that the
host’s version number matches the device’s version; if not,
then the host refreshes its copy using the layout retrieval
protocol.

variable meaning persistence
e epoch number transient
hV;DV ;�i layout transient
fdfailedg suspected failed devices transient

None

Into
transition

handoff

Gathering
devices

help

Newly
awake

Gathered

release
result bit

Gathering
leases

quorum

response

Recovery
transition

No outstanding

abort tx

Manager

commit tx

Out of
transition

commit tx

abort tx

device fail/
no quorum

migrate

help;
device fail/

quorum

Relayout
transition

relayout commit/abort tx

ack, timeout,
unallocated, nack/

no outstanding

help; ack;
 timeout;

unallocated, nack/
some outstanding

abort tx

commit tx

Figure 2. Manager protocol. States in the re-
covery sequence are highlighted. All states
transition to the newly awake state on failure;
these transitions are omitted for clarity.

4.3 Operation during one epoch

During an epoch, there is one active manager and a set
of devices that have time-limitedleasesissued by that man-
ager. The leases are used to detect possible failure.

Figures 2 and 3 summarize the protocol’s state transi-
tions for both devices and managers. Persistent state is pre-
served without corruption across a crash failure, while tran-
sient data is re-initialized on a crash.

Maintaining leases. Devices must periodically ask the
manager to renew their lease (Figure 4). If the manager does
not receive a lease renewal request from a device before the
lease times out, the manager suspects that the device has
failed and places it on a list of suspected failures. The man-
ager will not renew leases for any device on the list, which
implies that the device will not be able to serve read or write
requests. The device remains on the list of suspects until ei-
ther an outside management policy decides to permanently



variable meaning persistence
e epoch number persistent
hV;DV ;�i layout persistent
d data persistent
imgr active manager transient
tlease lease timeout transient

Newly
awake

No lease

Regular
lease

renewal;
acquire

Lease in
transition

epoch
transition

lease
expiry

commit/abort tx

renewal

Garbage
collect

commit/
not in layout

redirect;
acquire/

wrong epoch

Recovery
lease

acquire/
correct epoch

deallocate

lease expiry;
release/correct

epoch

renewal,
transfer;

release/wrong
epoch;
acquire

Recovery
transition

epoch
transition

deallocatecommit tx

abort tx

Figure 3. Device protocol. States in the re-
covery sequence are highlighted. All states
transition to the newly awake state on failure;
these transitions are omitted for clarity.

remove the device from the layout, or the device recovers,
contacts the manager, and returns to service as part of an
epoch transition.

When device suspects manager.If a device requests a re-
newal but does not get it, the device assumes that the man-
ager has failed and starts themanager recovery sequence,
discussed below. While the device is without a lease, the
data access protocol is blocked to preserve the state of the
data until recovery completes.

When manager suspects device.The active manager
maintains a list of the devices that it believes have failed
during the current epoch. A device that later returns to ser-
vice will contact the manager for recovery, whereupon the
manager will issue the device arecovery leaseand add the
device to a second list of devices that have come back. We
discuss this recovery in more detail in Section 4.6.

Whenever the manager suspects a device failure, it must

request

d2d1 mgr

request

grant

fail

suspect d1

expected

Figure 4. Timeline of communication during
an epoch, showing lease renewals and failure
suspicion.

determine if it still has bothquorumandcoverage. We de-
fine quorum as a majority of the devices in the epoch’s lay-
out, which is sufficient for our purposes but not strictly nec-
essary: other kinds of quorums will work. This condition
ensures that the devices in at most one partition can be ac-
tive at a time. Note that quorum is only of the devices in the
store, not of the entire system. A set of devicescoversthe
store if for each byte of the store, at least one device in the
set stores that byte, thus ensuring that all of the store’s data
is available.

If the active manager does not have coverage and quorum
then it exits, thus causing the devices to initiate recovery
when their leases expire.

4.4 Epoch transition

Epoch transitions move the store to the next period of
consensus on the layout and active manager, either as part
of a change in layout or a failure recovery.

