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Abstract

Enterprise storage systems depend on disk arrays for
their capacity and availability needs. To design and main-
tain storage systems that efficiently satisfy evolving require-
ments, it is critical to be able to evaluate configuration
alternatives without having to physically implement them.
In this paper, we describe an analytical model to predict
disk array throughput, based on a hierarchical decompo-
sition of the internal array architecture. We validate the
model against a state-of-the-art disk array for a variety
of synthetic workloads and array configurations. To our
knowledge, no previously published analytical model has
either incorporated the combined effects of the complex op-
timizations present in modern disk arrays, or been validated
against a real, commercial array. Our results are quite en-
couraging for an analytical model: predictions are accu-
rate in most cases within 32% of the observed array per-
formance (15% on the average) for our set of experiments.

1 Introduction

In today’s networked world, an increasing number of
companies depend on their business-critical data being con-
tinuously available for access. Given the sharp decreasing
trend [10] in per-byte equipment costs for data stored on-
line (i.e., in low-latency media such as hard disks, as op-
posed to tape or optical libraries), the amount of online
data has been recently doubling in size every six to twelve
months [21]. Enterprise systems store data in large disk
arrays [9] to satisfy their considerable requirements for ca-
pacity (tens to hundreds of terabytes) and high availability
(achieved by a combination of redundant storage, support
for hot-swapping, and transparent fail-over capabilities).

The internal architectures of commercial disk arrays
have become considerably more complex than the early
academic prototypes [5] built a decade ago. Array inter-
nals now include hardware and firmware support for a va-
riety of optimizations such as adaptive prefetching policies,

automatic detection of sequential streams of accesses, ef-
ficient demotion policies of dirty blocks from cache, and
request coalescing. The presence of very large caches for
read-ahead and write-behind (up to 32 GB in the current
generation of arrays [12]) and of sophisticated intercon-
nects within each array potentially allow these optimiza-
tions to be more aggressive. In addition, the commodity
disks where data are ultimately stored typically implement
smart prefetching and caching policies (e.g. stream detec-
tion) on their own. The common goal is to reduce the like-
lihood of having to wait for an access that goes all the way
down to the physical media. However, optimizations have
been largely developed independently of one another; their
combined effects often defy intuition, and can be very diffi-
cult to understand [2].

There is a need for models that can predict the perfor-
mance of a given array, configured in a given way, and sub-
ject to a given workload. Predictive models give their users
the ability to explore the consequences of multiple design
points and architectural tradeoffs, without having to build
physical prototypes. In particular, analytical models are less
costly to develop, allow users to concentrate on the relevant
parts of the system being modeled, and are orders of mag-
nitude faster to generate predictions than simulations. The
latter advantage is essential for an important application:
to guide the decisions of constrained optimization engines.
The Minerva system [1] for automatic system design and
configuration needs to predict the performance of tens of
millions of candidate system configurations before settling
on a final solution. Previous attempts at building monolithic
models of modern arrays have been unsuccessful because of
the tradeoff between the degree of realism of the model on
the one hand, and the complexity of the formal manipula-
tions needed to build and evaluate it on the other.

The main contribution of this paper is an analytical
model that can predict thethroughput(i.e., the number of
I/Os serviced per time unit) a disk array will attain for a
given workload. We instantiated the general model to the
particular case of RAID1/0 storage (mirrored striping) in a
state-of-the-art disk array. We also validated the model’s
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predictions against measurements taken on the real array;
to the best of our knowledge, such a stringent level of vali-
dation has never been reported before in the literature.

Another contribution is a novel method for building ana-
lytical disk array models, based on hierarchical decompo-
sitions of the internal device architecture. Array models
are built as sets of interconnectedcomponent modelsthat
represent array components such as disks, busses, and con-
trollers. This approach has several advantages. Individual
components are easier to model than the whole array. Be-
cause of this modularity, we can reuse component models
previously developed for other arrays, or concentrate our ef-
forts where improvement is needed without changing other
parts of the model. Among the many possible decomposi-
tions, the ones that closely mirror the physical device struc-
ture are best: the modeler can then use his domain-specific
knowledge about the way each component operates.

