
Designing a Robust Namespace for Distributed File Services

Zheng Zhang and Christos Karamanolis

Hewlett-Packard Laboratories
1501 Page Mill Rd, Palo Alto, CA 94304, USA

{zzhang,christos}@hpl.hp.com

Abstract

A number of ongoing research projects follow a
partition-based approach to provide highly scalable
distributed storage services. These systems maintain
namespaces that reference objects distributed across
multiple locations in the system. Typically, atomic
commitment protocols, such as 2-phase commit, are used
for updating the namespace, in order to guarantee its
consistency even in the presence of failures. Atomic
commitment protocols are known to impose a high
overhead to failure-free execution. Furthermore, they use
conservative recovery procedures and may considerably
restrict the concurrency of overlapping operations in the
system.

This paper proposes a set of new protocols
implementing the fundamental operations in a distributed
namespace. The protocols impose a minimal overhead to
failure-free execution. They are robust against both
communication and host failures, and use aggressive
recovery procedures to re-execute incomplete operations.
The proposed protocols are compared with their 2-phase
commit counterparts and are shown to outperform them
in all critical performance factors: communication round-
trips, synchronous I/O, operation concurrency.

1. Introduction
These A number of ongoing research projects follow a

partition-based approach to achieve high scalability for
access to distributed storage services. They address the
inherent scalability problems of traditional cluster file
systems, which are due to contention for the globally
shared resources. Instead, they partition the storage
resources in the system; shared access is controlled on a
per-partition basis. A major requirement of all these
systems is to maintain namespaces that reference objects
that reside in multiple partitions. Typically, the namespace
in these environments is distributed itself.

For example, DiFFS, an experimental distributed file
service currently under development in HP Labs, follows
the partitionable approach [10]. File system objects, such
as files and directories, can be placed in different
partitions, which may be geographically distributed. Each
partition is controlled by one partition server, which
coordinates operations that may affect the state of the

resources it owns (allocate or de-allocate blocks, for
example). Objects are placed and may be migrated and/or
replicated according to locality of access, type of content,
reliability and numerous other parameters. This policy-
driven distribution of objects gives DiFFS the flexibility
required for a wide range of deployment options.

C1 CM clients

PS1

Partition 1

PSN

Partition N

inode(“etc”) inode(“passwd”)
inode# 0123 inode# 1001

dentry
{ name: “passwd”
 inode#: 1001
 part.ID: 1}

…
joe:*:101:10:…
…

partition
servers

Figure 1: Cross-partition references in a DiFFS
namespace.

The namespace in DiFFS is implemented by means of
directories that may also be placed in any partition, not
necessarily the same with their children in the namespace,
as depicted in Figure 1; a file with inode number 1001,
which resides in partition 1, is referenced with the name
“passwd” from a directory in partition N. Other systems
that follow a similar approach include Slice from Duke
University [1] and Archipelago from Princeton [9].

While the intention of this report is to investigate
protocols for building robust namespaces in the context of
DiFFS, the problem is more generic. It can be broadly
stated as: maintaining a consistent namespace over a
collection of distributed objects efficiently.

Changes to the global namespace take the form of one
of two classes of operations: link, which inserts a
reference to a possibly newly created object and unlink,
which removes a reference to an object. Any of the above
operations potentially spans more than one site in a
distributed system. The site containing the directory
(namespace object) and the one containing the referenced

object can be physically apart. Slice and Archipelago use
2-phase commit to implement distributed namespace
operations [1, 9]. Atomic commitment protocols are
known to have a high computational cost [16, 5]. They
impose a high overhead to failure-free execution, due to
synchronous logging in the critical path of the operations.
Additionally, they lock system resources across all the
sites involved in the protocol for the duration of the multi-
phase protocol execution, thus worsening the problem of
contention for resources, e.g., free block lists and block
allocation maps. Lastly, atomic commitment protocols
follow a conservative approach for recovery from failure;
in the presence of failure, incomplete operations are
typically aborted.