An epoch transition consists of four steps (Figure 5).
First, the manager initiates the transaction by sending a
message to all the devices believed either not to have failed
in the current epoch, or to have failed and recovered. Next,
it initiates data reconciliation among any devices that are
suspected to have failed and recovered, or that have been
added to the layout. Once reconciliation is complete, the
manager initiates an atomic commitment protocol. If the
commitment protocol produces an “abort” result, each of
the participants rolls back any layout changes they have
made. (The reconciliations do not need to be rolled back.)
If the commitment protocol commits, the manager and de-
vices begin the epoch with fresh leases, which are estab-
lished as a side-effect of committing and not through ex-
plicit communication. Finally, devices that have been re-
moved from the layout “garbage collect” themselves.

Dealing with removed devices requires special attention.
In the absence of failures, when a device is removed from



epoch e

device 2 device 1 manager

device

garbage collects
removed;

epoch e+1

lease renewals

atomic commit
protocol

start
transition

reconciliation
protocol

Figure 5. Timeline of communication during
an epoch transition, showing data reconcilia-
tion, commitment, and garbage collection.

the layout it will participate in the transition from the last
epoch where it is part of the store to the first epoch where it
is not. The device detects this and garbage collects its data
after commitment. However, if the device being removed is
suspected of failure or has been partitioned away from other
nodes, it will not be part of the epoch transition. When the
failure is repaired the device will attempt recovery, as de-
scribed in the next section, and in the process will discover
that the rest of the system has moved on to a later epoch that
does not include it and garbage collect its state.

4.5 The recovery sequence

When a device loses its lease, it suspects that the man-
ager has failed and initiates therecovery sequence,which (if
successful) results in the system returning to normal condi-
tions. Figure 6 illustrates this process. A device can lose its
lease for several reasons: because it has failed and recov-
ered; because the manager has failed; or because either the
manager or device falsely suspect the other of failure.

Recovery proceeds as a sequence of phases.

Initiation. The device uses the network’s locating service
(Section 3) to find a manager that it can communicate with,
and asks that manager to become arecovering managerfor
the store, telling it the current layout and epoch number
(step 1 of Figure 6). The device only asks one manager
at a time, and if no manager responds the device will repeat
this step until it gets a response.

m1 d1

m2

m3

d2request(layout)

d3

request(layout)

request(layout)

Step 1: devices request
recovery

m1 d1

m2

m3 d3

d2
acquire

acquire

acquire

Step 2: managers try to
acquire devices

m1 d1

m3

m2 d2

d3
ack

reject(m
3)

ack

ack

reject(
m1) reject(m2)

reject(
m2)

Step 3: devices accept
first lease, reject others

m1 d1

m2

m3 d3

acquire

d2

lease: m1

acquire

lease: m2

release(m1)

Step 4: least precedence
manager gives up, others
try again

m1 d1

m2 d2

d3

lease: m2

m3

lease: m1

recovering)

ack

(wins)

(not

reject(m2)

Step 5: remaining device
accepts one lease, rejects
other

d1

m3

m2

d3

d2

lease

lease: m1
m1

lease: m2

lease: m2

ack

convert

Step 6: manager 2 wins
contention, converts
leases on other devices

m3

m2

d3

d2

reconciliation

m1 d1

trigger
reconciliation

data

Step 7: manager initiates
data reconciliation

m1 d1

m2

m3

d2

atomic commit

d3

Step 8: epoch transition
to normal operation

Figure 6. An example of the recovery se-
quence in a partition with three devices and
three managers. All three devices request re-
covery, and manager m2 wins the contention.



When a manager node receives the request to begin re-
covery, it first checks to see whether it can contact an active
manager for the store, using the distributed search structure
provided by the layout retrieval protocol. If so, it forwards
the request on to the active manager.

Note that several devices can lose their lease at about the
same time if a manager has truly failed, resulting in several
managers concurrently becoming recovering managers.

Contention. Once a manager accepts a recovery request,
it enters into a sequence of contention rounds with any
other managers that may also have become recovering man-
agers for that store. Contention establishes which recover-
ing manager will become the active manager. The rounds
end when one manager obtains quorum and coverage and
completes recovery, or when all recovering managers deter-
mine that obtaining quorum and coverage is impossible.