We believe that our methodology is general enough to
model the complex internal interactions that are typical in
modern storage devices, and the (often not evident) ways
in which workload characteristics influence device perfor-
mance. Results from validation experiments show that
our model generates reasonably accurate predictions: our
model was accurate within a 32% of the actual measure-
ments from the array (15% on the average) for a variety
of synthetic workloads and array configurations; although
there were three corner cases where our models did poorly
with about 40% relative error. This level of accuracy is ad-
equate for many purposes. We have found that, as long as a
model is validated with a wide enough sample of synthetic
workloads, average error is a much better predictor of the
model’s usefulness than maximum error. Our models are
very good at considering the correlation and contention ef-
fects of multiple workloads being executed in parallel; for
instance, Minerva [1], which designs and provisions storage
systems based on models with 20% error, produces systems
with less than 2% deviation from specified requirements.

The remaining part of this paper is organized as follows.
Section 2 compares our work with pre-existing approaches.
We describe our style of workload specifications in Sec-
tion 3, and the array model in Section 4. Section 5 discusses
the result of our model validation experiments. We draw our
conclusions in Section 6.

2 Related work

There is a large body of work on analytical models of
disk arrays. Bitton and Gray [3] present a model of seek
time in shadowed disks, an early version of RAID1. Kim
and Tantawi [14] analyze the positioning time delays in
asynchronous disk interleaving, a variety of disk striping
where sub-blocks of a data block are placed independently

of one another. Chen and Towsley, in several papers [4, 6],
present an analytical queueing model of the response time
in a disk array. Lee and Katz [15] present a model of disk
striping under a simple synchronous workload. This model
treats reads and writes similarly and assumes that the mean
service time of a block request at a disk is known. Mer-
chant and Yu [18, 19, 20] present several queueing models
of response times for disk arrays using RAID1 and RAID5
layouts, both for normal and degraded modes; Thomasian
and Menon [23] analyze the performance of RAID5 with
distributed sparing in normal mode, degraded mode, and
rebuild mode in an OLTP environment. Menon and Matt-
son [17, 16] present response-time models of disk arrays us-
ing RAID5 layout; unlike most other models, these include
some cache effects, albeit very simple ones. Disk drives are
not directly modeled as a part of these models.

While several of the papers above compare their results
against simulation results, none of the simulations used are
validated against real arrays, nor are any of the analytical re-
sults compared directly against real hardware. Many make
simplifying assumptions, such as exponentially distributed
disk service times, and most do not model the effects of ei-
ther the disk or the array cache. None of the models above
take into account the effects of the queue sizes on the disk
service times.

As a consequence, these pre-existing models typically
mis-predict by a considerable margin, even when validated
against a simulator [13]; errors are likely to be still more
significant when validated against a commercial array, that
implements many optimizations not contemplated by the
simulator. The analytical model presented in this paper is
the first one to incorporate the effects of multiple behaviors
of real arrays such as intelligent destaging (i.e., flushing of
dirty cache blocks to the disks), client accesses coalesced
into a single disk access, prefetching, and caching.

Several simulation models of disks and disk arrays ex-
ist. DiskSim [8] and Pantheon [24] are two simulation en-
vironments for a disk sub-system, including disks, buses,
adapters, controllers and drivers. Both include disk mod-
ules which have been carefully validated against real disks,
but the rest of the components have not. RaidFrame [7]
is a software RAID controller which can also be used as a
stand-alone discrete-event simulator for disk arrays.

Our disk model is derived from Shriveret al. [22], as is
the general idea of decomposing a storage system into com-
ponents which transform the I/O stream passing through
them.

3 Workload specifications

This section describes our approach to capture the per-
formance characteristics of the workload presented to the
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storage device. Since I/O workloads could be arbitrarily
complex, this is a difficult problem. Our approach to this
problem is to capture a small set of important workload
characteristics that sufficiently describes the steady state be-
havior of the workload. Table 1 lists the workload attributes
that our throughput model uses to predict the performance
of a disk array.