This paper proposes a set of lightweight protocols for
implementing the two main classes of operations in
distributed namespaces. The main requirement for the
protocols’ design is to minimize the overhead imposed to
failure-free execution. This is achieved by reducing the
number of synchronous I/O in the critical path of the
operation execution. Additionally, they avoid distributed
resource locking; serialization of operations on each
partition suffices. The protocols are robust against both
communication and host failures. They use aggressive
recovery techniques to re-play incomplete operations, in
most failure scenarios. The protocols are compared with
typical 2-phase commit implementations and are shown to
be superior in all critical performance factors:
communication round-trips, synchronous I/O, operation
concurrency. These benefits come at the price of
additional data structures associated with the distributed
objects: back pointers—references back to the namespace.

The remaining of the paper is organized as follows:
Section 2 provides a concise definition of the problem
space. Section 3 outlines the system model assumptions
for the proposed protocols. Section 4 is the core of the
paper describing the details of protocols for distributed
namespace operations, including recovery and conflict
resolutions issues. An analysis of alternative 2-phase
commit (2PC) implementations is given in section 5; it is
shown that the protocols proposed in this paper
outperform their 2PC counterparts in all critical
performance factors. The paper is concluded with
discussion of related work in section 6 and final remarks
in section 7.

2. Problem Abstraction
A namespace provides a mapping between names and

physical objects in the system (e.g., files). Usually, a user
refers to an object by a textual name. The latter is mapped
to a lower-level reference that identifies the actual object,
including location and object identity. The namespace is
implemented by means of directories, special files that are

persistent repositories of 〈Name, reference〉 pairs. The
namespace may be distributed—directories may be placed
in any location in the system. In this context, the
requirement for consistency of the namespace can be
formalized in terms of four properties, as depicted in
Table 1.

1. One name is mapped to exactly one object1.

2. One object may be referenced by one or more
names.

3. If there exists a name that references an object,
then that object exists.

4. If an object exists, then there is at least one name
in the namespace that references it.

Table 1 . Requirements for namespace consistency.

The two fundamental namespace operations are link and
unlink:

link: a new reference, pointing to a possibly newly created
object, is inserted into the namespace.

unlink: a reference pointing to an already existing object
is removed from the namespace. If all references to
an object are removed, the object itself is garbage
collected.

Other namespace operations can be either reduced to or
composed by these two primitives. For more details refer
to [17]. As an example, Table 2 shows how NFS
namespace operations are mapped to these two primitives.

File Service operation Namespace primitive(s)

create/mkdir obtain a new object + link

link link

remove/rmdir/unlink unlink

rename link (to_dir)+ unlink(from_dir)

Table 2: Using the two fundamental namespace
primitives.

This paper is based on the observation that by imposing
a certain order on the execution of namespace operations,
we can guarantee that all possible inconsistencies in the
namespace are reduced to instances of “orphan” objects.
An orphan is an object that physically exists in the
system, but is not referenced by any name in the
namespace. The required execution order can be
generalized to the following three steps:

1 We consider that replicas of an object correspond to one

logical object.

1. Remove reference from the namespace, if
necessary.

2. Perform changes of the target object, if any.

3. Insert reference in the namespace, if necessary.

The above principle applies to every distributed
namespace operation [17]. In particular, the results of the
ordering principle in the case of the two fundamental
primitives are as follows:

link: add the reference to the namespace at the last stage
of the execution.

unlink: remove the reference from the namespace is the
very first stage of the execution.

In either case, the only possible inconsistency due to
failures is that the target object is not referenced by any
name in the namespace. We claim that handling orphan
objects (violation of property 4 in Table 1) is easier than
handling invalid references (violation of property 3 in
Table 1).

3. System Model and Failure Assumptions
The design and correctness of the protocols discussed in

this paper is based on the following assumptions about the
failure model in the system:

• Hosts fail by crashing; they do not exhibit malicious
(Byzantine) behavior.

• Messages may be not sent or not delivered due to host
crashes. Also, messages may be lost due to network
partitioning. On recovery from any such failure, the
communication session between two hosts is re-
established. Messages delivered during the same
communication session between two hosts are always
delivered in order. For example, the use of TCP as
the communication protocol between hosts guarantees
this property.

• Consistency of the object-store at each partition is
guaranteed, despite failures. This property is ensured
by mechanisms of the physical file system, such as
journaling [14], soft updates [6] or recovery
procedures (fsck) [3].