Each round consists of the managers trying to acquire
as many of the devices it has not yet acquired as possible
by issuing recovery leases to them (steps 2–5 of Figure 6).
The recovering managers use these leases to detect probable
device failure during recovery, and as a way of keeping the
devices from initiating further failure recovery attempts for
as long as the recovery manager is functioning. A device
acknowledges the first lease it obtains, and rejects later ones
with a message indicating the identity of the manager whose
lease it did accept.

If one of the managers acquires coverage and quorum
of the devices in the layout, it wins and completes recov-
ery by moving to the next step. If a manager has lost the
contention—and at least one will—it cancels the recovery
leases it has issued and drops out of contention. If no man-
ager has won, then all the managers wait a short while, then
repeat the contention step, trying to acquire the devices that
have been released by managers that have dropped out (e.g.
managers 1 and 2 in step 4).

A recovering manager drops out of contention if it either
acquires no devices, or if it determines that it is the lowest
precedence manager among those contending according to
the global precedence relation on manager ids (Section 3).
The manager knows the ids of the other contending man-
agers because a device sends the id of the manager that has
already acquired it when the device rejects an acquisition.

Completion. The winning manager contacts all reachable
devices that it has not acquired, and replaces their recov-
ery lease with one it issues (step 6). Any devices that do
not respond this acquisition are suspected of having failed,
and become the initial list of suspected failures for the new
epoch. The manager then initiates an epoch transition (steps
7 and 8), including data reconciliation, to return the store to
normal service.

Failure. If a recovering manager fails during recovery, the
devices’ recovery leases will time out and the devices will
again try to initiate recovery. If devices fail, they will fail
to acknowledge lease renewals and be placed on the list of
failed devices.

4.6 Reintegrating failed devices

Once a manager suspects that a device has failed, it will
continue to do so through the rest of the epoch. If the device
was falsely suspected, or if the device has failed and returns
to service, the layout control protocol will effect its recovery
during the next epoch transition.

Device recovery begins with the device suspecting the
manager. The device will then initiate the recovery se-
quence, as discussed in the previous section, by finding
some manager node and sending it a message requesting
recovery. However, if there is still a reachable active man-
ager, the request will be forwarded to it and the device will
be reintegrated by that manager at the next epoch transition.

The device performs the same sequence of transitions
when recovering from a small-scale failure that leaves the
system with an active manager as it would when recover-
ing from a large-scale failure that requires regenerating an
active manager.

Once the active manager receives a recovery request
from the device, it places the device on a list of devices
believed to have recovered and issues the device a recov-
ery lease. If the device fails again, the recovery lease will
time out and the manager will take the device off its list of
recovered devices. At the next epoch transition, any recov-
ered devices are reconciled with their replicas and are issued
leases in the new epoch.

The availability of the virtual store depends, in part, on
how long devices must wait between their recovery and
the next epoch transition. Epoch transitions are triggered
by management policies outside the layout control protocol
(except during large-scale failure recovery) and so availabil-
ity will be highest if those policies respond quickly to news
of device recovery.

5 Correctness

In this section we argue the correctness of a few key
properties of this protocol.

5.1 Liveness of recovery

We first show that the recovery sequence (Section 4.5)
completes in bounded time. We begin by formally defining
some of the key concepts in recovery.

Definition 1 A virtual storeV is a finite set of bytes.



Moreover, virtual stores are distinct. Namely for two vir-
tual storesV; V 0; V \ V 0 = ;.

Definition 2 Thelayout,l(V ); of a virtual storeV is a tuple
hV;DV ;�i, whereDV � D and8b 2 V;� : b ! Db �
DV .

In words, the layout of a virtual store represents the map-
ping of each byte of the virtual store to a set of devices.
Each device of the set stores the replicas of that byte of the
virtual store. In practice, a store would be broken into byte
ranges (or sets of byte ranges in the case of a striped layout)
that would each be replicated across devices. However, the
given representation is equivalent and simplifies the nota-
tion somewhat.

Definition 3 Given the layout of a virtual storel(V ) =
hV;DV ;�i; a set of devicesD0 � DV coversthe set of
bytescov(V;D0) = fbjb 2 V ^D0 \ �(b) 6= ;g.