Our workload specifications consist of collections of ob-
jects that contain a set of(attribute, value)pairs as well as
sub-objects. Values may be either simple numerical values
or distributions, defined by their type (for example Poisson,
normal), and their mean and variance. In some cases, we
specify separate values for read and write accesses.

Our workload specifications capture the characteristics
of the access patterns being executed on the array. In the
limit, a full trace of every single I/O contains all the in-
formation about a workload; but such a representation is
excessively large and too low-level for useful manipula-
tion. In our workload specifications,storeobjects have at-
tributes that describe a chunk of contiguous data, such as
size.Streamobjects capture the dynamic aspects of a work-
load, including temporal requirements and behaviors. The
stream’s requests are described by therequest rate and re-
quest size attributes. Therun count attribute models se-
quential locality by counting the mean number of consecu-
tive I/O requests issued to consecutive addresses. All three
attributes are specified separately for reads and writes.

Additionally, each stream has attributes whose values
represent the average number of requests of each type
that have been initiated but not yet completed. The
queue length attribute represents the average number of
outstanding requests waiting to be serviced at any point in
time. We capture the temporal locality of a stream by the
re reference distance attribute. This attribute represents
the number of bytes accessed by the stream between two
accesses to the same block (we used a block size of 1KB
for this paper), represented as a histogram of re-reference
distances.

4 The model

This section starts by introducing the overall structure of
the array model, and its correspondence with the real array.
We then describe the three component models in top-down
order: cache, array controller, and individual disk.

4.1 Overall structure

We modeled the Hewlett-Packard SureStore E Disk Ar-
ray FC60 [11]. Figure 1(A) shows a schematic diagram of
the FC60, omitting the components that are irrelevant for
performance modeling purposes (e.g.redundant power sup-
plies, fans, battery backup unit). The array may have up to

60 disks, allocated to up to six trays. To survive a con-
troller failure, the FC60 can have two controllers, installed
in the same controller enclosure. Each controller has a Fibre
Channel connection to a storage area network, to which the
client hosts are also connected. Each controller may have
up to 512 MB of battery-backed cache (NVRAM). Dirty
blocks are mirrored in both controller caches, to prevent
data loss if a controller fails. The enclosure contains a back-
plane bus that connects the controllers to the trays, via six
40 MB/s ultra wide SCSI busses. Disks of up to 72 GB can
be used, for a total unprotected capacity of 4.3 TB.

We modeled a RAID1/0 logical unit (LU, the indepen-
dent, disjoint partition into which data is stored in an array)
in the FC60, operating in failure-free mode, under a work-
load in which each run of I/Os on consecutive addresses
contains only reads or only writes. In a RAID1/0 LU, the
client’s data is striped over two or more disks in fixed-size
blocks; disks in the LU are arranged into mirrored pairs (in
which each disk is an exact copy of the other element in its
pair) for fault tolerance. In our experience, RAID1/0 is the
most widely used RAID level in enterprise systems: the rel-
atively high level of availability it provides is more impor-
tant for system administrators than the expense of keeping
two copies of all the data (especially since disk capacity is
becoming abundant and cheap).

To guide our modeling decisions, we did not rely on any
proprietary information about the performance of individ-
ual array components, the nature and scope of the policies
implemented by their firmware, or the results of any per-
formance measurement directly or indirectly performed in-
side the array. This fact significantly complicates building a
model; second-guessing all this information from a working
prototype is a very difficult task even for the (much simpler)
case of an older single hard disk [25].