The required behavior by the client that performs
operations in the namespace is “at-most-once” semantics.
This is consistent with the semantics provided by
traditional client-server distributed file systems, such as
NFS [4], CIFS [12] and AFS [8]. When the client
application receives a reply to a request to the file service,
it is guaranteed that the request has been performed
exactly once. If no response is received, the client cannot
know whether the request was performed or not.

4. Protocols
The execution of the link and unlink operations is

initiated by a client which invokes a request to the site
where the affected directory resides (namespace site). The
requests are parameterized with the data required for the
execution of the corresponding protocols, as shown in
Table 3. The rest of this section introduces the key data
structures used in the protocols and then describes in
detail the protocols and corresponding recovery
procedures.

• link(P,N,O)

• unlink(P,N)

P: the parent directory’s reference: 〈site,
inode#〉 (site is the namespace site where
the request is sent).

N: the name assigned to the object (string).

O: the object’s reference: 〈site, inode#〉 .

Table 3: The link and unlink operation requests.

4.1. Data structures

Directory

It is a special object in the file service, which is used as
a repository of 〈name, reference〉 pairs, called directory
entries. Directories are accessed by lookup procedures to
locate objects by name. An object reference consists of
two parts: 1) the site where the object resides, and 2) a
unique identifier of the object in that location, such as the
inode number. For the protocols described here, the
directory entry contains a monotonically increasing
number, generation #, that uniquely identifies a specific
name to object binding.

object reference object
name site inode#

generation#

Table 4. Directory entry structure.

Back pointer

In traditional file systems, objects are assigned a
property known as “link-count”. This is an integer
representing the number of references (hard-links) to the
object in the namespace. For the protocols presented here,
the notion of link-count is extended by means of “back
pointers”, i.e. references back to the parent directories of
the object, as shown in Figure 2(a). The back pointer
consists of two parts (Figure 2(b)): 1) the reference (site
and inode#) of the parent directory; 2) the name and
generation# of the corresponding link. Back pointers are
required to guarantee namespace consistency, in the
presence of conflicting operation execution and/or
operation recovery, as discussed in later in this section.
Back pointers can be either part of the inode structure or
be implemented as separate files. A more detailed
discussion on back pointers can be found in [17].

“/a” “/b”

“/a/x” “/b/y”

x

y

hard link

back pointer

(a) Example of back pointers.

Parent dir
reference

site inode#

link
name

link
generation#

(b) Back pointer structure.

Figure 2. Hard links and back pointers.

Log record

The proposed protocols make use of intention logs to
record execution state in persistent storage. The structure
of a log record is shown in Table 2. The fields refer to the
name to object binding that is to be created or removed, in
the case of link and unlink respectively. The creation and
reclamation of a log record mark the beginning and the
end of the execution of an operation. A open log record
implies that the operation has not been completed. In the
case of recovery from failure, the contents of the log
record are used for the recovery procedure.

namespace

object
(directory) ref

object
reference

Operation
type

(link/
unlink) site inode#

object
name

site inode#

genera-
tion #

Table 5 . Log record structure.

4.2. Failure-free protocols
There are two sites involved in the execution of

protocols for link and unlink: the namespace site, where
the referencing directory resides; the object site, where the
referenced object resides. In the general case, these two
sites are remote from each other and the protocol
execution involves message transmission between the two.
Table 6 provides a legend for the message diagrams used
to describe protocol execution, in the following
paragraphs. In order to keep the discussion simple, all
disk operations other than log accesses are assumed to be
synchronous.2

2 In fact, the requirement for such operations is less strict: to be

performed on stable storage, before the next log operation or
message transmission in the flow of control.

[act] An atomic operation on stable storage.

→ A communication message across sites.

Xn
A potential failure position. A failure at
this point may affect anything after the
immediately preceding atomic action.

[Log+/-]S/A
Creation (or update) / reclamation of a log
record; synchronous (force write) or
asynchronous (lazy), respectively.

D+/-
Creation / removal of a 〈name, reference〉
pair (directory entry).

Bptr+/- Creation / removal of a back pointer.

Table 6. Legend for the protocol message diagrams.