In words, the set of devicesD0 covers the subset of the
virtual store for which it stores at least one replica.

Definition 4 A set of devicesD0 is said to havecoverageof
a virtual storeV if cov(V;D0) = V .

Definition 5 A set of devicesD0 is said to bequorumof
a virtual storeV with layout hV;D;�i, if D0 � D and
jD0j > jDj=2.

The manager recovery sequence consists of one or more
devices initiating recovery concurrently, followed by man-
agers performing one or more rounds of the contention
phase, with one manager performing the completion once.

Note that in the discussion that follows, we use the term
“component” to mean a connected component of the system
network in the graph-theoretic sense.

Lemma 1 If a device without a lease is in a component of
the system that contains at least one manager node, some
manager in that component will enter the contention phase
within bounded time.

Proof: Upon initiating recovery, the device obtains a
finite list of possible managers from the network in time
�mgr, then attempts to contact each manager sequentially.
Each contact attempt requires at most2 � (�step + �msg + c)
time. By assumption, at least one manager among the list
will respond.

Likewise, the completion phase is bounded, consisting
of a fixed sequence of activities for each device followed by
an atomic commit.

Lemma 2 A single round of the contention phase of the re-
covery protocol terminates in bounded time.

Proof: A round of the contention phase is defined by
a single manager’s attempt to acquire leases on the de-
vices (DV ) of the virtual store. This entails at most
jDV j round-trip message times or time-out periods. Since
�timeout > 2�msg+ �step, a single round takes time at most
jDV j�timeout:

Definition 6 A time periodt is stable if no failures occur in
the time period, and it is longer than the bounded recovery
time.

Definition 7 The state of the system is said to berecover-
ablewith respect to virtual store V if there exists a compo-
nent of the system that contains a manager and has cover-
age and quorum or V.

Lemma 3 If the system is in a recoverable state at the be-
ginning of a stable period, it remains in a recoverable state
throughout the stable period.

Proof: By way of contradiction, assume the state is no
longer recoverable at the end of a stable period. Thus, the
component that had a manager, coverage and quorum ini-
tially is now missing at least one of these properties. Thus,
some element of that component must be partitioned away
from the component. This contradicts the assumption that
the period was stable.

Lemma 4 If a virtual store has an active manager at any
point during a stable period, then it has an active manager
at the end of the stable period.

Proof: By way of contradiction, assume there is no
longer an active manager for the store at the end of a sta-
ble period. In order for this to happen either the manager
failed, or devices that were constituting either coverage or
quorum were partitioned away from the component, caus-
ing the manager to exit. Any of these cases require that
some type of failure occurs, contradicting the assumption
that the period was stable.

Definition 8 The set ofpotential managersof a virtual store
with layouthV;DV ;�i is comprised of the managers that
respond with acquire messages in response to a request for
recovery from a device of the store.

Lemma 5 In a stable recoverable system, the set of man-
agers involved in the recovery protocol for store V with lay-
out hV;DV ;�i is at mostjDV j.

Proof: At the end of the stable period the set of devices
(of the virtual store layout) in the component with a man-
ager, coverage and quorum is of size at mostjDV j. Since
each of these devices solicits management serially, and no
failures occur during the stable period, there is at most one



manager acting on behalf of each device. Thus there are
at mostjDV j initial managers, let this set be denotedM .
Since only managers with leases will be solicited for help
in recovery in later contention rounds, managers inM are
the only managers that will acquire leases throughout the
recovery protocol. SincejM j � jDV j the lemma holds.

Lemma 6 In a recoverable stable system, the recovery pro-
tocol terminates with a single manager in bounded time.

Proof: For virtual storeV with layout hV;DV ;�i, let
Dc denote the subset ofDV in the system component with
a manager, coverage, and quorum at the end of the stable
period. By Lemma 5 there are at mostDc managers in
the component competing in the recovery protocol, each of
which can be credited to an initial request from some device
of Dc.