In our compositional style of modeling, each component
model above the bottom of the hierarchy transforms an in-
put workload specification into one or more output speci-
fications that, in turn, become inputs for models at lower
levels in the hierarchy. Component models communicate
with one another in a single, well-defined way: by passing
specifications as parameters. Outputs are computed by ap-
plying a set of transformations to the workload attributes in
the input. Each component model recomputes the values of
the attributes that are relevant to it, and relays the rest of the
input specification without changes. For example, a write-
back cache typically absorbs many requests, and commu-
nicates with the lower levels of the memory hierarchy only
when there is a miss and when some dirty lines are evicted.
Therefore, the output of the cache model will have much
smaller read and write rates than its input (if the workload
exhibits good locality), and the access sizes in its output
may always be a multiple of the fixed line size. Attribute
values that are irrelevant for one component model may be
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Attributes Description Units

request rate mean rate at which requests arrive at the device requests/sec
request size mean length of a request bytes
run count number of requests made to contiguous addresses requests
queue length mean size of the device queue requests
re reference distance amount of data accessed between consecutive accesses to the same blockbytes

Table 1. Workload attributes used by the throughput models in the paper.

Tray 1SCSI
ultra-wide

. . .
Disk 0

dirty blocks

Mirrored
Controller A

Cache A

Controller B

Cache B

Fibre Channel (to hosts)

Max. 10
disks/tray . . .

Max. 6
trays

(A)

Client workload

...
(B)

Cache

Controller

Disk 0 Disk 3

Figure 1. (A) Components in the data path of
the real FC60. (B) Throughput model for a
4-disk RAID1/0 LU in an FC60.

essential for another. Models at the bottom of the hierarchy
just compute performance predictions.

Figure 1(B) shows the structure of the FC60 model,
where we concentrate on the components that have been
observed to become bottlenecks in our extensive measure-
ments. The cache component is the first one to process the
workload; it absorbs some of the accesses (hits) and re-
lays a workload specification representing the misses and
demotions down to the controller. The controller translates
LU-level accesses to accesses on the individual disks that
comprise the RAID1/0 LU being modeled. Finally, the disk
models compute their own throughput predictions without
any further propagation. If the offered load in the input
workload is within the capabilities of all array components,
the predicted throughput from the composite model is equal
to the total input request rate; otherwise, it is the minimum

throughput for which at least one of the components (the
bottleneck) is saturated. In the latter case, no more addi-
tional throughput can be gained by offering more load.

It is worth noting that our modeling approach is general
enough to accommodate arrays substantially more complex
than the FC60. For example, it would be equally possi-
ble to model an XP512 array [12], in which multiple con-
trollers connected to a crossbar backplane share the same
cache banks.

4.2 Cache model

Throughput limits: The cache model imposes no direct
throughput limits; the combined bandwidth and throughput
limitations of the controller and array cache are captured in
the controller model.
Transformations: The array cache model receives as input
a list of I/O request streams and their characteristics. It out-
puts a list of streams with characteristics modified to reflect
a reductions in request rate due to cache hits.

In steady state, both read and write requests cause cor-
responding disk reads or writes only when there is a cache
miss. Read requests which are found in the array cache are
served from there and, in steady state, writes are only prop-
agated to the disk because of a cache miss, which causes
a cache block to be demoted to disk. Suppose the to-
tal cache size istotal cache size, there aren streamsS1,
S2, : : :, Sn in the input to the array cache model and de-
note the corresponding output streams from the model as
S0
1
, S0

2
, : : :, S0n. To determinerequest rate(S0i), we make

the approximation that the cache is divided inton parts
of sizecache size(S1), cache size(S2), : : :, cache size(Sn)
devoted to then streams, where

cache size(Si) =

total cache size �

 
request rate(Si)Pn

j=1 request rate(Sj)

!
(1)

We then approximate the probability that a request is a hit
in the cache by the probability that the number of bytes
accessed by the stream between two accesses to the same
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block is less thancache size(Si); we call this the “re-
reference distance” whose distribution is supplied as a part
of the workload specification. Thus,

request rate(S0i) = request rate(Si) �

Prob[re reference distance(Si) > cache size(Si)] (2)