Link

The protocol for link is depicted in Figure 3. The
execution follows the ordering principle laid out in section
2—changes on the object are performed first (adding a
back pointer) followed by changes in the namespace
(adding the new directory entry). The execution is
initiated with the synchronous creation of a log record in
the namespace site. The protocol requires one message
round trip between the namespace and object sites. It
involves two synchronous accesses to storage, one on the
object site to add the back pointer and one on the
namespace site to create the directory entry. Additionally,
it requires two accesses to the log for the creation and
reclamation of a record, with the former being
synchronous. That is, a reply to the client can be sent as
soon as the directory entry (D in pseudo-code) is added.
The “add bptr” message carries a payload, which is used
to create the back pointer on the object site.

Namespace
site

Object
site

 [Log+]S

[Log-]A

[D+]

[Bptr+]
X1

X2

X3

add bptr

ACK

Link

Link OK

Figure 3. Failure-free execution of operation link.

Namespace site:
Link(P,N,O) {
 if dir-entry D does not exist then
 r := {“link”,P,O,N,new_gen#());
 Log+

S
(r);

 Link_body(r);
 else
 Reply to client (error);
}

Link_body(r) {
 info := r;
 send “add bptr”+ info to Obj site;
 Wait until reply received or Timeout;
 if reply=ACK then
 if D does not exist then
 D+;
 reply to client (success);
 Log-

A
(r);

 else /* LL(1) */
 unlink execute; //as in unlink op
 Log-

A
(r);

 reply to client (error);
 else if reply=NACK then
 reply to client (error);
 Log-

A
(r);

}

Object site:
Add_back-pointer(info) {
 if back-pointer exists
 (compare info vs. back-pointer) then
 if same generation# then /* LL(2) */
 send ACK back to namespace;
 else /* LL(3) */
 send NACK back to namespace site;
 else
 Bptr+;
 Send ACK back to namespace;
}

Figure 3 (cont’d). Failure-free execution of operation
link.

Unlink

Figure 4 describes the protocol for unlink. Again, the
execution follows the ordering principle of section 2—the
reference is first removed from the namespace (directory),
before this fact is reflected on the referenced object (back-
pointer removal). The log record that is synchronously
created on the namespace site contains all the necessary
information for recovery execution in the case of failure.
The protocol for unlink requires one message roundtrip.
However, unlike link, a reply to the client can be sent as
soon as the reference has been removed from the
namespace and before an ACK is received from the object
site. The operation requires two accesses to the log, only
the first one (record creation) being synchronous.

Namespace

site
Object

site

[Log+]S

[Log-]A

[D-]

[Bptr-]
X2

X3

X1

rm bptr

ACK

Unlink

Unlink OK

Namespace site:
Unlink(P,N) {
 if dir-entry D does exist then
 r := {“unlink”,P,D.O,N,D.gen#);
 Log+

S
(r);

 D-;
 Reply to client (success);
 Unlink_body(r);
 else
 Reply to client (error);
}

Unlink_body(r) {
 info := r;
 Send “remove-bptr”+info to Obj site;
 Wait until reply received or Timeout;
 if reply received(ACK or NACK) then
 Log-

A
(r);

}

Object site:
Remove_back-pointer(info) {
 if back-pointer does not exist then
 /* UL(1) */
 send ACK to namespace;
else if info not equal to bptr then
 send NACK to namespace;
 else
 Bptr-;
 Send ACK to namespace;
}

Figure 4. Failure-free execution of operation unlink.

4.3. Recovery protocols
Recovery techniques for traditional transactional

protocols fall into two general classes, conservative and
aggressive [2]. In our case, conservative recovery implies
that the partial results of the original operation execution
are undone in both the namespace and object sites. In the
worst-case scenario, conservative recovery unrolls the
results of an operation that was successful apart from its
last part, the reclamation of the log record. With
aggressive recovery, the aim is to complete a partially
performed operation and bring the namespace and object
sites in mutually consistent states, as far as that operation
is concerned. This paper focuses on aggressive recovery
techniques aiming at stronger quantitative semantics for
operation completion.

On recovery from failure, either host or communication,
the namespace site traverses the log for records indicating
incomplete operations. The basic idea behind the recovery
processes proposed here is to re-execute those operations
without creating a new log record and, in the case of link,
without generating a new generation#. In this way,
operation re-execution and the corresponding messages
are indistinguishable from their failure-free counter-parts.
The main advantage of this approach is that, in multi-
operation conflict analysis, one needs to consider potential
conflicts among only failure-free operations, without
explicitly considering recovery processes.

on_timeout_for_record (r) {
 replay_link/unlink (r);
}

total_recovery {
 for all records r in log do
 replay_link/unlink (r);
}

Figure 5. Starting recovery process.