After each round of contention, each manager either
wins, exits, or begins another round of acquires. After one
round by each manager, either a manager wins or a man-
ager exits (possibly both will occur). If a manager exits it
either gained no leases or received nacks only from devices
with higher precedence managers. This exit event can be
credited to the device on whose behalf the manager joined
contention, and (by Lemma 2 occurs within the bounded
time it takes for the exiting manager to complete a round.
At most jDcj � 1 exit event can take place, each one cred-
ited to a different device, and each one taking bounded time
after the last event occurs. Thus, in bounded time either a
manager has won recovery or there is only a single manager
left in the contention protocol. In the latter case, since we
assume the component was recoverable, the manager must
have coverage and quorum, and thus wins the protocol.

Since the period is stable, no failures occur during re-
covery. Due to the property that a device has only a single
manager, and because at most one manager can hold a quo-
rum of the leases, the lemma holds.

Theorem 1 If the system is recoverable with respect to vir-
tual storeV with layouthV;DV ;�i, then at the end of the
stable periodV has a single active manager.

Proof: By Lemma 1 the sequence takes a finite time to
start. By Lemma 6 the recovery protocol terminates with a
single active manager. By Lemma 4 once there is a single
active manager there will be one until a failure occurs, i.e.,
at the end of the stable period.

5.2 Safety

Safety constitutes ensuring one-copy serializability [10]
of data, which means that replicas appear to be consistent
with each other and that there is proper serialization of reads
and writes. Fundamental to this property is the requirement

that there be at most one actively managed set of devices
storing replicas of the virtual store (lest independent sets di-
verge due to different streams of writes). In addition, we
must ensure that the active set of replicas of the virtual store
has one-copy serializable layout information, and that cor-
rect resource allocation is maintained throughout.

5.2.1 At most one active manager

Definition 9 For a virtual storeV , the set ofactive man-
agersfor V (denotedA(V )) is defined to be the set of all
managers that have issued regular leases (i.e. not recovery
leases) on devices inV .

In the ideal, a virtual store would always have exactly
one active manager. Failures, however, mean that some-
times there will be none, either because the manager failed
or because it can no longer communicate with a quorum and
coverage of devices. Managers have a lag time before they
detect device failures, limited by the device lease renewal
period. This makes it possible for one manager, which has
been active, to be “doomed” to exit because of failures it
has not yet detected, while another manager is being re-
generated by the failure recovery sequence. This transient
overlap may lead to more than one manager being active.
In practice we expect these transient periods to be short and
infrequent. In Section 5.2.3, we will show that this does not
affect data consistency.

Theorem 2 For any virtual storeV , at all times except for
the device lease renewal period after a failure,jA(V )j � 1.

Proof: By assertion, in the stable state of the system,
each virtual store has exactly one active manager.

When a failure or repair occurs there are several possible
outcomes. If there is no component that has coverage and
quorum of devices, then no manager can be active and any
previously active manager will exit within time bounded by
the device lease renewal period. There can be at most one
component with quorum and coverage, and if one exists,
it either already contains an active manager or it does not.
In the former case, management will continue; in the latter
case management will be regenerated within bounded time.
Any other active manager will suspect sufficient device fail-
ures within the device lease renewal period, and will exit.
Thus, except for brief periods after failure,jA(V )j � 1.

5.2.2 Correct resource allocation

In any practical distributed system, it is important that re-
sources be neither leaked, leading to unbounded resource
consumption, nor deallocated too early, leading to data loss.
In this section we show that the layout control protocol
meets these conditions.



Theorem 3 No device garbage collects its state without
having been explicitly removed from the layout through an
epoch transition.

Proof: Devices garbage collect their state in two cases:
when they participate in an epoch transition that removes
them from the layout, or when they are notified that they
have an outdated epoch number and are no longer in the
layout. In the first case is clear that garbage collection is
safe.

In the second case, the device receives a “deallocate”
message from a manager. This message is only sent from
an active manager when it receives a request for recovery
from a device with an old epoch number that is not part of
the current layout. The device must have been part of the
layout in some past epoch, and is not now. Since layouts
are only changed through epoch transitions, there must have
been some epoch transition where the device was removed.

Theorem 4 Any device that is removed from the layout in
an epoch transition that commits eventually garbage col-
lects its state, assuming the device eventually is part of a
recoverable component containing an active manager.