4.3 Controller model

Throughput limits: The controller model limits the to-
tal rate of requests (I/Os per second) and the bandwidth
requirement (bytes/sec) of the request streams impinging
upon it. The model implements the inequalities

nX
i=1

request rate(Si) � max controller throughput (3)

nX
i=1

request rate(Si) � E[request size(Si)]

� max controller bandwidth (4)

The values of max controller throughput and
max controller bandwidth are constants measured from
the device and supplied as a part of the device description.
The controller is saturated when the left hand side of the
inequalities approaches one.
Transformations: The controller model receives a list of
input streams and their characteristics and outputs a corre-
sponding list of streams for every disk. We describe below
how the attributes of the output streams are derived.

In a real array, the controller translates accesses made on
each LU into accesses on the individual disks. Requests
which are cache hits are served from the cache. Reads
which are cache misses are served from the disks, and usu-
ally also inserted into the cache. Writes which are cache
misses cause demotions from the array cache, leading to
disk writes. Access to data which is distributed over multi-
ple disks cause I/O requests at each of the disks. The pre-
cise translation performed by the controller depends on the
RAID level of the LU (always RAID1/0 in this paper), on
other LU parameters such as stripe unit size, and on the fail-
ure state of the array (always failure-free in this paper).

A real controller performs this translation for each I/O
request; the model of the controller, however, need only per-
form the translations at a statistical level. In other words, we
only need to generate the workload attributes of the result-
ing I/O request streams going to the disks.

Consider an LU with disksD1, D2, : : :, DLU disks. For
each input streamSi impinging on this LU, the model first
generatesS0i by applying the cache model;S0i corresponds
to the stream of read cache misses and write cache demo-
tions. Then it generates streamsSij of the requests which

go to diskDj , for j = 1; 2; : : : ; LU disks. We show be-
low how the model computes the workload characteristics
of Sij .

In the RAID1/0 layout we are modeling, the data on the
LU are divided intostripes. Each stripe is laid out across
disksD1, D3, : : :, DLU disks�1, with an identical copy on
disksD2, D4, : : :, DLU disks. The portion of a stripe on one
disk is astripe unit. Reads can be directed at either copy of
the data, and writes must go to both.

Requests that cross stripe unit boundaries must be split
into requests for the corresponding disks. The data are sep-
arately read into the controller’s buffer, combined and re-
turned to the host. On the other hand, there are cases when
several requests which access contiguous data can becoa-
lescedinto a single request which can be more efficiently
serviced at the disk level. These coalesced requests can be
read into the controller’s buffer and split into the requested
component pieces and returned to the host. There are sev-
eral kinds of coalescing, and which ones to implement is a
policy choice that the array designer makes.

� Access level coalescing:A single, large request of
size greater than a stripe accesses multiple contiguous
stripe units on some or all disks. If an array controller
presents these requests to the disk as a single combined
request, it implements access-level coalescing.

� Run level coalescing:A sequential run of requests,
when mapped to the corresponding disk blocks, may
result in accesses to several consecutive blocks on the
same disk. If the controller combines these into a sin-
gle disk request, it implements run level coalescing.
The FC-60 does not appear to implement run-level co-
alescing.

� Stripe unit level coalescing:This is a restricted form
of run level coalescing, where several requests from a
sequential run fall into the same stripe unit on a disk. If
the controller combines these into a single disk request,
it implements stripe unit level coalescing.

In most cases, it is difficult to determine definitively
which kind of coalescing the controller implements. We
constructed models based on the above three methods of
coalescing for each kind of access. We then measured the
performance of the array for a small number of test work-
loads and picked the coalescing model which matched most
closely.
Reads: The FC60 controller reads only whole stripe units
from a disk [11]; thus, if the read request is smaller than a
stripe unit, the entire stripe unit is read into the array cache.
If the read request straddles multiple stripe units, all the
stripe units involved are read, resulting in an overhead of
one stripe unit per read request (half a stripe unit before the
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data requested and half a stripe unit after). Our experiments
indicate that the FC-60 does not implement any coalescing
for reads.

