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Abstract 

A number of ongoing research projects follow a 
partition-based approach to provide highly scalable 
distributed storage services. These systems maintain 
namespaces that reference objects distributed across 
multiple locations in the system. Typically, atomic 
commitment protocols, such as 2-phase commit, are used 
for updating the namespace, in order to guarantee its 
consistency even in the presence of failures. Atomic 
commitment protocols are known to impose a high 
overhead to failure-free execution. Furthermore, they use 
conservative recovery procedures and may considerably 
restrict the concurrency of overlapping operations in the 
system.  

This paper proposes a set of new protocols 
implementing the fundamental operations in a distributed 
namespace. The protocols impose a minimal overhead to 
failure-free execution. They are robust against both 
communication and host failures, and use aggressive 
recovery procedures to re-execute incomplete operations. 
The proposed protocols are compared with their 2-phase 
commit counterparts and are shown to outperform them 
in all critical performance factors: communication round-
trips, synchronous I/O, operation concurrency. 

1. Introduction 
These A number of ongoing research projects follow a 

partition-based approach to achieve high scalability for 
access to distributed storage services. They address the 
inherent scalability problems of traditional cluster file 
systems, which are due to contention for the globally 
shared resources. Instead, they partition the storage 
resources in the system; shared access is controlled on a 
per-partition basis. A major requirement of all these 
systems is to maintain namespaces that reference objects 
that reside in multiple partitions. Typically, the namespace 
in these environments is distributed itself. 

For example, DiFFS, an experimental distributed file 
service currently under development in HP Labs, follows 
the partitionable approach [10]. File system objects, such 
as files and directories, can be placed in different 
partitions, which may be geographically distributed. Each 
partition is controlled by one partition server, which 
coordinates operations that may affect the state of the 

resources it owns (allocate or de-allocate blocks, for 
example). Objects are placed and may be migrated and/or 
replicated according to locality of access, type of content, 
reliability and numerous other parameters. This policy-
driven distribution of objects gives DiFFS the flexibility 
required for a wide range of deployment options. 
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Figure 1: Cross-partition references in a DiFFS 
namespace. 

The namespace in DiFFS is implemented by means of 
directories that may also be placed in any partition, not 
necessarily the same with their children in the namespace, 
as depicted in Figure 1; a file with inode number 1001, 
which resides in partition 1, is referenced with the name 
“passwd” from a directory in partition N. Other systems 
that follow a similar approach include Slice from Duke 
University [1] and Archipelago from Princeton [9]. 

While the intention of this report is to investigate 
protocols for building robust namespaces in the context of 
DiFFS, the problem is more generic. It can be broadly 
stated as: maintaining a consistent namespace over a 
collection of distributed objects efficiently. 

Changes to the global namespace take the form of one 
of two classes of operations: link, which inserts a 
reference to a possibly newly created object and unlink, 
which removes a reference to an object. Any of the above 
operations potentially spans more than one site in a 
distributed system. The site containing the directory 
(namespace object) and the one containing the referenced 



object can be physically apart. Slice and Archipelago use 
2-phase commit to implement distributed namespace 
operations [1, 9]. Atomic commitment protocols are 
known to have a high computational cost [16, 5]. They 
impose a high overhead to failure-free execution, due to 
synchronous logging in the critical path of the operations. 
Additionally, they lock system resources across all the 
sites involved in the protocol for the duration of the multi-
phase protocol execution, thus worsening the problem of 
contention for resources, e.g., free block lists and block 
allocation maps. Lastly, atomic commitment protocols 
follow a conservative approach for recovery from failure; 
in the presence of failure, incomplete operations are 
typically aborted. 

This paper proposes a set of lightweight protocols for 
implementing the two main classes of operations in 
distributed namespaces. The main requirement for the 
protocols’ design is to minimize the overhead imposed to 
failure-free execution. This is achieved by reducing the 
number of synchronous I/O in the critical path of the 
operation execution. Additionally, they avoid distributed 
resource locking; serialization of operations on each 
partition suffices. The protocols are robust against both 
communication and host failures. They use aggressive 
recovery techniques to re-play incomplete operations, in 
most failure scenarios. The protocols are compared with 
typical 2-phase commit implementations and are shown to 
be superior in all critical performance factors: 
communication round-trips, synchronous I/O, operation 
concurrency. These benefits come at the price of 
additional data structures associated with the distributed 
objects: back pointers—references back to the namespace. 