Proof: There are three cases to consider, based on the
state of the system when the epoch transition occurs.

First, when the device has not failed, and the manager
believes it has not failed, the device will participate in the
epoch transition and garbage collect its state at the end.

Second, when the device has failed, whether or not the
manager believes it to have failed, the device will eventually
recover and initiate recovery. Eventually that recovery se-
quence will contact the active manager for the store because
the device will eventually be in a (recoverable) component
containing the active manager, and any recovery attempt in
that component will cause the device to forward its help re-
quest to the active manager. The active manager will then
inform the device that it should garbage-collect its state.

Finally, when the device has not failed, but the manager
believes it to have failed, no manager will issue leases to the
device. Within a bounded time the device’s lease will time
out, and the device will begin recovery as in the previous
case.

We cannot make the stronger claim, that all removed de-
vices are eventually garbage collected, in the presence of
permanent failures because the device blocks garbage col-
lection until it receives notice from an active manager. The
less-strong claim, that garbage collection occurs if all fail-
ures are eventually repaired, does not hold because patho-
logical sequences of overlapping partitionings could occur,
each partition being eventually repaired but never allowing
the device to contact an active manager.

5.2.3 Data consistency

We now turn to showing that the data is maintained cor-
rectly. We show first that the store’s layout is kept correct.

Theorem 5 The layout of each store remains one-copy se-
rializable.

Proof: By Theorem 3 no device gets garbage collected
prematurely, and by the property that epoch and layout
changes are made through a transaction, one-copy consis-
tency is maintained from one layout to the next. In ad-
dition, the layout changes are performed serially, yielding
one-copy serializability.

We make the following assumptions about the underly-
ing data access protocol:

� A write to a virtual store can be viewed as an atomic
action that either returns success or nothing.

� If a write operation returns success, it has succeeded
(i.e. can be viewed to have happened atomically).

� If a write operation returns nothing, either it suc-
ceeded, and can be viewed as an atomic operation, or
it fails, and no data is written to any part of the store.

� There exists a linearization of the successful writes
consistent with every read value returned.

That is, in the absence of failure the data access protocol
provides one-copy serializability.

Lemma 7 [1] Except in the case of unrecoverable data loss
due to device failure, the reconciliation protocol will termi-
nate with data of a virtual store consistent and serialized.

Theorem 6 The data in managed virtual stores is one-copy
serializable.

Proof: When no failures occur, the underlying data ac-
cess protocol ensures one-copy serializability of data.

In the case of failure (barring unrecoverable data loss)
either the store remains on line and the management is not
interrupted, or the management will be recovered eventu-
ally. In the first case, the underlying data access protocol
will ensure one-copy serializability. In the second case, the
reconciliation procedure will be run, and by Lemma 7 the
data will be consistent and serialized upon transition back
into the managed state.

In the case of unrecoverable data loss, outside interven-
tion is necessary to get the data back into a consistent (and
managed) state.



6 Extensions

In the presentation so far, we have made some simplifi-
cations for clarity.

Single manager.Palladio actually replicates a store’s ac-
tive manager, using two replicas and one witness [17]. Nor-
mally, one manager can fail or be partitioned away, and the
remaining managers will attempt to regenerate the missing
replica. This increases the apparent reliability of the man-
ager, making manager recovery rare.

Whole devices.We have presented devices as the unit of
replication, in practice Palladio uses a smaller granule. A
device stores multiplechunks, similar to disk partitions or
array LUNs, each of which acts independently in the layout
control protocol.

Reintegrating devices.The way device failure is han-
dled can be optimized. Currently, when a device fails while
a store is active, the manager puts the device in its list of
failed devices and it stays there until the data reconciliation
protocol is triggered as part of an epoch transition. While
this is correct, it means that devices can be locked out for
a long time. This can be improved as follows: when a de-
vice recovers in the active partition, it will request manager
recovery. This request will be forwarded to the active man-
ager, which can use the message as an indication that the
device has recovered. The manager can bring the device up
to date by triggering the data reconciliation protocol. Once
complete, the manager can issue the device a lease, which
will return the device to normal operation, and remove the
device from its list of failed devices.