Recovery is initiated by the namespace site, in either of
two ways:

• When the communication with a specific host
(where object-site operations are pending) timeouts;
implemented by routine “on_timeout_for_record(r)”
in Figure 5.

• When the namespace site recovers from a crash;
implemented by routine “total_recovery” in Figure
5.

Recovery protocol for link

There are three possible points where the execution of
the link protocol may be interrupted due to failures, as
shown in Figure :

• Point X1: Just the log record is created; the back
pointer has not been added and no other following
step has been executed.

• Point X2: The back pointer is added, but the
namespace has not been updated.

• Point X3: Both the object and namespace are
updated, but the log record has not been reclaimed.

Figure 6 describes the recovery protocol for the link
operation. The “if” clause distinguishes failures that occur
at point X3 from failures at X1 or X2. In the latter case,
the main body of the link operation. (“Link_body (r)”
defined in Figure) is re-executed, without creating a new
log record. If the failure occurred at point X3 (“else”
clause), the recovery protocol just reclaims the log record
of the original execution; the rest of the operation has
been completed.

If objects were annotated with traditional link-count
attributes, the above procedure would risk unnecessarily
incrementing the link-count of the target object. The use
of back pointers, which uniquely reference parent
directories and the operation that created the link,
guarantees that Link operations can be safely re-executed
in the presence of failures. Even if failures occur during
the recovery procedure, the procedure can be re-initiated
without risking causing any inconsistencies at either the
object or the namespace site.

replay_link (r) {
 if dir-entry D does not exist then
 Link_body (r);
 // same as in the failure-free case
 else
 Log-

A
;

}

Figure 6. Recovery process for operation link.

Recovery protocol for unlink

There are three possible points where the execution of
the ulink protocol may be interrupted, as shown in Figure
4:

• Point X1: The log is created but no other step has
been performed.

• Point X2: The namespace is updated, but the back
pointer has not been removed at the object site.

• Point X3: Both the namespace and the object (back
pointer) are updated, but the log has not been
reclaimed.

replay_unlink (r) {
 if dir-entry D exists && gener# matches then
 D-;
 reply to client (success);
 Unlink_body (r);
 // same as in the failure-free case
 Log-

A
;

}

Figure 7. Recovery process for operation unlink.

Figure 7 describes the recovery protocol for unlink. The
“if” clause distinguishes failures that occur at point X1
from failures at X2 or X3. In the latter case, the main body
of the unlink operation (“Unlink_body(r)” defined in
Figure 4) is re-executed, without creating a new log
record. If the failure occurred at point X1, then only the
log record is reclaimed. Again, the use of back pointers
guarantees that unlink operations and the recovery
protocol can be safely re-executed in the presence of
failures, without risking inconsistencies in the system.

4.4. Multi-operation conflicts
A major requirement for the design of the protocols

proposed here is to facilitate maximum concurrency of

operation execution. The idea is not to lock resources
across the involved sites for the duration of the protocol
execution, as it is the case with transactional protocols. As
a result, we have to explicitly address issues of conflicting
operations in the system.

Link/link conflicts

There are two cases of potential conflicts of link
operations: 1) they refer to the same name entry and to the
same object; 2) they refer to the same name entry but to
different objects.

In case (1), the first operation to successfully set the
back pointer is the one that eventually succeeds, even if
recovery takes place and either of the link operations is re-
executed. When a link operation is executed at the object
site and a back pointer for the referenced name entry
already exists, one of two cases applies:

i) The generation# in the back pointer matches the
generation# in the payload of “add bptr” (LL(2) in
Figure). This implies that this operation has already
been completed successfully at the object site. An
ACK is returned to the namespace.

ii) The two generation#’s do not match. A NACK is
returned indicating that the back pointer has been
already added by another link operation (LL(3) in
Figure).

In case (2), success depends on which operation enters
the directory entry first. Note, that the referenced objects
may reside in different hosts and therefore there are no
guarantees for the delivery order of the ACKs for the
conflicting link operations. Upon return of an ACK for a
link operation, the namespace is checked again for the
corresponding directory entry. If the entry already exists
(inserted by another link operation and referencing
another object), the link operation fails and its results have
to be undone in the object site. The functionality of the
unlink operation is re-used for this purpose (LL(1) in
Figure).