As we have argued above, each read is a stripe unit, and
the mean number of stripe units read per read request is

disk accesses per read(Si) =

1 + read request size(Si)=stripe unit size (5)

Assuming that the disk read requests are uniformly dis-
tributed over all the disks,

read request size(Sij) = stripe unit size (6)

read request rate(Sij) =

disk accesses per read(Si) � read request rate(Si)

LU disks
(7)

read run count(Sij) =

disk accesses per read(Si) � run count(Si)

LU disks
(8)

Writes: Writes to disk in the FC-60 are caused by demo-
tions from the cache. We lack a detailed model of how this
modifies the write stream to the disk, but we assume that
the cache acts mainly as a staging area for the writes, and at
steady state, the write stream of demotions from the cache
looks similar to the external write stream except as noted.
We say that a write access islarge if it modifies more than
a stripe’s worth of data, and issmall otherwise. From our
synthetic experiments, we concluded that the FC-60 imple-
ments two kinds of write coalescing: access-level coalesc-
ing for large writes, and stripe-unit level coalescing for the
subset of the small writes that fit inside a single stripe unit.
The two cases are therefore handled separately.
Large writes: Assuming that the data written are dis-
tributed uniformly over the disks and keeping in mind that
each datum is written on two disks, we have

write request size(Sij) =

2 � write request size(Si)=LU disks (9)

Since each write touches all disks in the LU, and the com-
ponents of the write on each disk are coalesced into a single
disk write request, we have

disk accesses per write(Sij) = 1 (10)

write request rate(Sij) = write request rate(Si) (11)

write run count(Sij) = write run count(Si) (12)

The above equations are used only when
write request size(Si) � LU disks � stripe unit size=2.
Small writes: Write requests from a sequential run which
fall in the same stripe unit on a disk are coalesced into a sin-
gle disk write request. However, requests from a run which
do not fall into the same stripe unit are not necessarily de-
moted together. This has the combined effect of increasing

the request size but decreasing the run count of the stream
to the disk.

write request size(Sij) = min(stripe unit size;

run count(Si) � write request size(Si)) (13)

The average number of disk writes per write request inSi is

disk accesses per write(Si) =

2 � write request size(Si)=write request size(Sij) (14)

These accesses touchLU disks disks; therefore,

write request rate(Sij) =

2 � write request size(Si) � write request rate(Si)

write request size(Sij) � LU disks
(15)

Finally, because stripe units from a run of small writes are
often not demoted together, we have

write run count(Sij) = 1 (16)

The above equations are used only when
write request size(Si) < LU disks � stripe unit size=2.
Queue length: StreamSi hasqueue length(Si) requests
outstanding on the average; we assume that they are divided
between reads and writes in proportion to the read and write
rates. Letread accesses(Si) = read request rate(Si) �
disk accesses per read(Si) and write accesses(Si) =
write request rate(Si) �disk accesses per write(Si). Since
there areLU disks disks in the LU, the mean number of disk
requests outstanding at diskDj from streamSi is

queue length(Sij) = queue length(Si) ��
read accesses(Si) + write accesses(Si)

LU disks � request rate(Si)

�
(17)

4.4 Disk model

Throughput limits: The disk model for a diskDj imple-
ments the throughput inequality

nX
i=1

read utilization(Sij) + write utilization(Sij) < 1 (18)

The disk is saturated when the left hand side of the inequal-
ity approaches one. The utilizations are computed as

read utilization(Sij) =

read request rate(Sij) � disk read service time(Sij) (19)

write utilization(Sij) =

write request rate(Sij) � disk write service time(Sij) (20)

The mean disk read service time depends upon whether
the datum is found in the disk cache. Since the service time
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of a read datum found in the cache is very small compared
to accessing the magnetic medium, we approximate it as
zero. For data not found in the disk cache, the service time
is the sum of positioning time and transfer time. Thus, the
mean disk read service time is

disk read service time(Sij) = (1� disk cache hit prob)��
disk read pos time(Sij) +

read request size(Sij)

disk transfer rate

�
(21)

The disk positioning time is estimated by

disk read pos time(Sij) =

mean read disk seek timePn

k=1 queue length(Skj)
+

disk rotation time

2
(22)

Themean read disk seek time anddisk rotation time are
device parameters obtained through measurement.