The remaining of the paper is organized as follows: 
Section 2 provides a concise definition of the problem 
space. Section 3 outlines the system model assumptions 
for the proposed protocols. Section 4 is the core of the 
paper describing the details of protocols for distributed 
namespace operations, including recovery and conflict 
resolutions issues. An analysis of alternative 2-phase 
commit (2PC) implementations is given in section 5; it is 
shown that the protocols proposed in this paper 
outperform their 2PC counterparts in all critical 
performance factors. The paper is concluded with 
discussion of related work in section 6 and final remarks 
in section 7. 

2.  Problem Abstraction 
A namespace provides a mapping between names and 

physical objects in the system (e.g., files). Usually, a user 
refers to an object by a textual name. The latter is mapped 
to a lower-level reference that identifies the actual object, 
including location and object identity. The namespace is 
implemented by means of directories, special files that are 

persistent repositories of 〈Name, reference〉  pairs. The 
namespace may be distributed—directories may be placed 
in any location in the system. In this context, the 
requirement for consistency of the namespace can be 
formalized in terms of four properties, as depicted in 
Table 1. 

1. One name is mapped to exactly one object1. 

2. One object may be referenced by one or more 
names. 

3. If there exists a name that references an object, 
then that object exists. 

4. If an object exists, then there is at least one name 
in the namespace that references it. 

Table 1 . Requirements for namespace consistency. 

The two fundamental namespace operations are link and 
unlink:  

link: a new reference, pointing to a possibly newly created 
object, is inserted into the namespace.  

unlink: a reference pointing to an already existing object 
is removed from the namespace. If all references to 
an object are removed, the object itself is garbage 
collected. 

Other namespace operations can be either reduced to or 
composed by these two primitives. For more details refer 
to [17]. As an example, Table 2 shows how NFS 
namespace operations are mapped to these two primitives.  

File Service operation Namespace primitive(s) 

create/mkdir obtain a new object + link 

link link 

remove/rmdir/unlink unlink 

rename link (to_dir)+ unlink(from_dir) 

Table 2: Using the two fundamental namespace 
primitives. 

This paper is based on the observation that by imposing 
a certain order on the execution of namespace operations, 
we can guarantee that all possible inconsistencies in the 
namespace are reduced to instances of “orphan” objects. 
An orphan is an object that physically exists in the 
system, but is not referenced by any name in the 
namespace. The required execution order can be 
generalized to the following three steps: 

                                                 
1 We consider that replicas of an object correspond to one 

logical object. 



1. Remove reference from the namespace, if 
necessary. 

2. Perform changes of the target object, if any. 

3. Insert reference in the namespace, if necessary. 

The above principle applies to every distributed 
namespace operation [17]. In particular, the results of the 
ordering principle in the case of the two fundamental 
primitives are as follows: 

link: add the reference to the namespace at the last stage 
of the execution.  

unlink: remove the reference from the namespace is the 
very first stage of the execution.  

In either case, the only possible inconsistency due to 
failures is that the target object is not referenced by any 
name in the namespace. We claim that handling orphan 
objects (violation of property 4 in Table 1) is easier than 
handling invalid references (violation of property 3 in 
Table 1). 

3. System Model and Failure Assumptions 
The design and correctness of the protocols discussed in 

this paper is based on the following assumptions about the 
failure model in the system: 

• Hosts fail by crashing; they do not exhibit malicious 
(Byzantine) behavior. 

• Messages may be not sent or not delivered due to host 
crashes. Also, messages may be lost due to network 
partitioning. On recovery from any such failure, the 
communication session between two hosts is re-
established. Messages delivered during the same 
communication session between two hosts are always 
delivered in order. For example, the use of TCP as 
the communication protocol between hosts guarantees 
this property. 

• Consistency of the object-store at each partition is 
guaranteed, despite failures. This property is ensured 
by mechanisms of the physical file system, such as 
journaling [14], soft updates [6] or recovery 
procedures (fsck) [3]. 

The required behavior by the client that performs 
operations in the namespace is “at-most-once” semantics. 
This is consistent with the semantics provided by 
traditional client-server distributed file systems, such as 
NFS [4], CIFS [12] and AFS [8]. When the client 
application receives a reply to a request to the file service, 
it is guaranteed that the request has been performed 
exactly once. If no response is received, the client cannot 
know whether the request was performed or not.  