Unlink/unlink conflicts

The only possible case of conflicting unlink operations
occurs when they refer to the same namespace entry.
Irrespectively of the interleaving of executions, only one
operation succeeds in removing the directory entry. In
other words, this class of conflicts is easily resolved by
operation serialization at the directory entry.

Link/unlink conflicts

Link/unlink conflicts are not an issue in the absence of
failures, because the operations are serialized at the
directory entry. When failures result in incomplete
operation execution, there are two cases of conflicts to be
considered.

Namespace Object

[Log+]S

[Log-]A

[D+]

[Bptr+]

X3

Link

Unlink
[Log+]S

[D-]

[Bptr-]
Unlink OK

start recovery

[D+]
[Bptr+]

Link OK
[Log-]A

Figure 8. A link/unlink conflict scenario.

The first case occurs when a link operation fails at point
X3; before recovery is initiated, an unlink operation is
started for the same entry. This is demonstrated in Figure
8. The recovery of link is initiated after the successful
completion of unlink. As a result of the link re-execution,
a back pointer is added at the object and an entry inserted
in the namespace. Eventually, the namespace is consistent,
but overall this scenario may present unacceptable
semantics for the clients.

Such scenarios can occur only in the presence of a crash
of the namespace site. To address them, the namespace
site does not serve any new operations upon recovery
from a crash, until all pending operations in the log are re-
started (not necessarily completed). In the example of
Figure 8, the unlink operation is not initiated until the
partially complete link has already been re-started.

The second case occurs when an unlink operation fails
at points X2 or X3; before recovery is initiated, a link
operation is started for the same entry and same object, as
illustrated in Figure 9. Link successfully adds a new back
pointer at the object site and inserts an entry at the
namespace site. The recovery procedure for unlink is later
initiated; it compares the contents of unlink’s log record
against the existing directory entry with the same name;
the fields of the two do not match and thus the unlink re-
execution is aborted and the log is reclaimed.

Namespace Object

[Log2+]S

[D+]

[Bptr+]

X3Link

Unlink
[Log1+]S

[D-]

[Bptr-]

Link OK

Unlink OK

start unlink
recovery

[Log2-]A

ACK

Log1≠D
Fail!
[Log1-]A

Figure 9. An unlink/link conflict scenario.

5. Comparison with 2-phase Commit
The approach followed by other research projects [1, 9]

is to use 2-phase commit (2PC) for the implementation of
distributed namespace operations. To facilitate a
comparison with the proposed protocols, a 2PC-based
implementation of the link and unlink operations is
discussed in this section.

Figure 10 illustrates scenarios that result in committing
link and unlink executions, using the typical “presumed
nothing” (PrN) variation of 2PC [7]. The coordinator of
2PC is chosen to be the namespace site. Back pointers are
not necessary. Link-counts at the object site suffice, since
the target object properties are kept “locked” between the
“prepare” and “commit” phases. Back pointers are not
required for scenarios of conflicting link and/or unlink
operations either. It is sufficient to make sure that upon
recovery of the namespace site, pending transactions are
restarted before handling any new client requests.
Updating the link-count of an object still requires a
synchronous disk access. The 2PC implementations have
the following disadvantages in comparison with the
protocols of Figures 2 and 3:

• Overhead on failure-free operation execution. They
require two message round-trips and three
synchronous writes to the log, as opposed to just one
round trip and two synchronous writes3 in the
proposed protocols.

3 Both approaches require the same synchronous access to

persistent storage to update the namespace (directory) and the
object properties (back pointer or link-count, respectively).

Namespace

site
Object

site

[D+]
[Lcnt++]

Link
prepare

Object?
[D+]?

OK OK

commit

async ACK

Reply-
Link

[Log+]S (L2)

[Log+]S (L3)

[Log-]A (L5)

[Log-]S

Namespace
site

Object
site

[D-] [Lcnt--]

Unlink
prepare

Object?
[D-]?

OK OK

commit

async ACK

Reply-
Unlink

[Log+]S (L2)

[Log+]S (L3)

[Log-]A (L5)

[Log-]S (L4)

Figure 10. An implementation of link and unlink using
2-phase commit.