Synchrony model.We have assumed a synchronous sys-
tem model to simplify the analysis of correctness. We are
investigating whether the system is correct under a more
relaxed model, such as timed asynchrony [9]. The only dif-
ference between our current assumptions and this model is
it permits performance failures in the network, resulting in
late messages.

Failure suspectors.The layout control protocol we have
presented uses leases as failure suspectors, but leases only
work in systems with limited failure and synchrony seman-
tics. The layout control protocol uses the failure suspector
to control the access protocol: the device blocks any I/O
requests while it suspects manager failure. We are investi-
gating whether we can substitute a stronger failure suspec-
tor into the layout control protocol, as part of making the
protocol resilient to a wider range of failures, without dis-
turbing the other protocols.

7 Related work

Several other distributed storage systems have been built.
The Petal system [16] provides distributed virtual disks that

are implemented using a RAID-5 layout over a set of stor-
age servers. The Palladio work differs from Petal in aiming
to scale much larger than Petal, and in using more com-
plex layout schemes to implement virtual stores, allowing
resource usage to be tailored to a store’s performance needs.
The Swift system [6] provides striped storage over a set of
servers, somewhat like Petal does. The Cheops effort [1],
part of the CMU NASD project, focuses on providing file
system services, rather than storage services, to hosts; how-
ever, it internally uses optimistic concurrency control for
building distributed RAID-5 disk arrays. The data access
protocol used in Palladio was developed in collaboration
with this project. The Global File System (GFS) project
[21] also focuses on building a shared file system service,
and internally uses a network storage pool mechanism that
provides similar semantics to Palladio virtual stores. GFS
uses device-implemented locking mechanisms for concur-
rency control.

None of the projects mentioned are explicitly investigat-
ing scale—indeed, GFS explicitly uses search to find the
parts of accessible storage pools—and only the Petal project
has so far focused on recovery after failure.

The layout control protocol fills a similar conceptual role
in Palladio as do membership mechanisms in group com-
munication systems [20, 22]. The epoch transition provides
a way for devices to join and leave the group of devices sup-
porting a virtual store. Moreover, virtual storage systems
naturally decompose into subcomponents in a way similar
to group communication systems [2, 13]. Storage systems,
however, experience very infrequent layout changes com-
pared to the frequency of read and write requests, and mem-
bership changes are hidden from (and uninteresting to) the
applications reading and writing data. This leads to a dif-
ferent set of design choices in the decomposition and the
protocols—notably, the use of a heavyweight epoch tran-
sition mechanism in order to make individual I/O requests
simple and fast.

In comparison to quorum systems, we use the very sim-
ple concept of quorum as a strict majority over each virtual
store layout group. This approach is similar to work on use
of quorum for replication control [18, 11]. We have not yet
investigated if more generalized quorum systems [19] are
applicable (or necessary) for our target of data storage sys-
tems in the face of site failure and arbitrary partitions.

8 Conclusions

We have designed a replication management system that
automatically and correctly recovers from the large-scale
failures we expect in distributed data storage systems, such
as site-wide power failures and network trunk partitioning.

There are a few key ideas we used in designing the sys-
tem.



Modular protocol design.We divided the overall prob-
lem of replicated data management into subproblems, with
a protocol specialized for each and clean interfaces between
them. We also made use of atomic commitment and failure
suspicion as building blocks, which made design and anal-
ysis easier and more likely to be correct.

Active device participation.Devices initiate recovery,
and have all the information needed to do so. This ensures
that recovery begins quickly and that it does not involve a
wide-scale search for the devices that make up the store.
This should improve recovery time, and will use fewer com-
munication resources than an approach based on centrally-
maintained global state or on passive devices that must be
located after failure.

Distributed management function.Organizing manage-
ment on a store-by-store basis reduces the amount of infor-
mation any one manager must maintain, reduces the effects
of a single node failure to only a few stores, limits the scope
of activity when a store’s layout changes, and enables quick,
as-needed management regeneration.

Coverage and quorum condition.This condition deter-
mines whether a store is available for service. The combi-
nation requires that all of the data in the store be available,
as well as ensuring that at most one partition in the sys-
tem can proceed. While quorums are a well-known idea,
the combination with coverage is important for storage sys-
tems.