4. Protocols 
The execution of the link and unlink operations is 

initiated by a client which invokes a request to the site 
where the affected directory resides (namespace site). The 
requests are parameterized with the data required for the 
execution of the corresponding protocols, as shown in 
Table 3. The rest of this section introduces the key data 
structures used in the protocols and then describes in 
detail the protocols and corresponding recovery 
procedures. 

• link(P,N,O) 

• unlink(P,N) 

P: the parent directory’s reference: 〈site, 
inode#〉  (site is the namespace site where 
the request is sent).  

N: the name assigned to the object (string).  

O: the object’s reference: 〈site, inode#〉 . 

Table 3: The link and unlink operation requests. 

4.1. Data structures 

Directory 

It is a special object in the file service, which is used as 
a repository of 〈name, reference〉  pairs, called directory 
entries. Directories are accessed by lookup procedures to 
locate objects by name. An object reference consists of 
two parts: 1) the site where the object resides, and 2) a 
unique identifier of the object in that location, such as the 
inode number. For the protocols described here, the 
directory entry contains a monotonically increasing 
number, generation #, that uniquely identifies a specific 
name to object binding. 

object reference object 
name site inode# 

generation# 

Table 4. Directory entry structure. 

Back pointer  

In traditional file systems, objects are assigned a 
property known as “link-count”. This is an integer 
representing the number of references (hard-links) to the 
object in the namespace. For the protocols presented here, 
the notion of link-count is extended by means of “back 
pointers”, i.e. references back to the parent directories of 
the object, as shown in Figure 2(a). The back pointer 
consists of two parts (Figure 2(b)): 1) the reference (site 
and inode#) of the parent directory; 2) the name and 
generation# of the corresponding link. Back pointers are 
required to guarantee namespace consistency, in the 
presence of conflicting operation execution and/or 
operation recovery, as discussed in later in this section. 
Back pointers can be either part of the inode structure or 
be implemented as separate files. A more detailed 
discussion on back pointers can be found in [17]. 
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Figure 2. Hard links and back pointers. 

Log record 

The proposed protocols make use of intention logs to 
record execution state in persistent storage. The structure 
of a log record is shown in Table 2. The fields refer to the 
name to object binding that is to be created or removed, in 
the case of link and unlink respectively. The creation and 
reclamation of a log record mark the beginning and the 
end of the execution of an operation. A open log record 
implies that the operation has not been completed. In the 
case of recovery from failure, the contents of the log 
record are used for the recovery procedure. 

 
namespace 

object 
(directory) ref 

object 
reference 

Operation 
type 

(link/ 
unlink) site inode# 

object 
name 

site inode# 

genera-
tion # 

Table 5 . Log record structure. 

4.2. Failure-free protocols 
There are two sites involved in the execution of 

protocols for link and unlink: the namespace site, where 
the referencing directory resides; the object site, where the 
referenced object resides. In the general case, these two 
sites are remote from each other and the protocol 
execution involves message transmission between the two. 
Table 6 provides a legend for the message diagrams used 
to describe protocol execution, in the following 
paragraphs. In order to keep the discussion simple, all 
disk operations other than log accesses are assumed to be 
synchronous.2 

                                                 
2 In fact, the requirement for such operations is less strict: to be 

performed on stable storage, before the next log operation or 
message transmission in the flow of control. 

[act] An atomic operation on stable storage. 

→ A communication message across sites. 

Xn 
A potential failure position. A failure at 
this point may affect anything after the 
immediately preceding atomic action. 

[Log+/-]S/A 
Creation (or update) / reclamation of a log 
record; synchronous (force write) or 
asynchronous (lazy), respectively. 

D+/- 
Creation / removal of a 〈name, reference〉  
pair (directory entry). 

Bptr+/- Creation / removal of a back pointer. 

Table 6. Legend for the protocol message diagrams. 