Cache hits for read typically arise due toread-ahead. Af-
ter servicing a read, the disk controller continues to transfer
data into the on-board disk cache in anticipation of more
sequential reads in the future. This improves the perfor-
mance of sequential workloads as there are no positioning
delays for the requests served from the disk cache. Disk
caches aresegmented, each segment consisting of a fixed
amount of memory. Disks usually access no more than a
segment worth of data for read-ahead. If a request from
a different stream arrives during the read-ahead operation,
the disk stops read-ahead and switches to serving the new
request. We estimate the amount of read-ahead for a stream
when requests from multiple sequential streams are queued
together as:

read ahead amount(Sij) = disk cache segment size ��
read request rate(Sij) � queue length(Sij)Pn

k=1 read request rate(Skj) � queue length(Skj)

�
(23)

From this, the cache hit probability can be estimated as

disk cache hit prob = read request size(Sij)=

min(read ahead amount(Sij);

read run count(Sij) � read request size(Sij)) (24)

Finally, disk caches are write-through only since they do
not have a battery backup to save data in case of a power
loss. While only the first request in a sequential write run
experiences a seek time, unlike reads, all operations con-
tinue to experience rotational delays. This is because by the
time the next request in a sequential run arrives at the disk,
the disk platter has already rotated from its position. Our
model estimates the average positioning delay incurred for
the write requests in a sequential run as:

disk write pos time(Sij) =
disk rotation time

2
+

mean write disk seek time

write run count(Sij) �
Pn

k=1 queue length(Skj)
(25)

Now the write service time can be computed as the sum of
positioning and transfer times:

disk write service time(Sij) =

disk write pos time(Sij) +
write request size(Sij)

disk transfer rate
(26)

5 Empirical validation

We validated the accuracy of our analytical model by
comparing the predicted maximum throughput (I/Os per
second) against measured values for a variety of workloads
running against an FC-60. The FC-60 array used in our ex-
periments has 30 disks (Seagate ST118202LC disks, each
18 GB in size), two controllers and 256 MB of cache in each
controller. We configured two RAID1/0 LUs in our FC-60
consisting of four and six disks, respectively. We used disks
from separate back-end SCSI buses for each LU. We used
a stripe unit size of 16 KB and a cache page size of 4 KB
in all of our experiments. We connected the FC-60 array
to a Brocade Silkworm 2800 switch via two FibreChannel
links. We used an HP 9000-N4000 server with eight 440
MHz PA-RISC 8500 processors and 16 GB of main mem-
ory to generate workloads and to access the FC-60 array.
The host was running HP-UX 11.0 as its operating system.
Table 2 contains the parameters for our model of the FC60.

In our validation experiments, we used synthetic work-
loads with request sizes ranging from 4 KB to 256 KB and
the degree of sequentiality (run count) ranging from 1 (ran-
dom) to 64 (highly sequential). The load offered to the ar-
ray attempted to keep the array busy by keeping up to 64
outstanding requests at every time. The workloads are gen-
erated using a synthetic load generator. For each workload
execution, we collected a trace of all I/O activity on the host
at the device driver level. The trace contained information
about I/O submission and completion times, logical address
and size of I/Os, and the length of the queue when each re-
quest completes, among others. We later analyzed the trace
to compute the throughput and other useful statistics.