• Lower degree of concurrency. The object site data
structure (link-count) is locked for the duration of the
operation execution; no other operation that involves
the same object can be performed concurrently, even
from another namespace site. The phase-2 message
(commit or abort) is required before that resource is
unlocked. In the presence of failures, such as network
partitioning, there is no upper time bound for that
message to be delivered. This is an occurrence of the
blocking problem of 2PC.

• Weaker execution semantics to the client. When the
client receives back a reply to a link or unlink request,
it is guaranteed that the namespace has been updated,
but it is not guaranteed that the object properties
(link-count) have been updated. The latter would
require a synchronous ACK to the commit decision,
before a reply is sent back to the client. The protocols
of this paper provide the stronger guarantee without
requiring a second round-trip latency in the critical
path of the operation.

Required

object
attributes

Total
log

accesses

Sync log
accesses in

critical
path

Total
message

round trips

Round
trips in
critical

path

Recovery
approach

Degree of
concurrency

2PC
Simple:

Link-
counter

Link: 4

Unlink: 4

Link: 3

Unlink: 3

Link: 2

Unlink: 2

Link: 1

Unlink: 1
Conservative Low

DiFFS
Complex:

Back-
pointer

Link: 2

Unlink: 2

Link: 2

Unlink: 1

Link: 1

Unlink: 1

Link: 1

Unlink: 0
Aggressive

High (with
conflict

resolution)

Table 7: Comparison with 2PC protocols.

Table 7 summarizes the comparison between the 2PC
PrN and the protocols introduced in this paper. Although
there exist 2PC optimizations, such as the “presumed
commit” (PrC) variation [13, 11], the important
performance features, including the number of
synchronous log accesses and message round-trips on the
critical path would still be the same.

6. Related Work
DiFFS is an architecture designed to provide a widely

distributed file service [10]. Much of the architecture’s
scalability and flexibility is due to its partition-based
approach to storage distribution. DiFFS introduces a novel
design of distributed namespaces, where the physical
location of files is independent of their position in the
namespace hierarchy. This facilitates policy-driven
allocation of files to resources, and transparent support for
various file types arbitrarily dispersed throughout the
namespace. The granularity of the distribution is an
individual object. This is in contrast with approaches
followed by AFS [8] and NFSv4 [15], where the
distribution granularity is an entire volume. Preliminary
performance results for distributed namespace operations
based on the protocols of this paper are reported in [10].
They demonstrate that the operations scale well with the
number of servers, since they introduce a constant
performance overhead factor, irrespectively of the size of
the system: two servers involved for all operations (except
rename, which involves three servers).

Fine-grain distribution is not new. Slice [1] and
Archipelago [9], in particular, use hash-based approaches
to place groups of objects to certain partitions. This
approach restricts the flexibility of these systems. For
example, breaking hotspots that occur inside a single
hashed group is difficult; the same is true when system
reconfiguration is required, e.g., adding/removing
partitions. Despite their differences, all these systems
(DiFFS, Slice and Archipelago) have one common

requirement: maintain a consistent distributed namespace
that references objects arbitrarily distributed in the system.
Slice and Archipelago employ 2-phase commit protocols
for cross-partition namespace operations. While 2PC is a
mature technique, it is known to 1) impose a high
overhead to failure-free execution, and 2) reduce
execution concurrency due to resource locking. Although
there exist optimized versions of 2PC, they often come
with a price that may render them impractical for our
purposes. An optimized version of “presumed commit”
(PrC) [11], for example, retains a permanent record for all
aborted transactions, which may grow arbitrarily with the
number of aborts. Thus, the general challenge is how to
maintain consistent namespace over a collection of
distributed objects, in an efficient way.

7. Conclusions
This paper introduces namespace protocols with the

same robustness characteristics as that of 2PC. We show
that all namespace operations can be decomposed into just
two primitive operations: link and unlink. We discuss
protocols and recovery procedures for these two
operations, taking under consideration all possible failure
scenarios as well as conflicts that may occur. We claim
that these protocols impose low overhead to failure-free
execution and, in general, are more lightweight than
traditional atomic commitment. To justify this claim, we
conduct a detailed comparison with protocols that are
based on 2PC. We demonstrate that the proposed
protocols outperform 2PC in all critical performance
factors; that is, communication round-trips and
synchronous I/O on the critical path of operations. In
addition, they facilitate higher concurrency for operation
execution and they provide better probabilistic
characteristics for successful completion of cross-partition
operations in the presence of failures. The price for those
desirable characteristics is that objects must be annotated
with properties that do not exist in traditional file systems.