Link 

The protocol for link is depicted in Figure 3. The 
execution follows the ordering principle laid out in section 
2—changes on the object are performed first (adding a 
back pointer) followed by changes in the namespace 
(adding the new directory entry). The execution is 
initiated with the synchronous creation of a log record in 
the namespace site. The protocol requires one message 
round trip between the namespace and object sites. It 
involves two synchronous accesses to storage, one on the 
object site to add the back pointer and one on the 
namespace site to create the directory entry. Additionally, 
it requires two accesses to the log for the creation and 
reclamation of a record, with the former being 
synchronous. That is, a reply to the client can be sent as 
soon as the directory entry (D in pseudo-code) is added. 
The “add bptr” message carries a payload, which is used 
to create the back pointer on the object site. 
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Figure 3. Failure-free execution of operation link. 

 



Namespace site: 
Link(P,N,O) { 
 if dir-entry D does not exist then 
  r := {“link”,P,O,N,new_gen#());  
  Log+

S
(r); 

  Link_body(r); 
 else 
  Reply to client (error); 
} 

Link_body(r) { 
 info := r; 
 send “add bptr”+ info to Obj site; 
 Wait until reply received or Timeout; 
 if reply=ACK then 
  if D does not exist then 
   D+; 
   reply to client (success); 
   Log-

A
(r); 

  else /* LL(1) */ 
   unlink execute; //as in unlink op 
   Log-

A
(r); 

   reply to client (error); 
 else if reply=NACK then 
  reply to client (error); 
  Log-

A
(r); 

} 
 

Object site: 
Add_back-pointer(info) { 
 if back-pointer exists 
    (compare info vs. back-pointer) then 
  if same generation# then /* LL(2) */ 
   send ACK back to namespace; 
  else /* LL(3) */ 
   send NACK back to namespace site; 
 else  
  Bptr+; 
  Send ACK back to namespace; 
} 

Figure 3 (cont’d). Failure-free execution of operation 
link. 

Unlink 

Figure 4 describes the protocol for unlink. Again, the 
execution follows the ordering principle of section 2—the 
reference is first removed from the namespace (directory), 
before this fact is reflected on the referenced object (back-
pointer removal). The log record that is synchronously 
created on the namespace site contains all the necessary 
information for recovery execution in the case of failure. 
The protocol for unlink requires one message roundtrip. 
However, unlike link, a reply to the client can be sent as 
soon as the reference has been removed from the 
namespace and before an ACK is received from the object 
site. The operation requires two accesses to the log, only 
the first one (record creation) being synchronous. 
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Namespace site: 
Unlink(P,N) { 
 if dir-entry D does exist then 
  r := {“unlink”,P,D.O,N,D.gen#); 
  Log+

S
(r); 

  D-; 
  Reply to client (success); 
  Unlink_body(r); 
 else 
  Reply to client (error); 
} 
 
Unlink_body(r) { 
 info := r; 
 Send “remove-bptr”+info to Obj site; 
 Wait until reply received or Timeout; 
 if reply received(ACK or NACK) then 
  Log-

A
(r); 

} 
 

Object site: 
Remove_back-pointer(info) { 
 if back-pointer does not exist then  
        /* UL(1) */ 
     send ACK to namespace; 
else if info not equal to bptr then 
    send NACK to namespace; 
 else  
  Bptr-; 
  Send ACK to namespace; 
} 

Figure 4. Failure-free execution of operation unlink. 

4.3. Recovery protocols 
Recovery techniques for traditional transactional 

protocols fall into two general classes, conservative and 
aggressive [2]. In our case, conservative recovery implies 
that the partial results of the original operation execution 
are undone in both the namespace and object sites. In the 
worst-case scenario, conservative recovery unrolls the 
results of an operation that was successful apart from its 
last part, the reclamation of the log record. With 
aggressive recovery, the aim is to complete a partially 
performed operation and bring the namespace and object 
sites in mutually consistent states, as far as that operation 
is concerned. This paper focuses on aggressive recovery 
techniques aiming at stronger quantitative semantics for 
operation completion. 



On recovery from failure, either host or communication, 
the namespace site traverses the log for records indicating 
incomplete operations. The basic idea behind the recovery 
processes proposed here is to re-execute those operations 
without creating a new log record and, in the case of link, 
without generating a new generation#. In this way, 
operation re-execution and the corresponding messages 
are indistinguishable from their failure-free counter-parts. 
The main advantage of this approach is that, in multi-
operation conflict analysis, one needs to consider potential 
conflicts among only failure-free operations, without 
explicitly considering recovery processes. 

on_timeout_for_record (r) { 
 replay_link/unlink (r); 
} 
 

total_recovery { 
 for all records r in log do 
  replay_link/unlink (r); 
} 

Figure 5. Starting recovery process. 