Figures 2 and 4 present the measured throughput from
the array and the predicted throughput from the model for
read and write workloads for a variety of request sizes and
degree of sequentiality. Our results indicate that our model
has on the average an accuracy of about 15% for both read
and write workloads across all of the configurations tested
(Figures 3 and 5 contain the relative error plots). This is an
encouraging result for predicting the throughput of a mod-
ern disk array. Although the maximum relative error was
higher, up to 42% for the four- and six-disk RAID1/0 con-
figurations, most of the the model predictions were within
30% of the measured throughput from the FC60. Our re-
sults show that the model is conservative, for it does not
over-predict the throughput by more than 22% with the ex-
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Parameter Description Value
total cache size size of the cache at each controller 256 MB
max controller throughput max number of I/Os the controller can process in a second11,338 I/Os/sec
max controller bandwidth maximum controller bandwidth in bytes/sec 84 MB/s
stripe unit size amount of data controller writes to a single drive before

switching to the next drive in the same LU 16 KB
LU disks number of disks in a LU 4, 6 disks
disk type type of disks in our FC-60 array Seagate ST118202LC
disk rotation time time for the disk platter to make one full rotation 6e-3 sec
disk cache segment size disk cache segment size 64 KB
disk read pos time mean read positioning time at disk 6.37e-3 sec
disk write pos time mean write positioning time at disk 7.00e-2 sec
disk transfer rate mean read and write transfer rate, respectively 1.80e+7, 1.65e+7 byte/sec

Table 2. Model parameters for the FC-60 Array.
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Figure 2. Results from validating the array model for the 6-disk RAID1/0 configuration on the FC60
array. In the legend, M(X) denotes the measured throughput from the array for request size of X KB;
and P(X) denotes the predicted throughput from the model for request size of X KB.
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Figure 3. Relative prediction error in the model for the 6-disk RAID1/0 configuration. In the legend,
E(X) denotes the relative throughput prediction error of the array model for request size of X KB.
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Figure 4. Results from validating the RAID1/0 throughput model for the 4-disk RAID1/0 configuration.
In the legend, M(X) denotes the measured throughput from the array for request size of X KB; and
P(X) denotes the predicted throughput from the model for request size of X KB.
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Figure 5. Relative prediction error in the model for the 4-disk RAID1/0 configuration. In the legend,
E(X) denotes the relative throughput prediction error of the array model for request size of X KB.

ception of two cases for the configurations tested. We note
that our model becomes increasingly more optimistic as the
sequentiality in our write-only workloads increases. We be-
lieve that this is due to our lack of a sufficiently detailed
model of write destaging from the cache. Our model as-
sumes that the request stream to the disks is similar to the
input write request stream, however, due to demotions, the
write stream to the disks might be less sequential than our
model assumes.

6 Conclusions

We have presented an analytical throughput model of
RAID1/0 LUs in a mid-range disk array, and compared the
model’s predictions with measurements taken on different
configurations of the real array. To our knowledge, this is

the first analytical model validated against a state-of-the-art
disk array in the published literature. Our model is built
around a hierarchical decomposition of the relevant parts of
the array’s internal architecture. The accuracy figures for
the model are quite encouraging: although there were cor-
ner cases where our model did poorly with about 40% error,
the relative errors in all other predictions were 15% on the
average and 32% at the maximum. For perspective, this
level of accuracy has been shown to be perfectly accurate to
automatically design and provision storage systems [1].

One intent of developing this model was to learn tech-
niques which could be applied to other arrays and other
RAID levels. We found that there are a myriad factors
which affect the performance of a disk array, all of which
must be incorporated into an accurate model. In particu-
lar, it is necessary to model the effects of sequentiality in
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the workload, and how it interacts with the RAID level.
Also, it is critical to model the number of requests out-
standing at the disk, and its impact on disk service times.
Other factors include the effects of controller cache and of
read-ahead in the disk. We found that a hierarchical de-
composition of the model made the incremental inclusion
of additional factors significantly easier. Our current ver-
sion models many optimizations that are common in mod-
ern disk arrays: coalesced read accesses on back-end disks,
reading whole stripe units into the cache, destaging of dirty
blocks based on spatial locality, write coalescing, and array-
and disk-level caching.

Acknowledgements: We thank John Wilkes and Doug
Obal for their comments on an earlier version of this paper.
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