
decides how many of each kind of storage device to use,
and how to balance the load and data across them.
Both the workload behavior and the device capabilities
are specified by describing attributes of the load or the
device respectively. Thus, we refer to our approach as
attribute-managed storage. We view it as an extension of
system managed storage [Gelb89].
Workload attributes include performance requirements
such as mean throughput, maximum latency, and jitter;
resiliency needs such as availability, reliability, and fault
models; cost bounds; data sizes, and so on. Device
attributes are expressed similarly.
An attribute-managed storage system maps data to
devices so that the requirements associated with each
data item are met. When new resources are added or old
ones fail, the system can detect this and reapportion
storage accordingly.
We are investigating the construction of attribute-
managed storage systems. As part of this we are
working to answer several questions:

• How does one specify workload requirements?
• How does one specify device capabilities?
• What algorithms work well for automatically

mapping storage objects to devices based on their
attributes?

• How does the assignment of an object to a device
translate into low-level resource reservation? What
do these reservations mean at run time?

1 The big picture
Current storage systems—file systems, databases, and
backup and archival tools—all require significant
administration. At the same time, the number of
configuration and management choices is increasing
because both the number of components and their
configurability is increasing. For example, experience
with RAID systems shows that few users have the
expertise and the information to configure a disk array
well, and that initial installation can be a time-
consuming process. This is all made much worse if the
system must adapt to changing workloads.
The increased load on, and sophistication required of,
administrators invariably means that the systems being
constructed are not optimally configured—either they
cost too much or they do not provide adequate service.
To address these problems, we believe that storage
systems must be self-managing: they must adapt
themselves to the workload and resources they are
given, without requiring human intervention. Our
experience with the HP AutoRAID system [Wilkes95],
which can dynamically select RAID layout policies based
on usage, indicates that both performance and ease-of-
use can be improved by doing so.
If a system is to be self-managing, it must be given a set
of goals to manage towards. Our approach is to do this
in two parts: our storage system is given a specification
of the workload it has to support, the data it needs to
store, and of the storage devices at its disposal. It then

Attribute-managed storage
Richard Golding, Elizabeth Shriver,
Tim Sullivan, and John Wilkes

Storage Systems Program, Computer Systems Laboratory

Hewlett-Packard Laboratories, Palo Alto, CA

Storage systems are continuing to grow, and they are become shared resources with the
advent of I/O networks like FibreChannel. Managing these resources to meet
performance and resiliency goals is becoming a significant challenge. We believe that
completely automatic, attribute-managed storage is the way to address this issue. Our
approach is based on declarative specifications of both application workloads and
device characteristics. These are combined by a mapping engine to generate a load-
assignment that provides optimal performance and meets availability guarantees, at
minimum cost.

Position paper presented at the Workshop on Modeling and Specification of I/O (MSIO), San Antonio,
Texas, 26 October 1995. The authors may be contacted at {golding, shriver, sullivan, wilkes}@hpl.hp.com.
© Copyright Hewlett-Packard Company 1995. All rights reserved.

2

We are initially limiting our focus to a subset of the
problem by modelling only transaction processing,
multimedia, and scientific computing applications; and
by modelling only the capabilities of disk drives and
tapes.
Attribute-managed storage is a part of our larger
investigation into distributed storage systems. These
systems consist of many smart, network-attached
storage devices (NASDs) shared among many systems.

2 Model and principles
We are concentrating on the problem of assigning
storage objects to appropriate devices using the model
shown in Figure 1.
An attributed-managed storage system is concerned
with reserving low-level resources to meet abstract
application requirements. These reservations are
maintained in two ways: persistent reservations are
associated with stored data, while transient reservations
are associated with the streams that access the data.
Storage objects are the basic persistent unit that
applications access, and that must be assigned to storage
devices. These objects could be files, tables or parts of
tables in a database, recorded continuous media
streams, or blocks of a scientific data set.
The objects carry sets of attributes. Some of these specify
the Quality of Service (QoS) requirements that must be
guaranteed to or are anticipated for applications that use
the object. Other attributes indicate expected application
behaviors that the system can use to make better layout
decisions. The attributes are initially predeclared; later,

Figure 1 : components in the model.

assignment

devices

objects

mapping engine

throughput: 8 MB/s
mtdl: 1 Mh
open latency: 0.5 s
sequential reads
size: 5.5 MB

sequential throughput: 8 MB/s
mttf: 0.5 Mh
max latency: 20 ms
size: 2GB

streams
throughput: 4MB/s
open latency: 0.5 s
sequential reads

the system may infer them from observed usage
patterns.
Separately, applications access storage objects through
streams. A stream represents the application workload
on the object and the resources that workload uses. The
stream carries its own set of requirements and
behaviors.
The objects are stored on devices. These devices have a set
of low-level resources, which are modelled by capability
attributes. Device resources are reserved for streams and
objects. The system will only allow the creation of an
object or stream if sufficient resources are available to
meet its requirements.
The system maintains assignment metadata for the
mapping of objects to devices. Algorithms for
automatically finding good mappings is part of our
research. It’s important to note that unlike existing
distributed file systems, an object is not constrained to a
particular device by being part of a volume. Instead,
each object can be assigned any appropriate device in
the system.