Recovery is initiated by the namespace site, in either of 
two ways:  

• When the communication with a specific host  
(where object-site operations are pending) timeouts; 
implemented by routine “on_timeout_for_record(r)” 
in Figure 5. 

• When the namespace site recovers from a crash; 
implemented by routine “total_recovery” in Figure 
5. 

Recovery protocol for link 

There are three possible points where the execution of 
the link protocol may be interrupted due to failures, as 
shown in Figure : 

• Point X1: Just the log record is created; the back 
pointer has not been added and no other following 
step has been executed. 

• Point X2: The back pointer is added, but the 
namespace has not been updated. 

• Point X3: Both the object and namespace are 
updated, but the log record has not been reclaimed. 

Figure 6 describes the recovery protocol for the link 
operation. The “if” clause distinguishes failures that occur 
at point X3 from failures at X1 or X2. In the latter case, 
the main body of the link operation. (“Link_body (r)” 
defined in Figure ) is re-executed, without creating a new 
log record. If the failure occurred at point X3 (“else” 
clause), the recovery protocol just reclaims the log record 
of the original execution; the rest of the operation has 
been completed. 

If objects were annotated with traditional link-count 
attributes, the above procedure would risk unnecessarily 
incrementing the link-count of the target object. The use 
of back pointers, which uniquely reference parent 
directories and the operation that created the link, 
guarantees that Link operations can be safely re-executed 
in the presence of failures. Even if failures occur during 
the recovery procedure, the procedure can be re-initiated 
without risking causing any inconsistencies at either the 
object or the namespace site. 

replay_link (r) { 
 if dir-entry D does not exist then 
  Link_body (r);   
  // same as in the failure-free case 
 else  
  Log-

A
; 

} 

Figure 6. Recovery process for operation link. 

Recovery protocol for unlink 

There are three possible points where the execution of 
the ulink protocol may be interrupted, as shown in Figure 
4: 

• Point X1: The log is created but no other step has 
been performed.  

• Point X2: The namespace is updated, but the back 
pointer has not been removed at the object site. 

• Point X3: Both the namespace and the object (back 
pointer) are updated, but the log has not been 
reclaimed.  

replay_unlink (r) { 
 if dir-entry D exists && gener# matches then 
  D-; 
  reply to client (success); 
     Unlink_body (r);   
  // same as in the failure-free case 
       Log-

A
; 

} 

Figure 7. Recovery process for operation unlink. 

Figure 7 describes the recovery protocol for unlink. The 
“if” clause distinguishes failures that occur at point X1 
from failures at X2 or X3. In the latter case, the main body 
of the unlink operation (“Unlink_body(r)” defined in 
Figure 4) is re-executed, without creating a new log 
record. If the failure occurred at point X1, then only the 
log record is reclaimed. Again, the use of back pointers 
guarantees that unlink operations and the recovery 
protocol can be safely re-executed in the presence of 
failures, without risking inconsistencies in the system. 

4.4. Multi-operation conflicts 
A major requirement for the design of the protocols 

proposed here is to facilitate maximum concurrency of 



operation execution. The idea is not to lock resources 
across the involved sites for the duration of the protocol 
execution, as it is the case with transactional protocols. As 
a result, we have to explicitly address issues of conflicting 
operations in the system. 

Link/link conflicts 

There are two cases of potential conflicts of link 
operations: 1) they refer to the same name entry and to the 
same object; 2) they refer to the same name entry but to 
different objects. 

In case (1), the first operation to successfully set the 
back pointer is the one that eventually succeeds, even if 
recovery takes place and either of the link operations is re-
executed. When a link operation is executed at the object 
site and a back pointer for the referenced name entry 
already exists, one of two cases applies:  

i) The generation# in the back pointer matches the 
generation# in the payload of “add bptr” (LL(2) in 
Figure ). This implies that this operation has already 
been completed successfully at the object site. An 
ACK is returned to the namespace. 

ii) The two generation#’s do not match. A NACK is 
returned indicating that the back pointer has been 
already added by another link operation (LL(3) in 
Figure ).  