Acknowledgments

The authors thank Peter Bosch (Universiteit Twente),
Randal Burns (UC Santa Cruz), John Wilkes (HP Labs), and
the anonymous reviewers for their comments on the paper.

References

[1] K. Amiri, G. A. Gibson, and R. Golding. Scalable concur-
rency control and recovery for shared storage arrays. Techni-
cal Report CMU–CS–99–111, Dept. of Computer Science,
Carnegie-Mellon Univ., 1999.

[2] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu.
Coyote: a system for constructing fine-grain configurable
communication services.ACM Trans. on Computer Systems,
16(4):321–66, November 1998.

[3] A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo distributed file system. Technical Report 111, Dig-
ital Equipment Corp. Systems Research Center, Palo Alto,
CA, September 1993.

[4] E. Borowsky, R. Golding, P. Jacobson, A. Merchant,
L. Schreier, M. Spasojevic, and J. Wilkes. Capacity plan-
ning with phased workloads. InProc. of the 1st Workshop
on Software and Performance, October 1998.

[5] E. Borowsky, R. Golding, A. Merchant, E. Shriver, M. Spa-
sojevic, and J. Wilkes. Using attribute-managed storage to

achieve QoS. InProc. of the 5th Intl. Workshop on Quality
of Service, June 1997.

[6] L.-F. Cabrera and D. D. E. Long. Swift: a storage architec-
ture for large objects. InProc. of the 11th IEEE Symp. on
Mass Storage Systems, pages 123–8, October 1991.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. InProc. of the 11th
ACM Symp. on Principles of Distributed Computing, pages
147–58, 1992.

[8] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
67, March 1996.

[9] F. Cristian and C. Fetzer. The timed asynchronous system
model. Technical Report CSE97–519, Computer Science
Dept., Univ. of California at San Diego, 1997.

[10] A. El Abaddi and S. Toueg. Maintaining availability in par-
titioned replicated databases.ACM Trans. on Database Sys-
tems, 14(2):264–90, June 1989.

[11] D. K. Gifford. Weighted voting for replicated data. InProc.
of the 7th Symp. on Operating Systems Principles, pages
150–62, December 1979.

[12] R. Golding and E. Borowsky. The Palladio failure recovery
protocol. Technical Report HPL–SSP–99–1, Storage Sys-
tems Program, Hewlett-Packard Laboratories, March 1999.

[13] R. A. Golding and D. D. E. Long. Using an object-oriented
framework to construct wide-area group communication
mechanisms. InProc. of the Int. Symp. on Applied Com-
puting: Research and Applications in Software Engineering,
Databases, and Distributed Systems, 1993.

[14] C. G. Gray and D. R. Cheriton. Leases: an efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proc. of the 12th ACM Symp. on Operating Systems Princi-
ples, pages 202–10, December 1989.

[15] R. Guerraoui and A. Schiper. The decentralized non-
blocking atomic commitment protocol. InProc. of the 7th
IEEE Symp. on Parallel and Distributed Processing, Octo-
ber 1995.

[16] E. K. Lee and C. A. Thekkath. Petal: distributed virtual
disks. InProc. of the 7th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages
84–92, October 1996.

[17] D. D. E. Long and J.-F. Pˆaris. Voting with regenerable
volatile witnesses. InProc. of the 7th Int. Conf. on Data
Engineering, pages 112–19, April 1991.

[18] D. D. E. Long and J.-F. Pˆaris. Voting without version num-
bers. InProc. of the Intl. Conf. on Performance, Computing,
and Communications, pages 139–45, February 1997.

[19] D. Malkhi, M. Reiter, and R. Wright. Probabilistic quorum
systems. InProc. of the 16th ACM Symp. on Principles of
Distributed Computing, August 1997.

[20] D. Powell. Group communication.Communications of the
ACM, 39(4):50–3, April 1996.

[21] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,
E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and
M. T. O’Keefe. A 64-bit, shared disk file system for Linux.
In Proc. of the 16th IEEE Symp. on Mass Storage Systems,
March 1999.

[22] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: a
flexible group communication system.Communications of
the ACM, 39(4):76–83, April 1996.