In particular, back pointers to all “parent” directories must
be associated with every object in the system.

While atomic commitment protocols are generic
techniques for implementing distributed transactions, they
may not provide optimal solutions in certain cases. For
example, for the problem of maintaining a consistent
distributed namespace, the decision on whether an
operation execution can proceed is not “distributed” but it
is rather determined by the namespace site alone. It is this
“one-sided” decision making that allows the design of
lightweight protocols that have the same robustness as
2PC. In fact, many distributed computing problems may
be of similar nature. In such cases, we expect that more
efficient solutions can be developed in place of generic
atomic commitment protocols.

8. Acknowledgements
We are indebted to Svend Frolund and Dejan Milojicic

for their valuable feedback on earlier drafts of this paper.
Mallik Mahalingam and Dan Muntz contributed
considerably in the formulation of the presented ideas. We
would also like to thank John Wilkes for providing the
motivation to explore this area.

9. References
[1] Anderson, D., Chase, J., and Vadhat, A. "Interposed

Request Routing for Scalable Network Storage", in
Proc. of the Usenix OSDI. San Diego, CA, USA.

[2] Bernstein, P.A., Goodman, N., and Hadzilacos, V.,
Concurrency Control and Recovery in Distributed
Databases. 1987.

[3] Bovet, D.P. and Cesati, M., Understanding the
Linux Kernel. 1st ed, 2001: O'Reilly.

[4] Callaghan, B., NFS Illustrated. Addison-Wesley
Professional Computing Series, 2000: Adison-
Wesley.

[5] Cheung, D. and Kameda, T. "Site-Optimal
Termination Protocols for a distributed Database
under Networking Partitioning", in Proc. of the 4th
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing. Minaki, Ontario, Canada,
August 1985.

[6] Gagner, G. and Patt, Y. "Metadata Update
Performance in file Systems", in Proc. of the
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pp. 49-60, November
1994.

[7] Gray, J. and Reuter, A., Transaction Processing:
Concepts and Techniques, 1993: Morgan Kaufman.

[8] Howard, J., et al., Scale and Performance in a
Distributed File System. ACM Transactions on
Computer Systems, Vol. 6(1): pp. 51-81, 1988.

[9] Ji, M., Felten, E.W., Wang, R., and Singh, J.P.
"Archipelago: An Island-Based File System for
Highly Available and Scalable Internet Services", in
Proc. of the 4th USENIX Windows Systems
Symposium, August 2000.

[10] Karamanolis, C., et al., “An Architecture for
Scalable and Manageable File Services”, Hewlett-
Packard Labs, Palo Alto, Technical Report, HPL-
2001-173, July 2001.

[11] Lampson, B. and Lomet, D. "A New Presumed
Commit Optimization for Two Phase Commit", in
Proc. of the 19th VLDB Conference. Dublin,
Ireland, 1993.

[12] Leach, P. and Perry, D., CIFS: A Common Internet
File System. Microsoft Interactive Developer,
November 1996.

[13] Mohan, C., Lindsay, B., and Obermarck, R.,
Transaction Management in the R* Distributed
Data Base Management System. ACM Transactions
on Database Systems, Vol. 11(4): pp. 378-396,
1986.

[14] Preslan, K., et al. "Implementing Journaling in a
Linux Shared Disk File System", in Proc. of the 8th
NASA Goddard Conference on Mass Storage
Systems and Technologies, March 2000.

[15] Shepler, S., et al., “NFS version 4 Protocol”, RFC
3010, 2000.

[16] Skeen, D. "Nonblocking Commit Protocols", in
Proc. of the ACM SIGMOD, pp. 133--142, 1981.

[17] Zhang, Z., Karamanolis, C., Mahalingam, M., and
Muntz, D., “Cross-Partition Protocols in a
Distributed File Service”, Hewlet-Packard Labs,
Palo Alto, Technical Report, HPL-2001-129, May
23, 2001.