In case (2), success depends on which operation enters 
the directory entry first. Note, that the referenced objects 
may reside in different hosts and therefore there are no 
guarantees for the delivery order of the ACKs for the 
conflicting link operations. Upon return of an ACK for a 
link operation, the namespace is checked again for the 
corresponding directory entry. If the entry already exists 
(inserted by another link operation and referencing 
another object), the link operation fails and its results have 
to be undone in the object site. The functionality of the 
unlink operation is re-used for this purpose (LL(1) in 
Figure ). 

Unlink/unlink conflicts 

The only possible case of conflicting unlink operations 
occurs when they refer to the same namespace entry. 
Irrespectively of the interleaving of executions, only one 
operation succeeds in removing the directory entry. In 
other words, this class of conflicts is easily resolved by 
operation serialization at the directory entry. 

Link/unlink conflicts 

Link/unlink conflicts are not an issue in the absence of 
failures, because the operations are serialized at the 
directory entry. When failures result in incomplete 
operation execution, there are two cases of conflicts to be 
considered. 
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Figure 8. A link/unlink conflict scenario. 

The first case occurs when a link operation fails at point 
X3; before recovery is initiated, an unlink operation is 
started for the same entry. This is demonstrated in Figure 
8. The recovery of link is initiated after the successful 
completion of unlink. As a result of the link re-execution, 
a back pointer is added at the object and an entry inserted 
in the namespace. Eventually, the namespace is consistent, 
but overall this scenario may present unacceptable 
semantics for the clients. 

Such scenarios can occur only in the presence of a crash 
of the namespace site. To address them, the namespace 
site does not serve any new operations upon recovery 
from a crash, until all pending operations in the log are re-
started (not necessarily completed). In the example of 
Figure 8, the unlink operation is not initiated until the 
partially complete link has already been re-started.  

The second case occurs when an unlink operation fails 
at points X2 or X3; before recovery is initiated, a link 
operation is started for the same entry and same object, as 
illustrated in Figure 9. Link successfully adds a new back 
pointer at the object site and inserts an entry at the 
namespace site. The recovery procedure for unlink is later 
initiated; it compares the contents of unlink’s log record 
against the existing directory entry with the same name; 
the fields of the two do not match and thus the unlink re-
execution is aborted and the log is reclaimed. 
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Figure 9. An unlink/link conflict scenario. 

5. Comparison with 2-phase Commit 
The approach followed by other research projects [1, 9] 

is to use 2-phase commit (2PC) for the implementation of 
distributed namespace operations. To facilitate a 
comparison with the proposed protocols, a 2PC-based 
implementation of the link and unlink operations is 
discussed in this section.  

Figure 10 illustrates scenarios that result in committing 
link and unlink executions, using the typical “presumed 
nothing” (PrN) variation of 2PC [7]. The coordinator of 
2PC is chosen to be the namespace site. Back pointers are 
not necessary. Link-counts at the object site suffice, since 
the target object properties are kept “locked” between the 
“prepare” and “commit” phases. Back pointers are not 
required for scenarios of conflicting link and/or unlink 
operations either. It is sufficient to make sure that upon 
recovery of the namespace site, pending transactions are 
restarted before handling any new client requests. 
Updating the link-count of an object still requires a 
synchronous disk access. The 2PC implementations have 
the following disadvantages in comparison with the 
protocols of Figures 2 and 3: 

• Overhead on failure-free operation execution. They 
require two message round-trips and three 
synchronous writes to the log, as opposed to just one 
round trip and two synchronous writes3 in the 
proposed protocols. 

                                                 
3 Both approaches require the same synchronous access to 

persistent storage to update the namespace (directory) and the 
object properties (back pointer or link-count, respectively). 
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Figure 10. An implementation of link and unlink using 
2-phase commit. 

• Lower degree of concurrency. The object site data 
structure (link-count) is locked for the duration of the 
operation execution; no other operation that involves 
the same object can be performed concurrently, even 
from another namespace site. The phase-2 message 
(commit or abort) is required before that resource is 
unlocked. In the presence of failures, such as network 
partitioning, there is no upper time bound for that 
message to be delivered. This is an occurrence of the 
blocking problem of 2PC. 