2.1 Attributes and reservations
We describe objects, streams, and devices by attributes.
Attributes allow us to specify abstractly the
requirements and behaviors of streams and objects, and
the capabilities of devices. It is important that the
attributes themselves be intelligible to a human user.
Attributes are the only things we use to map objects to
devices and to manage streams. Within a device, the
assignment of an object to a device uses up concrete
resources, but this set of resources is determined by
finding the minimum set that will meet the abstract,
attribute-level performance requirements. This
limitation is important for keeping the system modular
and extensible.
A few kinds of attributes are involved in mapping
objects or streams with devices (Figure 2). An object
provides a set of requirements, indicating its needs, and
behaviors, indicating how it will be used. A device
similarly provides capabilities, which model the low-
level resources that can be allocated to an object, such as
throughput and capacity. When an object is assigned to
a device, the system negotiates between the object’s
requirements and the device’s capabilities to form a
contract. This contract is part of the assignment, and the
system guarantees only hold when applications use
objects according to the behaviors recorded in the
contract.
Some attributes represent behaviors that applications will
follow. The mapping system can use these behaviors to
make a better selection of devices. For example, if an
object is guaranteed to mostly be read sequentially, then
it should probably be organized sequentially on disk.
Device capabilities measure the resources available to an
object or stream. For example, sequential throughput (in

3

bytes/sec) and capacity (in bytes) both are consumed as
objects with throughput and size requirements are
stored on the device. Other capabilities, such as mean
time-to-failure, represent device characteristics other
than consumable resources.
Some attributes are measured as single numbers, while
others require more complex specification. An
application might indicate that it needs a throughput of
4 MB/s, and that the jitter on this value must be no more
than 2%; or a disk might indicate that 90% of all requests
will be satisfied within 20 ms. Yet more complex
attributes might account for the effect of failures on these
values [Wilkes91].
Other systems have used QoS attributes to represent
requirements. For example the LLNL High Performance
Storage System [Louis95] attaches a data structure
containing both usage hints and requirements to stored
files and to storage classes.

2.2 Storage objects and streams
Storage objects represent the persistent, static allocation
of data, while streams represent the transient, dynamic
use of the data. Both are used to reserve device
resources.
Storage objects carry persistent resource reservations.
These reservations are derived from the attributes that
applications place on the object. The mapping engine
uses these attributes to pick the devices on which the
object should be stored, and to determine what fraction
of the device’s resources should be allocated to the
object. For example, some video stream file might have a
particular playout rate, and at any time at least three
streams should be able to access that stream. Enough
resource would need to be allocated to the object so 3x
the playout rate was available, among other things.

Figure 2 : how attributes are used.

sequential throughput: 8 MB/s
size: 2GB

requirements behaviors

capabilities

negotiation contract

mttf: 0.5 Mh
max latency: 20 ms

sequential readsthroughput: 4MB/s
open latency: 0.5s

Similarly, a vitally important data file would carry a long
mean-time-to-data-loss attribute.
A stream, on the other hand, has short-term, session-
based reservations. When a stream is created that uses
an object, it consumes some of the resources reserved to
the object. In the video file example, a third of the
throughput resources reserved for the file would be
allocated to the a new stream.
The system practices admission control on both objects
and streams. It will reject the creation of a new object if
there isn’t enough resource to allocate—like space or
throughput. New streams can opportunistically allocate
unreserved resources when possible: if there were three
streams already using the video stream in our previous
example, a fourth stream might be admitted if the
system had enough unreserved resources to support one
more stream.
Sometimes one wants to make reservations for a group
of objects, so that applications are guaranteed access
only to some subset of the objects. For example, a video
file service might guarantee that up to fifty video
streams could be active concurrently to some subset of
the hundreds of video files it stored. Such a reservation
would require far fewer device resources than requiring
that every file be accessible by up to fifty streams.
Some applications are flexible, and can cope with a
range of different performance levels. These attributes
include the desired performance level, the minimum
acceptable level, and a goodness function indicating the
value of supplying resources above the minimum. For
example, if an application can function properly with a
stream having 512 kB/s throughput, but any additional
throughput up to 1 MB/s would be better, the stream’s
throughput attribute would carry a goodness function
that increased linearly from 0 to 1 as the throughput
ranged from 512 kB/s to 1 MB/s.
When a stream is created the system may also initiate the
execution of a prefetch policy to migrate a copy of the
object onto faster media. Expressing complex
prefetching and inter-level migration is as yet not well
understood.