• Weaker execution semantics to the client. When the 
client receives back a reply to a link or unlink request, 
it is guaranteed that the namespace has been updated, 
but it is not guaranteed that the object properties 
(link-count) have been updated. The latter would 
require a synchronous ACK to the commit decision, 
before a reply is sent back to the client. The protocols 
of this paper provide the stronger guarantee without 
requiring a second round-trip latency in the critical 
path of the operation. 
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Table 7: Comparison with 2PC protocols. 

Table 7 summarizes the comparison between the 2PC 
PrN and the protocols introduced in this paper. Although 
there exist 2PC optimizations, such as the “presumed 
commit” (PrC) variation [13, 11], the important 
performance features, including the number of 
synchronous log accesses and message round-trips on the 
critical path would still be the same. 

6. Related Work 
DiFFS is an architecture designed to provide a widely 

distributed file service [10]. Much of the architecture’s 
scalability and flexibility is due to its partition-based 
approach to storage distribution. DiFFS introduces a novel 
design of distributed namespaces, where the physical 
location of files is independent of their position in the 
namespace hierarchy. This facilitates policy-driven 
allocation of files to resources, and transparent support for 
various file types arbitrarily dispersed throughout the 
namespace. The granularity of the distribution is an 
individual object. This is in contrast with approaches 
followed by AFS [8] and NFSv4 [15], where the 
distribution granularity is an entire volume. Preliminary 
performance results for distributed namespace operations 
based on the protocols of this paper are reported in [10]. 
They demonstrate that the operations scale well with the 
number of servers, since they introduce a constant 
performance overhead factor, irrespectively of the size of 
the system: two servers involved for all operations (except 
rename, which involves three servers). 

Fine-grain distribution is not new. Slice [1] and 
Archipelago [9], in particular, use hash-based approaches 
to place groups of objects to certain partitions. This 
approach restricts the flexibility of these systems. For 
example, breaking hotspots that occur inside a single 
hashed group is difficult; the same is true when system 
reconfiguration is required, e.g., adding/removing 
partitions. Despite their differences, all these systems 
(DiFFS, Slice and Archipelago) have one common 

requirement: maintain a consistent distributed namespace 
that references objects arbitrarily distributed in the system. 
Slice and Archipelago employ 2-phase commit protocols 
for cross-partition namespace operations. While 2PC is a 
mature technique, it is known to 1) impose a high 
overhead to failure-free execution, and 2) reduce 
execution concurrency due to resource locking. Although 
there exist optimized versions of 2PC, they often come 
with a price that may render them impractical for our 
purposes. An optimized version of “presumed commit” 
(PrC) [11], for example, retains a permanent record for all 
aborted transactions, which may grow arbitrarily with the 
number of aborts. Thus, the general challenge is how to 
maintain consistent namespace over a collection of 
distributed objects, in an efficient way.  

7. Conclusions 
This paper introduces namespace protocols with the 

same robustness characteristics as that of 2PC. We show 
that all namespace operations can be decomposed into just 
two primitive operations: link and unlink. We discuss 
protocols and recovery procedures for these two 
operations, taking under consideration all possible failure 
scenarios as well as conflicts that may occur. We claim 
that these protocols impose low overhead to failure-free 
execution and, in general, are more lightweight than 
traditional atomic commitment. To justify this claim, we 
conduct a detailed comparison with protocols that are 
based on 2PC. We demonstrate that the proposed 
protocols outperform 2PC in all critical performance 
factors; that is, communication round-trips and 
synchronous I/O on the critical path of operations. In 
addition, they facilitate higher concurrency for operation 
execution and they provide better probabilistic 
characteristics for successful completion of cross-partition 
operations in the presence of failures. The price for those 
desirable characteristics is that objects must be annotated 
with properties that do not exist in traditional file systems. 



In particular, back pointers to all “parent” directories must 
be associated with every object in the system. 

While atomic commitment protocols are generic 
techniques for implementing distributed transactions, they 
may not provide optimal solutions in certain cases. For 
example, for the problem of maintaining a consistent 
distributed namespace, the decision on whether an 
operation execution can proceed is not “distributed” but it 
is rather determined by the namespace site alone. It is this 
“one-sided” decision making that allows the design of 
lightweight protocols that have the same robustness as 
2PC. In fact, many distributed computing problems may 
be of similar nature. In such cases, we expect that more 
efficient solutions can be developed in place of generic 
atomic commitment protocols. 
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