2.3 Devices
Devices have a set of capabilities that abstract the
resources they can provide to objects and streams. These
capabilities are used when mapping objects to devices.
The underlying resources are reserved to objects or
streams, and at run time a stream can only use up to its
reserved resource.
Devices also have costs. The cost includes both the one-
time cost of purchasing the device, and the ongoing costs
of providing power, cooling, and maintenance. The
mapping algorithms we use to assign objects to devices
attempt to minimize the total cost of the devices.
Many devices are simple and obvious, like disks, tapes,
and cache memories. Other important devices include

4

the interconnection network, device controllers, and
power supplies.
We also model virtual devices. A virtual device modifies
the capabilities of a physical device, usually to optimize
for a particular stream behavior. For example, a device
driver can improve a disk’s performance by scheduling
concurrent requests efficiently. The capability attributes
of a virtual device derive from the capabilities of the
device or devices it uses and from the way it modifies
those devices.
Some virtual devices are parameterizable, and the
mapping engine must select parameters that match the
objects being assigned to the virtual device. For
example, a generic disk striping device can vary the
stripe depth and width to match application throughput
requirements.

3 The mapping problem
We are considering four storage management problems:

1. planning the device capacity required to support a
set of objects or streams;

2. planning the set of streams or objects that can best be
supported by a set of devices;

3. batch reorganization of the objects in a system; and
4. incrementally adding new objects to a system, or

changing an object’s requirements;
These are cases of what we call the mapping problem: to
allocate device resources so that

• object requirements are met;
• the device cost is a low as possible; and
• as many of the objects’ optional requests are met as

possible. (That is, the goodness values of the
optional attributes is as high as possible.)

Solutions often trade cost for goodness: it may take extra
devices to satisfy the optional requests, such as
bandwidth above some minimum. A system
administrator can specify the trade-off in the abstract—
perhaps how much additional device cost is
acceptable—or can perform what-if analyses to find the
right trade-off.

3.1 Mapping engines
We are beginning with the batch planning problems, and
deferring the problem of incremental assignment until
we have more intuition about the mapping problem.
A number of mapping engines based on traditional
approximate resource allocation algorithms appear
promising. In particular, we are looking at the multi-
constraint knapsack problem, simulated annealing, and
genetic algorithms.
We are conducting a series of experiments to compare
different mapping engines. We are assembling a number
of test cases, each with a small population of objects and

devices. Each engine solves each of the test case, and we
compare the resulting assignment according to:

• speed of execution;
• the device cost of the solution;
• the goodness of the assignment;
• the distance from optimal for both cost and

goodness; and
• the fraction of test cases for which an assignment

was found.

4 Conclusions
Distributed storage systems are coming to include large
numbers of configurable, shared resources as I/O
networks and directly-attached storage devices become
available. This is causing the number and complexity of
management options to grow to the point that manual
administration is no longer feasible.
We are working on self-managing storage systems based
on attribute-managed storage. Our approach uses
declarative, abstract specifications of both application
requirements and device capabilities to guide automatic
management mechanisms. The system includes a
mapping engine that automatically maps objects to
devices, ensuring that performance requirements are
met and minimizing cost. This enables transparent
object migration for fault tolerance, performance
enhancement, or hierarchical storage management.

References
[Gelb89] J. P. Gelb. System managed storage. IBM Systems

Journal 28(1):77–103, 1989.
[Louis95] S. Louis and D. Teaff. Class of service in high

performance storage system. In the Proceedings of 3rd
International IFIP TC6 Conference on Open Distributing
Processing (ICODP ‘95), pp. 307–18, February 1995.

[Wilkes91] John Wilkes and Raymie Stata. Specifying
data availability in multi-device file systems. Position
paper for the 4th ACM-SIGOPS European Workshop,
Bologna, September 1990. Also published as
Operating Systems Review 25(1):56-9, January 1991.

[Wilkes95] John Wilkes, Richard Golding, Carl Staelin,
and Tim Sullivan. The HP AutoRAID hierarchical
storage system technology. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
Copper Mountain Resort, CO, December 1995. Also
published as Operating Systems Review 29(4).

